OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 // It is important _not_ to put header guards here. | 8 // It is important _not_ to put header guards here. |
9 // This file will be intentionally included three times. | 9 // This file will be intentionally included three times. |
10 | 10 |
11 #include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362 | 11 #include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362 |
12 | 12 |
13 #if defined(SK2X_PREAMBLE) | 13 #if defined(SK2X_PREAMBLE) |
14 #include <arm_neon.h> | 14 #include <arm_neon.h> |
15 #include <math.h> | 15 #include <math.h> |
16 template <typename T> struct SkScalarToSIMD; | 16 template <typename T> struct SkScalarToSIMD; |
17 template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; }; | 17 template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; }; |
18 #if defined(SK_CPU_ARM64) | 18 template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; |
19 template <> struct SkScalarToSIMD<double> { typedef float64x2_t Type; }; | |
20 #else | |
21 template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; | |
22 #endif | |
23 | 19 |
24 | 20 |
25 #elif defined(SK2X_PRIVATE) | 21 #elif defined(SK2X_PRIVATE) |
26 typename SkScalarToSIMD<T>::Type fVec; | 22 typename SkScalarToSIMD<T>::Type fVec; |
27 /*implicit*/ Sk2x(const typename SkScalarToSIMD<T>::Type vec) { fVec = vec;
} | 23 /*implicit*/ Sk2x(const typename SkScalarToSIMD<T>::Type vec) { fVec = vec;
} |
28 | 24 |
29 #else | 25 #else |
30 | 26 |
31 #define M(...) template <> inline __VA_ARGS__ Sk2x<float>:: | 27 #define M(...) template <> inline __VA_ARGS__ Sk2x<float>:: |
32 | 28 |
(...skipping 24 matching lines...) Expand all Loading... |
57 float32x2_t est1 = this->rsqrt().fVec, | 53 float32x2_t est1 = this->rsqrt().fVec, |
58 // An extra step of Newton's method to refine the estimate of 1/sqrt(this). | 54 // An extra step of Newton's method to refine the estimate of 1/sqrt(this). |
59 est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); | 55 est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); |
60 return vmul_f32(fVec, est2); | 56 return vmul_f32(fVec, est2); |
61 } | 57 } |
62 | 58 |
63 #undef M | 59 #undef M |
64 | 60 |
65 #define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: | 61 #define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: |
66 | 62 |
67 #if defined(SK_CPU_ARM64) | 63 // TODO: #ifdef SK_CPU_ARM64 use float64x2_t for Sk2d. |
68 M() Sk2x() {} | |
69 M() Sk2x(double val) { fVec = vdupq_n_f64(val); } | |
70 M() Sk2x(double a, double b) { | |
71 fVec = vsetq_lane_f64(a, fVec, 0); | |
72 fVec = vsetq_lane_f64(b, fVec, 1); | |
73 } | |
74 M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; } | |
75 | 64 |
76 M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); } | 65 M() Sk2x() {} |
77 M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); } | 66 M() Sk2x(double val) { fVec[0] = fVec[1] = val; } |
| 67 M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } |
| 68 M(Sk2d&) operator=(const Sk2d& o) { |
| 69 fVec[0] = o.fVec[0]; |
| 70 fVec[1] = o.fVec[1]; |
| 71 return *this; |
| 72 } |
78 | 73 |
79 M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); } | 74 M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } |
80 M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); } | 75 M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; } |
81 M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); } | |
82 | 76 |
83 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec)
; } | 77 M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1]
+ o.fVec[1]); } |
84 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec)
; } | 78 M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1]
- o.fVec[1]); } |
| 79 M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1]
* o.fVec[1]); } |
85 | 80 |
86 M(Sk2d) rsqrt() const { | 81 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { |
87 float64x2_t est0 = vrsqrteq_f64(fVec), | 82 return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); |
88 est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)),
est0); | 83 } |
89 return est1; | 84 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { |
90 } | 85 return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); |
91 M(Sk2d) sqrt() const { | 86 } |
92 float64x2_t est1 = this->rsqrt().fVec, | |
93 // Two extra steps of Newton's method to refine the estimate of 1/sqrt(t
his). | |
94 est2 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)),
est1), | |
95 est3 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est2, est2)),
est2); | |
96 return vmulq_f64(fVec, est3); | |
97 } | |
98 | 87 |
99 #else // Scalar implementation for 32-bit chips, which don't have float64x2_t. | 88 M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); } |
100 M() Sk2x() {} | 89 M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); } |
101 M() Sk2x(double val) { fVec[0] = fVec[1] = val; } | |
102 M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } | |
103 M(Sk2d&) operator=(const Sk2d& o) { | |
104 fVec[0] = o.fVec[0]; | |
105 fVec[1] = o.fVec[1]; | |
106 return *this; | |
107 } | |
108 | |
109 M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } | |
110 M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1];
} | |
111 | |
112 M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVe
c[1] + o.fVec[1]); } | |
113 M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVe
c[1] - o.fVec[1]); } | |
114 M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVe
c[1] * o.fVec[1]); } | |
115 | |
116 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { | |
117 return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); | |
118 } | |
119 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { | |
120 return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); | |
121 } | |
122 | |
123 M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])
); } | |
124 M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])
); } | |
125 #endif | |
126 | 90 |
127 #undef M | 91 #undef M |
128 | 92 |
129 #endif | 93 #endif |
OLD | NEW |