Index: src/opts/Sk2x_neon.h |
diff --git a/src/opts/Sk2x_neon.h b/src/opts/Sk2x_neon.h |
index bb1c1f6e5c1c1274602d1fb178a79446cd828b4e..0a646dde03852ed4d08a5d2891f7a3df4ce496c0 100644 |
--- a/src/opts/Sk2x_neon.h |
+++ b/src/opts/Sk2x_neon.h |
@@ -44,6 +44,16 @@ M(void) store(float vals[2]) const { vst1_f32(vals, fVec); } |
M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); } |
M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); } |
M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); } |
+M(Sk2f) divide(const Sk2f& o) const { |
+#if defined(SK_CPU_ARM64) |
+ return vdiv_f32(fVec, o.fVec); |
+#else |
+ float32x2_t est0 = vrecpe_f32(o.fVec), |
+ est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0), |
+ est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1); |
+ return vmul_f32(est2, fVec); |
+#endif |
+} |
M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); } |
M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); } |
@@ -54,10 +64,14 @@ M(Sk2f) rsqrt() const { |
return est1; |
} |
M(Sk2f) sqrt() const { |
+#if defined(SK_CPU_ARM64) |
+ return vsqrt_f32(fVec); |
+#else |
float32x2_t est1 = this->rsqrt().fVec, |
// An extra step of Newton's method to refine the estimate of 1/sqrt(this). |
est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); |
return vmul_f32(fVec, est2); |
+#endif |
} |
#undef M |
@@ -79,6 +93,7 @@ M(Sk2f) sqrt() const { |
M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); } |
M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); } |
M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); } |
+ M(Sk2d) divide(const Sk2d& o) const { return vdivq_f64(fVec, o.fVec); } |
M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec); } |
M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec); } |
@@ -88,13 +103,7 @@ M(Sk2f) sqrt() const { |
est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0); |
return est1; |
} |
- M(Sk2d) sqrt() const { |
- float64x2_t est1 = this->rsqrt().fVec, |
- // Two extra steps of Newton's method to refine the estimate of 1/sqrt(this). |
- est2 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)), est1), |
- est3 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est2, est2)), est2); |
- return vmulq_f64(fVec, est3); |
- } |
+ M(Sk2d) sqrt() const { return vsqrtq_f64(fVec); } |
#else // Scalar implementation for 32-bit chips, which don't have float64x2_t. |
M() Sk2x() {} |
@@ -112,6 +121,7 @@ M(Sk2f) sqrt() const { |
M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); } |
M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); } |
M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); } |
+ M(Sk2d) divide(const Sk2d& o) const { return Sk2d(fVec[0] / o.fVec[0], fVec[1] / o.fVec[1]); } |
M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { |
return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); |