| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 // It is important _not_ to put header guards here. | 8 // It is important _not_ to put header guards here. |
| 9 // This file will be intentionally included three times. | 9 // This file will be intentionally included three times. |
| 10 | 10 |
| 11 #include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362 | 11 #include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362 |
| 12 | 12 |
| 13 #if defined(SK2X_PREAMBLE) | 13 #if defined(SK2X_PREAMBLE) |
| 14 #include <arm_neon.h> | 14 #include <arm_neon.h> |
| 15 #include <math.h> | 15 #include <math.h> |
| 16 template <typename T> struct SkScalarToSIMD; | 16 template <typename T> struct SkScalarToSIMD; |
| 17 template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; }; | 17 template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; }; |
| 18 template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; | 18 #if defined(SK_CPU_ARM64) |
| 19 template <> struct SkScalarToSIMD<double> { typedef float64x2_t Type; }; |
| 20 #else |
| 21 template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; |
| 22 #endif |
| 19 | 23 |
| 20 | 24 |
| 21 #elif defined(SK2X_PRIVATE) | 25 #elif defined(SK2X_PRIVATE) |
| 22 typename SkScalarToSIMD<T>::Type fVec; | 26 typename SkScalarToSIMD<T>::Type fVec; |
| 23 /*implicit*/ Sk2x(const typename SkScalarToSIMD<T>::Type vec) { fVec = vec;
} | 27 /*implicit*/ Sk2x(const typename SkScalarToSIMD<T>::Type vec) { fVec = vec;
} |
| 24 | 28 |
| 25 #else | 29 #else |
| 26 | 30 |
| 27 #define M(...) template <> inline __VA_ARGS__ Sk2x<float>:: | 31 #define M(...) template <> inline __VA_ARGS__ Sk2x<float>:: |
| 28 | 32 |
| 29 M() Sk2x() {} | 33 M() Sk2x() {} |
| 30 M() Sk2x(float val) { fVec = vdup_n_f32(val); } | 34 M() Sk2x(float val) { fVec = vdup_n_f32(val); } |
| 31 M() Sk2x(float a, float b) { | 35 M() Sk2x(float a, float b) { fVec = (float32x2_t) { a, b }; } |
| 32 fVec = vset_lane_f32(a, fVec, 0); | |
| 33 fVec = vset_lane_f32(b, fVec, 1); | |
| 34 } | |
| 35 M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } | 36 M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } |
| 36 | 37 |
| 37 M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } | 38 M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } |
| 38 M(void) store(float vals[2]) const { vst1_f32(vals, fVec); } | 39 M(void) store(float vals[2]) const { vst1_f32(vals, fVec); } |
| 39 | 40 |
| 40 M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); } | 41 M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); } |
| 41 M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); } | 42 M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); } |
| 42 M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); } | 43 M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); } |
| 43 | 44 |
| 44 M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); } | 45 M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); } |
| 45 M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); } | 46 M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); } |
| 46 | 47 |
| 47 M(Sk2f) rsqrt() const { | 48 M(Sk2f) rsqrt() const { |
| 48 float32x2_t est0 = vrsqrte_f32(fVec), | 49 float32x2_t est0 = vrsqrte_f32(fVec), |
| 49 est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); | 50 est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); |
| 50 return est1; | 51 return est1; |
| 51 } | 52 } |
| 52 M(Sk2f) sqrt() const { | 53 M(Sk2f) sqrt() const { |
| 53 float32x2_t est1 = this->rsqrt().fVec, | 54 float32x2_t est1 = this->rsqrt().fVec, |
| 54 // An extra step of Newton's method to refine the estimate of 1/sqrt(this). | 55 // An extra step of Newton's method to refine the estimate of 1/sqrt(this). |
| 55 est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); | 56 est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); |
| 56 return vmul_f32(fVec, est2); | 57 return vmul_f32(fVec, est2); |
| 57 } | 58 } |
| 58 | 59 |
| 59 #undef M | 60 #undef M |
| 60 | 61 |
| 61 #define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: | 62 #define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: |
| 62 | 63 |
| 63 // TODO: #ifdef SK_CPU_ARM64 use float64x2_t for Sk2d. | 64 #if defined(SK_CPU_ARM64) |
| 65 M() Sk2x() {} |
| 66 M() Sk2x(double val) { fVec = vdupq_n_f64(val); } |
| 67 M() Sk2x(double a, double b) { fVec = (float64x2_t) { a, b }; } |
| 68 M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; } |
| 64 | 69 |
| 65 M() Sk2x() {} | 70 M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); } |
| 66 M() Sk2x(double val) { fVec[0] = fVec[1] = val; } | 71 M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); } |
| 67 M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } | |
| 68 M(Sk2d&) operator=(const Sk2d& o) { | |
| 69 fVec[0] = o.fVec[0]; | |
| 70 fVec[1] = o.fVec[1]; | |
| 71 return *this; | |
| 72 } | |
| 73 | 72 |
| 74 M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } | 73 M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); } |
| 75 M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; } | 74 M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); } |
| 75 M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); } |
| 76 | 76 |
| 77 M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1]
+ o.fVec[1]); } | 77 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec)
; } |
| 78 M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1]
- o.fVec[1]); } | 78 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec)
; } |
| 79 M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1]
* o.fVec[1]); } | |
| 80 | 79 |
| 81 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { | 80 M(Sk2d) rsqrt() const { |
| 82 return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); | 81 float64x2_t est0 = vrsqrteq_f64(fVec), |
| 83 } | 82 est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)),
est0); |
| 84 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { | 83 return est1; |
| 85 return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); | 84 } |
| 86 } | 85 M(Sk2d) sqrt() const { |
| 86 float64x2_t est1 = this->rsqrt().fVec, |
| 87 // Two extra steps of Newton's method to refine the estimate of 1/sqrt(t
his). |
| 88 est2 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)),
est1), |
| 89 est3 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est2, est2)),
est2); |
| 90 return vmulq_f64(fVec, est3); |
| 91 } |
| 87 | 92 |
| 88 M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); } | 93 #else // Scalar implementation for 32-bit chips, which don't have float64x2_t. |
| 89 M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); } | 94 M() Sk2x() {} |
| 95 M() Sk2x(double val) { fVec[0] = fVec[1] = val; } |
| 96 M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } |
| 97 M(Sk2d&) operator=(const Sk2d& o) { |
| 98 fVec[0] = o.fVec[0]; |
| 99 fVec[1] = o.fVec[1]; |
| 100 return *this; |
| 101 } |
| 102 |
| 103 M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } |
| 104 M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1];
} |
| 105 |
| 106 M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVe
c[1] + o.fVec[1]); } |
| 107 M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVe
c[1] - o.fVec[1]); } |
| 108 M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVe
c[1] * o.fVec[1]); } |
| 109 |
| 110 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { |
| 111 return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); |
| 112 } |
| 113 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { |
| 114 return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); |
| 115 } |
| 116 |
| 117 M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])
); } |
| 118 M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])
); } |
| 119 #endif |
| 90 | 120 |
| 91 #undef M | 121 #undef M |
| 92 | 122 |
| 93 #endif | 123 #endif |
| OLD | NEW |