| Index: src/opts/Sk2x_neon.h
|
| diff --git a/src/opts/Sk2x_neon.h b/src/opts/Sk2x_neon.h
|
| index bb1c1f6e5c1c1274602d1fb178a79446cd828b4e..0a646dde03852ed4d08a5d2891f7a3df4ce496c0 100644
|
| --- a/src/opts/Sk2x_neon.h
|
| +++ b/src/opts/Sk2x_neon.h
|
| @@ -44,6 +44,16 @@ M(void) store(float vals[2]) const { vst1_f32(vals, fVec); }
|
| M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); }
|
| M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); }
|
| M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); }
|
| +M(Sk2f) divide(const Sk2f& o) const {
|
| +#if defined(SK_CPU_ARM64)
|
| + return vdiv_f32(fVec, o.fVec);
|
| +#else
|
| + float32x2_t est0 = vrecpe_f32(o.fVec),
|
| + est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0),
|
| + est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1);
|
| + return vmul_f32(est2, fVec);
|
| +#endif
|
| +}
|
|
|
| M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); }
|
| M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); }
|
| @@ -54,10 +64,14 @@ M(Sk2f) rsqrt() const {
|
| return est1;
|
| }
|
| M(Sk2f) sqrt() const {
|
| +#if defined(SK_CPU_ARM64)
|
| + return vsqrt_f32(fVec);
|
| +#else
|
| float32x2_t est1 = this->rsqrt().fVec,
|
| // An extra step of Newton's method to refine the estimate of 1/sqrt(this).
|
| est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1);
|
| return vmul_f32(fVec, est2);
|
| +#endif
|
| }
|
|
|
| #undef M
|
| @@ -79,6 +93,7 @@ M(Sk2f) sqrt() const {
|
| M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); }
|
| M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); }
|
| M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); }
|
| + M(Sk2d) divide(const Sk2d& o) const { return vdivq_f64(fVec, o.fVec); }
|
|
|
| M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec); }
|
| M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec); }
|
| @@ -88,13 +103,7 @@ M(Sk2f) sqrt() const {
|
| est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0);
|
| return est1;
|
| }
|
| - M(Sk2d) sqrt() const {
|
| - float64x2_t est1 = this->rsqrt().fVec,
|
| - // Two extra steps of Newton's method to refine the estimate of 1/sqrt(this).
|
| - est2 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)), est1),
|
| - est3 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est2, est2)), est2);
|
| - return vmulq_f64(fVec, est3);
|
| - }
|
| + M(Sk2d) sqrt() const { return vsqrtq_f64(fVec); }
|
|
|
| #else // Scalar implementation for 32-bit chips, which don't have float64x2_t.
|
| M() Sk2x() {}
|
| @@ -112,6 +121,7 @@ M(Sk2f) sqrt() const {
|
| M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); }
|
| M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); }
|
| M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); }
|
| + M(Sk2d) divide(const Sk2d& o) const { return Sk2d(fVec[0] / o.fVec[0], fVec[1] / o.fVec[1]); }
|
|
|
| M(Sk2d) Min(const Sk2d& a, const Sk2d& b) {
|
| return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1]));
|
|
|