| Index: src/pathops/SkPathOpsCubic.h
|
| diff --git a/src/pathops/SkPathOpsCubic.h b/src/pathops/SkPathOpsCubic.h
|
| index 9932e1d1bc300917783e4aa9416dad6f938dbf54..1037cae4f759f94e5c01a3bd3784a44c16ceb3d5 100644
|
| --- a/src/pathops/SkPathOpsCubic.h
|
| +++ b/src/pathops/SkPathOpsCubic.h
|
| @@ -10,6 +10,7 @@
|
|
|
| #include "SkPath.h"
|
| #include "SkPathOpsPoint.h"
|
| +#include "SkTArray.h"
|
|
|
| struct SkDCubicPair {
|
| const SkDCubic& first() const { return (const SkDCubic&) pts[0]; }
|
| @@ -18,33 +19,13 @@
|
| };
|
|
|
| struct SkDCubic {
|
| - static const int kPointCount = 4;
|
| - static const int kPointLast = kPointCount - 1;
|
| - static const int kMaxIntersections = 9;
|
| -
|
| enum SearchAxis {
|
| kXAxis,
|
| kYAxis
|
| };
|
|
|
| - bool collapsed() const {
|
| - return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2])
|
| - && fPts[0].approximatelyEqual(fPts[3]);
|
| - }
|
| -
|
| - bool controlsInside() const {
|
| - SkDVector v01 = fPts[0] - fPts[1];
|
| - SkDVector v02 = fPts[0] - fPts[2];
|
| - SkDVector v03 = fPts[0] - fPts[3];
|
| - SkDVector v13 = fPts[1] - fPts[3];
|
| - SkDVector v23 = fPts[2] - fPts[3];
|
| - return v03.dot(v01) > 0 && v03.dot(v02) > 0 && v03.dot(v13) > 0 && v03.dot(v23) > 0;
|
| - }
|
| -
|
| - static bool IsCubic() { return true; }
|
| -
|
| - const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
|
| - SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
|
| + const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < 4); return fPts[n]; }
|
| + SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < 4); return fPts[n]; }
|
|
|
| void align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const;
|
| double binarySearch(double min, double max, double axisIntercept, SearchAxis xAxis) const;
|
| @@ -52,35 +33,30 @@
|
| SkDCubicPair chopAt(double t) const;
|
| bool clockwise() const;
|
| static void Coefficients(const double* cubic, double* A, double* B, double* C, double* D);
|
| - static bool ComplexBreak(const SkPoint pts[4], SkScalar* t);
|
| - int convexHull(char order[kPointCount]) const;
|
| - void dump() const; // callable from the debugger when the implementation code is linked in
|
| - void dumpID(int id) const;
|
| - void dumpInner() const;
|
| + bool controlsContainedByEnds() const;
|
| SkDVector dxdyAtT(double t) const;
|
| bool endsAreExtremaInXOrY() const;
|
| static int FindExtrema(double a, double b, double c, double d, double tValue[2]);
|
| int findInflections(double tValues[2]) const;
|
|
|
| - static int FindInflections(const SkPoint a[kPointCount], double tValues[2]) {
|
| + static int FindInflections(const SkPoint a[4], double tValues[2]) {
|
| SkDCubic cubic;
|
| cubic.set(a);
|
| return cubic.findInflections(tValues);
|
| }
|
|
|
| int findMaxCurvature(double tValues[]) const;
|
| - bool hullIntersects(const SkDCubic& c2, bool* isLinear) const;
|
| bool isLinear(int startIndex, int endIndex) const;
|
| bool monotonicInY() const;
|
| - void otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const;
|
| SkDPoint ptAtT(double t) const;
|
| static int RootsReal(double A, double B, double C, double D, double t[3]);
|
| static int RootsValidT(const double A, const double B, const double C, double D, double s[3]);
|
|
|
| int searchRoots(double extremes[6], int extrema, double axisIntercept,
|
| SearchAxis xAxis, double* validRoots) const;
|
| + bool serpentine() const;
|
|
|
| - void set(const SkPoint pts[kPointCount]) {
|
| + void set(const SkPoint pts[4]) {
|
| fPts[0] = pts[0];
|
| fPts[1] = pts[1];
|
| fPts[2] = pts[2];
|
| @@ -89,7 +65,7 @@
|
|
|
| SkDCubic subDivide(double t1, double t2) const;
|
|
|
| - static SkDCubic SubDivide(const SkPoint a[kPointCount], double t1, double t2) {
|
| + static SkDCubic SubDivide(const SkPoint a[4], double t1, double t2) {
|
| SkDCubic cubic;
|
| cubic.set(a);
|
| return cubic.subDivide(t1, t2);
|
| @@ -97,7 +73,7 @@
|
|
|
| void subDivide(const SkDPoint& a, const SkDPoint& d, double t1, double t2, SkDPoint p[2]) const;
|
|
|
| - static void SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& d, double t1,
|
| + static void SubDivide(const SkPoint pts[4], const SkDPoint& a, const SkDPoint& d, double t1,
|
| double t2, SkDPoint p[2]) {
|
| SkDCubic cubic;
|
| cubic.set(pts);
|
| @@ -105,29 +81,16 @@
|
| }
|
|
|
| SkDPoint top(double startT, double endT) const;
|
| + void toQuadraticTs(double precision, SkTArray<double, true>* ts) const;
|
| SkDQuad toQuad() const;
|
| +
|
| + // utilities callable by the user from the debugger when the implementation code is linked in
|
| + void dump() const;
|
| + void dumpNumber() const;
|
|
|
| static const int gPrecisionUnit;
|
|
|
| - SkDPoint fPts[kPointCount];
|
| + SkDPoint fPts[4];
|
| };
|
|
|
| -/* Given the set [0, 1, 2, 3], and two of the four members, compute an XOR mask
|
| - that computes the other two. Note that:
|
| -
|
| - one ^ two == 3 for (0, 3), (1, 2)
|
| - one ^ two < 3 for (0, 1), (0, 2), (1, 3), (2, 3)
|
| - 3 - (one ^ two) is either 0, 1, or 2
|
| - 1 >> (3 - (one ^ two)) is either 0 or 1
|
| -thus:
|
| - returned == 2 for (0, 3), (1, 2)
|
| - returned == 3 for (0, 1), (0, 2), (1, 3), (2, 3)
|
| -given that:
|
| - (0, 3) ^ 2 -> (2, 1) (1, 2) ^ 2 -> (3, 0)
|
| - (0, 1) ^ 3 -> (3, 2) (0, 2) ^ 3 -> (3, 1) (1, 3) ^ 3 -> (2, 0) (2, 3) ^ 3 -> (1, 0)
|
| -*/
|
| -inline int other_two(int one, int two) {
|
| - return 1 >> (3 - (one ^ two)) ^ 3;
|
| -}
|
| -
|
| #endif
|
|
|