| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 // It is important _not_ to put header guards here. | 8 // It is important _not_ to put header guards here. |
| 9 // This file will be intentionally included three times. | 9 // This file will be intentionally included three times. |
| 10 | 10 |
| (...skipping 26 matching lines...) Expand all Loading... |
| 37 fVec = vset_lane_f32(b, fVec, 1); | 37 fVec = vset_lane_f32(b, fVec, 1); |
| 38 } | 38 } |
| 39 M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } | 39 M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } |
| 40 | 40 |
| 41 M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } | 41 M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } |
| 42 M(void) store(float vals[2]) const { vst1_f32(vals, fVec); } | 42 M(void) store(float vals[2]) const { vst1_f32(vals, fVec); } |
| 43 | 43 |
| 44 M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); } | 44 M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); } |
| 45 M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); } | 45 M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); } |
| 46 M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); } | 46 M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); } |
| 47 M(Sk2f) divide(const Sk2f& o) const { |
| 48 #if defined(SK_CPU_ARM64) |
| 49 return vdiv_f32(fVec, o.fVec); |
| 50 #else |
| 51 float32x2_t est0 = vrecpe_f32(o.fVec), |
| 52 est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0), |
| 53 est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1); |
| 54 return vmul_f32(est2, fVec); |
| 55 #endif |
| 56 } |
| 47 | 57 |
| 48 M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); } | 58 M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); } |
| 49 M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); } | 59 M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); } |
| 50 | 60 |
| 51 M(Sk2f) rsqrt() const { | 61 M(Sk2f) rsqrt() const { |
| 52 float32x2_t est0 = vrsqrte_f32(fVec), | 62 float32x2_t est0 = vrsqrte_f32(fVec), |
| 53 est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); | 63 est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); |
| 54 return est1; | 64 return est1; |
| 55 } | 65 } |
| 56 M(Sk2f) sqrt() const { | 66 M(Sk2f) sqrt() const { |
| 67 #if defined(SK_CPU_ARM64) |
| 68 return vsqrt_f32(fVec); |
| 69 #else |
| 57 float32x2_t est1 = this->rsqrt().fVec, | 70 float32x2_t est1 = this->rsqrt().fVec, |
| 58 // An extra step of Newton's method to refine the estimate of 1/sqrt(this). | 71 // An extra step of Newton's method to refine the estimate of 1/sqrt(this). |
| 59 est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); | 72 est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); |
| 60 return vmul_f32(fVec, est2); | 73 return vmul_f32(fVec, est2); |
| 74 #endif |
| 61 } | 75 } |
| 62 | 76 |
| 63 #undef M | 77 #undef M |
| 64 | 78 |
| 65 #define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: | 79 #define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: |
| 66 | 80 |
| 67 #if defined(SK_CPU_ARM64) | 81 #if defined(SK_CPU_ARM64) |
| 68 M() Sk2x() {} | 82 M() Sk2x() {} |
| 69 M() Sk2x(double val) { fVec = vdupq_n_f64(val); } | 83 M() Sk2x(double val) { fVec = vdupq_n_f64(val); } |
| 70 M() Sk2x(double a, double b) { | 84 M() Sk2x(double a, double b) { |
| 71 fVec = vsetq_lane_f64(a, fVec, 0); | 85 fVec = vsetq_lane_f64(a, fVec, 0); |
| 72 fVec = vsetq_lane_f64(b, fVec, 1); | 86 fVec = vsetq_lane_f64(b, fVec, 1); |
| 73 } | 87 } |
| 74 M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; } | 88 M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; } |
| 75 | 89 |
| 76 M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); } | 90 M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); } |
| 77 M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); } | 91 M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); } |
| 78 | 92 |
| 79 M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); } | 93 M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); } |
| 80 M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); } | 94 M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); } |
| 81 M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); } | 95 M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); } |
| 96 M(Sk2d) divide(const Sk2d& o) const { return vdivq_f64(fVec, o.fVec); } |
| 82 | 97 |
| 83 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec)
; } | 98 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec)
; } |
| 84 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec)
; } | 99 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec)
; } |
| 85 | 100 |
| 86 M(Sk2d) rsqrt() const { | 101 M(Sk2d) rsqrt() const { |
| 87 float64x2_t est0 = vrsqrteq_f64(fVec), | 102 float64x2_t est0 = vrsqrteq_f64(fVec), |
| 88 est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)),
est0); | 103 est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)),
est0); |
| 89 return est1; | 104 return est1; |
| 90 } | 105 } |
| 91 M(Sk2d) sqrt() const { | 106 M(Sk2d) sqrt() const { return vsqrtq_f64(fVec); } |
| 92 float64x2_t est1 = this->rsqrt().fVec, | |
| 93 // Two extra steps of Newton's method to refine the estimate of 1/sqrt(t
his). | |
| 94 est2 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)),
est1), | |
| 95 est3 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est2, est2)),
est2); | |
| 96 return vmulq_f64(fVec, est3); | |
| 97 } | |
| 98 | 107 |
| 99 #else // Scalar implementation for 32-bit chips, which don't have float64x2_t. | 108 #else // Scalar implementation for 32-bit chips, which don't have float64x2_t. |
| 100 M() Sk2x() {} | 109 M() Sk2x() {} |
| 101 M() Sk2x(double val) { fVec[0] = fVec[1] = val; } | 110 M() Sk2x(double val) { fVec[0] = fVec[1] = val; } |
| 102 M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } | 111 M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } |
| 103 M(Sk2d&) operator=(const Sk2d& o) { | 112 M(Sk2d&) operator=(const Sk2d& o) { |
| 104 fVec[0] = o.fVec[0]; | 113 fVec[0] = o.fVec[0]; |
| 105 fVec[1] = o.fVec[1]; | 114 fVec[1] = o.fVec[1]; |
| 106 return *this; | 115 return *this; |
| 107 } | 116 } |
| 108 | 117 |
| 109 M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } | 118 M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } |
| 110 M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1];
} | 119 M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1];
} |
| 111 | 120 |
| 112 M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVe
c[1] + o.fVec[1]); } | 121 M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVe
c[1] + o.fVec[1]); } |
| 113 M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVe
c[1] - o.fVec[1]); } | 122 M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVe
c[1] - o.fVec[1]); } |
| 114 M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVe
c[1] * o.fVec[1]); } | 123 M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVe
c[1] * o.fVec[1]); } |
| 124 M(Sk2d) divide(const Sk2d& o) const { return Sk2d(fVec[0] / o.fVec[0], fVe
c[1] / o.fVec[1]); } |
| 115 | 125 |
| 116 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { | 126 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { |
| 117 return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); | 127 return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); |
| 118 } | 128 } |
| 119 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { | 129 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { |
| 120 return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); | 130 return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); |
| 121 } | 131 } |
| 122 | 132 |
| 123 M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])
); } | 133 M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])
); } |
| 124 M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])
); } | 134 M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])
); } |
| 125 #endif | 135 #endif |
| 126 | 136 |
| 127 #undef M | 137 #undef M |
| 128 | 138 |
| 129 #endif | 139 #endif |
| OLD | NEW |