Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(911)

Side by Side Diff: src/opts/Sk2x_neon.h

Issue 1027753003: Add divide to Sk2x, use native vdiv and vsqrt on ARM 64. (Closed) Base URL: https://skia.googlesource.com/skia@master
Patch Set: Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/core/Sk2x.h ('k') | src/opts/Sk2x_none.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright 2015 Google Inc. 2 * Copyright 2015 Google Inc.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license that can be 4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file. 5 * found in the LICENSE file.
6 */ 6 */
7 7
8 // It is important _not_ to put header guards here. 8 // It is important _not_ to put header guards here.
9 // This file will be intentionally included three times. 9 // This file will be intentionally included three times.
10 10
(...skipping 26 matching lines...) Expand all
37 fVec = vset_lane_f32(b, fVec, 1); 37 fVec = vset_lane_f32(b, fVec, 1);
38 } 38 }
39 M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } 39 M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; }
40 40
41 M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } 41 M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); }
42 M(void) store(float vals[2]) const { vst1_f32(vals, fVec); } 42 M(void) store(float vals[2]) const { vst1_f32(vals, fVec); }
43 43
44 M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); } 44 M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); }
45 M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); } 45 M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); }
46 M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); } 46 M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); }
47 M(Sk2f) divide(const Sk2f& o) const {
48 #if defined(SK_CPU_ARM64)
49 return vdiv_f32(fVec, o.fVec);
50 #else
51 float32x2_t est0 = vrecpe_f32(o.fVec),
52 est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0),
53 est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1);
54 return vmul_f32(est2, fVec);
55 #endif
56 }
47 57
48 M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); } 58 M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); }
49 M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); } 59 M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); }
50 60
51 M(Sk2f) rsqrt() const { 61 M(Sk2f) rsqrt() const {
52 float32x2_t est0 = vrsqrte_f32(fVec), 62 float32x2_t est0 = vrsqrte_f32(fVec),
53 est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); 63 est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0);
54 return est1; 64 return est1;
55 } 65 }
56 M(Sk2f) sqrt() const { 66 M(Sk2f) sqrt() const {
67 #if defined(SK_CPU_ARM64)
68 return vsqrt_f32(fVec);
69 #else
57 float32x2_t est1 = this->rsqrt().fVec, 70 float32x2_t est1 = this->rsqrt().fVec,
58 // An extra step of Newton's method to refine the estimate of 1/sqrt(this). 71 // An extra step of Newton's method to refine the estimate of 1/sqrt(this).
59 est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); 72 est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1);
60 return vmul_f32(fVec, est2); 73 return vmul_f32(fVec, est2);
74 #endif
61 } 75 }
62 76
63 #undef M 77 #undef M
64 78
65 #define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: 79 #define M(...) template <> inline __VA_ARGS__ Sk2x<double>::
66 80
67 #if defined(SK_CPU_ARM64) 81 #if defined(SK_CPU_ARM64)
68 M() Sk2x() {} 82 M() Sk2x() {}
69 M() Sk2x(double val) { fVec = vdupq_n_f64(val); } 83 M() Sk2x(double val) { fVec = vdupq_n_f64(val); }
70 M() Sk2x(double a, double b) { 84 M() Sk2x(double a, double b) {
71 fVec = vsetq_lane_f64(a, fVec, 0); 85 fVec = vsetq_lane_f64(a, fVec, 0);
72 fVec = vsetq_lane_f64(b, fVec, 1); 86 fVec = vsetq_lane_f64(b, fVec, 1);
73 } 87 }
74 M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; } 88 M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; }
75 89
76 M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); } 90 M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); }
77 M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); } 91 M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); }
78 92
79 M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); } 93 M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); }
80 M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); } 94 M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); }
81 M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); } 95 M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); }
96 M(Sk2d) divide(const Sk2d& o) const { return vdivq_f64(fVec, o.fVec); }
82 97
83 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec) ; } 98 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec) ; }
84 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec) ; } 99 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec) ; }
85 100
86 M(Sk2d) rsqrt() const { 101 M(Sk2d) rsqrt() const {
87 float64x2_t est0 = vrsqrteq_f64(fVec), 102 float64x2_t est0 = vrsqrteq_f64(fVec),
88 est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0); 103 est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0);
89 return est1; 104 return est1;
90 } 105 }
91 M(Sk2d) sqrt() const { 106 M(Sk2d) sqrt() const { return vsqrtq_f64(fVec); }
92 float64x2_t est1 = this->rsqrt().fVec,
93 // Two extra steps of Newton's method to refine the estimate of 1/sqrt(t his).
94 est2 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)), est1),
95 est3 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est2, est2)), est2);
96 return vmulq_f64(fVec, est3);
97 }
98 107
99 #else // Scalar implementation for 32-bit chips, which don't have float64x2_t. 108 #else // Scalar implementation for 32-bit chips, which don't have float64x2_t.
100 M() Sk2x() {} 109 M() Sk2x() {}
101 M() Sk2x(double val) { fVec[0] = fVec[1] = val; } 110 M() Sk2x(double val) { fVec[0] = fVec[1] = val; }
102 M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } 111 M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; }
103 M(Sk2d&) operator=(const Sk2d& o) { 112 M(Sk2d&) operator=(const Sk2d& o) {
104 fVec[0] = o.fVec[0]; 113 fVec[0] = o.fVec[0];
105 fVec[1] = o.fVec[1]; 114 fVec[1] = o.fVec[1];
106 return *this; 115 return *this;
107 } 116 }
108 117
109 M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } 118 M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); }
110 M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; } 119 M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; }
111 120
112 M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVe c[1] + o.fVec[1]); } 121 M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVe c[1] + o.fVec[1]); }
113 M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVe c[1] - o.fVec[1]); } 122 M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVe c[1] - o.fVec[1]); }
114 M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVe c[1] * o.fVec[1]); } 123 M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVe c[1] * o.fVec[1]); }
124 M(Sk2d) divide(const Sk2d& o) const { return Sk2d(fVec[0] / o.fVec[0], fVe c[1] / o.fVec[1]); }
115 125
116 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { 126 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) {
117 return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); 127 return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1]));
118 } 128 }
119 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { 129 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) {
120 return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); 130 return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1]));
121 } 131 }
122 132
123 M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1]) ); } 133 M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1]) ); }
124 M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1]) ); } 134 M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1]) ); }
125 #endif 135 #endif
126 136
127 #undef M 137 #undef M
128 138
129 #endif 139 #endif
OLDNEW
« no previous file with comments | « src/core/Sk2x.h ('k') | src/opts/Sk2x_none.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698