| Index: src/opts/Sk2x_neon.h
|
| diff --git a/src/opts/Sk2x_neon.h b/src/opts/Sk2x_neon.h
|
| index cc4e799490927c2fd4562df7bdd3336d26cfcf48..00ab00aeaa6ddd5a3db3eb58f161e6ef78eddef9 100644
|
| --- a/src/opts/Sk2x_neon.h
|
| +++ b/src/opts/Sk2x_neon.h
|
| @@ -15,7 +15,11 @@
|
| #include <math.h>
|
| template <typename T> struct SkScalarToSIMD;
|
| template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; };
|
| - template <> struct SkScalarToSIMD<double> { typedef double Type[2]; };
|
| + #if defined(SK_CPU_ARM64)
|
| + template <> struct SkScalarToSIMD<double> { typedef float64x2_t Type; };
|
| + #else
|
| + template <> struct SkScalarToSIMD<double> { typedef double Type[2]; };
|
| + #endif
|
|
|
|
|
| #elif defined(SK2X_PRIVATE)
|
| @@ -28,10 +32,7 @@
|
|
|
| M() Sk2x() {}
|
| M() Sk2x(float val) { fVec = vdup_n_f32(val); }
|
| -M() Sk2x(float a, float b) {
|
| - fVec = vset_lane_f32(a, fVec, 0);
|
| - fVec = vset_lane_f32(b, fVec, 1);
|
| -}
|
| +M() Sk2x(float a, float b) { fVec = (float32x2_t) { a, b }; }
|
| M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; }
|
|
|
| M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); }
|
| @@ -60,33 +61,62 @@ M(Sk2f) sqrt() const {
|
|
|
| #define M(...) template <> inline __VA_ARGS__ Sk2x<double>::
|
|
|
| -// TODO: #ifdef SK_CPU_ARM64 use float64x2_t for Sk2d.
|
| -
|
| -M() Sk2x() {}
|
| -M() Sk2x(double val) { fVec[0] = fVec[1] = val; }
|
| -M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; }
|
| -M(Sk2d&) operator=(const Sk2d& o) {
|
| - fVec[0] = o.fVec[0];
|
| - fVec[1] = o.fVec[1];
|
| - return *this;
|
| -}
|
| -
|
| -M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); }
|
| -M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; }
|
| -
|
| -M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); }
|
| -M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); }
|
| -M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); }
|
| -
|
| -M(Sk2d) Min(const Sk2d& a, const Sk2d& b) {
|
| - return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1]));
|
| -}
|
| -M(Sk2d) Max(const Sk2d& a, const Sk2d& b) {
|
| - return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1]));
|
| -}
|
| -
|
| -M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); }
|
| -M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); }
|
| +#if defined(SK_CPU_ARM64)
|
| + M() Sk2x() {}
|
| + M() Sk2x(double val) { fVec = vdupq_n_f64(val); }
|
| + M() Sk2x(double a, double b) { fVec = (float64x2_t) { a, b }; }
|
| + M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; }
|
| +
|
| + M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); }
|
| + M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); }
|
| +
|
| + M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); }
|
| + M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); }
|
| + M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); }
|
| +
|
| + M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec); }
|
| + M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec); }
|
| +
|
| + M(Sk2d) rsqrt() const {
|
| + float64x2_t est0 = vrsqrteq_f64(fVec),
|
| + est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0);
|
| + return est1;
|
| + }
|
| + M(Sk2d) sqrt() const {
|
| + float64x2_t est1 = this->rsqrt().fVec,
|
| + // Two extra steps of Newton's method to refine the estimate of 1/sqrt(this).
|
| + est2 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)), est1),
|
| + est3 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est2, est2)), est2);
|
| + return vmulq_f64(fVec, est3);
|
| + }
|
| +
|
| +#else // Scalar implementation for 32-bit chips, which don't have float64x2_t.
|
| + M() Sk2x() {}
|
| + M() Sk2x(double val) { fVec[0] = fVec[1] = val; }
|
| + M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; }
|
| + M(Sk2d&) operator=(const Sk2d& o) {
|
| + fVec[0] = o.fVec[0];
|
| + fVec[1] = o.fVec[1];
|
| + return *this;
|
| + }
|
| +
|
| + M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); }
|
| + M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; }
|
| +
|
| + M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); }
|
| + M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); }
|
| + M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); }
|
| +
|
| + M(Sk2d) Min(const Sk2d& a, const Sk2d& b) {
|
| + return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1]));
|
| + }
|
| + M(Sk2d) Max(const Sk2d& a, const Sk2d& b) {
|
| + return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1]));
|
| + }
|
| +
|
| + M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); }
|
| + M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); }
|
| +#endif
|
|
|
| #undef M
|
|
|
|
|