Index: src/opts/Sk2x_neon.h |
diff --git a/src/opts/Sk2x_neon.h b/src/opts/Sk2x_neon.h |
index cc4e799490927c2fd4562df7bdd3336d26cfcf48..00ab00aeaa6ddd5a3db3eb58f161e6ef78eddef9 100644 |
--- a/src/opts/Sk2x_neon.h |
+++ b/src/opts/Sk2x_neon.h |
@@ -15,7 +15,11 @@ |
#include <math.h> |
template <typename T> struct SkScalarToSIMD; |
template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; }; |
- template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; |
+ #if defined(SK_CPU_ARM64) |
+ template <> struct SkScalarToSIMD<double> { typedef float64x2_t Type; }; |
+ #else |
+ template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; |
+ #endif |
#elif defined(SK2X_PRIVATE) |
@@ -28,10 +32,7 @@ |
M() Sk2x() {} |
M() Sk2x(float val) { fVec = vdup_n_f32(val); } |
-M() Sk2x(float a, float b) { |
- fVec = vset_lane_f32(a, fVec, 0); |
- fVec = vset_lane_f32(b, fVec, 1); |
-} |
+M() Sk2x(float a, float b) { fVec = (float32x2_t) { a, b }; } |
M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } |
M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } |
@@ -60,33 +61,62 @@ M(Sk2f) sqrt() const { |
#define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: |
-// TODO: #ifdef SK_CPU_ARM64 use float64x2_t for Sk2d. |
- |
-M() Sk2x() {} |
-M() Sk2x(double val) { fVec[0] = fVec[1] = val; } |
-M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } |
-M(Sk2d&) operator=(const Sk2d& o) { |
- fVec[0] = o.fVec[0]; |
- fVec[1] = o.fVec[1]; |
- return *this; |
-} |
- |
-M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } |
-M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; } |
- |
-M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); } |
-M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); } |
-M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); } |
- |
-M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { |
- return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); |
-} |
-M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { |
- return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); |
-} |
- |
-M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); } |
-M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); } |
+#if defined(SK_CPU_ARM64) |
+ M() Sk2x() {} |
+ M() Sk2x(double val) { fVec = vdupq_n_f64(val); } |
+ M() Sk2x(double a, double b) { fVec = (float64x2_t) { a, b }; } |
+ M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; } |
+ |
+ M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); } |
+ M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); } |
+ |
+ M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); } |
+ M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); } |
+ M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); } |
+ |
+ M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec); } |
+ M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec); } |
+ |
+ M(Sk2d) rsqrt() const { |
+ float64x2_t est0 = vrsqrteq_f64(fVec), |
+ est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0); |
+ return est1; |
+ } |
+ M(Sk2d) sqrt() const { |
+ float64x2_t est1 = this->rsqrt().fVec, |
+ // Two extra steps of Newton's method to refine the estimate of 1/sqrt(this). |
+ est2 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)), est1), |
+ est3 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est2, est2)), est2); |
+ return vmulq_f64(fVec, est3); |
+ } |
+ |
+#else // Scalar implementation for 32-bit chips, which don't have float64x2_t. |
+ M() Sk2x() {} |
+ M() Sk2x(double val) { fVec[0] = fVec[1] = val; } |
+ M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } |
+ M(Sk2d&) operator=(const Sk2d& o) { |
+ fVec[0] = o.fVec[0]; |
+ fVec[1] = o.fVec[1]; |
+ return *this; |
+ } |
+ |
+ M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } |
+ M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; } |
+ |
+ M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); } |
+ M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); } |
+ M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); } |
+ |
+ M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { |
+ return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); |
+ } |
+ M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { |
+ return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); |
+ } |
+ |
+ M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); } |
+ M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); } |
+#endif |
#undef M |