| Index: src/pathops/SkDQuadImplicit.cpp
|
| diff --git a/src/pathops/SkDQuadImplicit.cpp b/src/pathops/SkDQuadImplicit.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..f0f66d1a10a4f8f27d87c2d47705497248fcef25
|
| --- /dev/null
|
| +++ b/src/pathops/SkDQuadImplicit.cpp
|
| @@ -0,0 +1,117 @@
|
| +/*
|
| + * Copyright 2012 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +#include "SkDQuadImplicit.h"
|
| +
|
| +/* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1
|
| + *
|
| + * This paper proves that Syvester's method can compute the implicit form of
|
| + * the quadratic from the parameterized form.
|
| + *
|
| + * Given x = a*t*t + b*t + c (the parameterized form)
|
| + * y = d*t*t + e*t + f
|
| + *
|
| + * we want to find an equation of the implicit form:
|
| + *
|
| + * A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0
|
| + *
|
| + * The implicit form can be expressed as a 4x4 determinant, as shown.
|
| + *
|
| + * The resultant obtained by Syvester's method is
|
| + *
|
| + * | a b (c - x) 0 |
|
| + * | 0 a b (c - x) |
|
| + * | d e (f - y) 0 |
|
| + * | 0 d e (f - y) |
|
| + *
|
| + * which expands to
|
| + *
|
| + * d*d*x*x + -2*a*d*x*y + a*a*y*y
|
| + * + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x
|
| + * + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y
|
| + * +
|
| + * | a b c 0 |
|
| + * | 0 a b c | == 0.
|
| + * | d e f 0 |
|
| + * | 0 d e f |
|
| + *
|
| + * Expanding the constant determinant results in
|
| + *
|
| + * | a b c | | b c 0 |
|
| + * a*| e f 0 | + d*| a b c | ==
|
| + * | d e f | | d e f |
|
| + *
|
| + * a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b)
|
| + *
|
| + */
|
| +
|
| +// use the tricky arithmetic path, but leave the original to compare just in case
|
| +static bool straight_forward = false;
|
| +
|
| +SkDQuadImplicit::SkDQuadImplicit(const SkDQuad& q) {
|
| + double a, b, c;
|
| + SkDQuad::SetABC(&q[0].fX, &a, &b, &c);
|
| + double d, e, f;
|
| + SkDQuad::SetABC(&q[0].fY, &d, &e, &f);
|
| + // compute the implicit coefficients
|
| + if (straight_forward) { // 42 muls, 13 adds
|
| + fP[kXx_Coeff] = d * d;
|
| + fP[kXy_Coeff] = -2 * a * d;
|
| + fP[kYy_Coeff] = a * a;
|
| + fP[kX_Coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d;
|
| + fP[kY_Coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a;
|
| + fP[kC_Coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f)
|
| + + d*(b*b*f + c*c*d - c*a*f - c*e*b);
|
| + } else { // 26 muls, 11 adds
|
| + double aa = a * a;
|
| + double ad = a * d;
|
| + double dd = d * d;
|
| + fP[kXx_Coeff] = dd;
|
| + fP[kXy_Coeff] = -2 * ad;
|
| + fP[kYy_Coeff] = aa;
|
| + double be = b * e;
|
| + double bde = be * d;
|
| + double cdd = c * dd;
|
| + double ee = e * e;
|
| + fP[kX_Coeff] = -2*cdd + bde - a*ee + 2*ad*f;
|
| + double aaf = aa * f;
|
| + double abe = a * be;
|
| + double ac = a * c;
|
| + double bb_2ac = b*b - 2*ac;
|
| + fP[kY_Coeff] = -2*aaf + abe - d*bb_2ac;
|
| + fP[kC_Coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde;
|
| + }
|
| +}
|
| +
|
| + /* Given a pair of quadratics, determine their parametric coefficients.
|
| + * If the scaled coefficients are nearly equal, then the part of the quadratics
|
| + * may be coincident.
|
| + * OPTIMIZATION -- since comparison short-circuits on no match,
|
| + * lazily compute the coefficients, comparing the easiest to compute first.
|
| + * xx and yy first; then xy; and so on.
|
| + */
|
| +bool SkDQuadImplicit::match(const SkDQuadImplicit& p2) const {
|
| + int first = 0;
|
| + for (int index = 0; index <= kC_Coeff; ++index) {
|
| + if (approximately_zero(fP[index]) && approximately_zero(p2.fP[index])) {
|
| + first += first == index;
|
| + continue;
|
| + }
|
| + if (first == index) {
|
| + continue;
|
| + }
|
| + if (!AlmostDequalUlps(fP[index] * p2.fP[first], fP[first] * p2.fP[index])) {
|
| + return false;
|
| + }
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +bool SkDQuadImplicit::Match(const SkDQuad& quad1, const SkDQuad& quad2) {
|
| + SkDQuadImplicit i1(quad1); // a'xx , b'xy , c'yy , d'x , e'y , f
|
| + SkDQuadImplicit i2(quad2);
|
| + return i1.match(i2);
|
| +}
|
|
|