Index: src/codec/SkCodec_libbmp.cpp |
diff --git a/src/codec/SkCodec_libbmp.cpp b/src/codec/SkCodec_libbmp.cpp |
deleted file mode 100644 |
index 5b9691c087c84ae9674b29e3b6a5cb1279b9ac1b..0000000000000000000000000000000000000000 |
--- a/src/codec/SkCodec_libbmp.cpp |
+++ /dev/null |
@@ -1,903 +0,0 @@ |
-/* |
- * Copyright 2015 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "SkCodec_libbmp.h" |
-#include "SkCodecPriv.h" |
-#include "SkColorPriv.h" |
-#include "SkStream.h" |
- |
-/* |
- * |
- * Checks if the conversion between the input image and the requested output |
- * image has been implemented |
- * |
- */ |
-static bool conversion_possible(const SkImageInfo& dst, |
- const SkImageInfo& src) { |
- // All of the swizzles convert to kN32 |
- // TODO: Update this when more swizzles are supported |
- if (kN32_SkColorType != dst.colorType()) { |
- return false; |
- } |
- // Support the swizzle if the requested alpha type is the same as our guess |
- // for the input alpha type |
- if (src.alphaType() == dst.alphaType()) { |
- return true; |
- } |
- // TODO: Support more swizzles, especially premul |
- return false; |
-} |
- |
-/* |
- * |
- * Defines the version and type of the second bitmap header |
- * |
- */ |
-enum BitmapHeaderType { |
- kInfoV1_BitmapHeaderType, |
- kInfoV2_BitmapHeaderType, |
- kInfoV3_BitmapHeaderType, |
- kInfoV4_BitmapHeaderType, |
- kInfoV5_BitmapHeaderType, |
- kOS2V1_BitmapHeaderType, |
- kOS2VX_BitmapHeaderType, |
- kUnknown_BitmapHeaderType |
-}; |
- |
-/* |
- * |
- * Possible bitmap compression types |
- * |
- */ |
-enum BitmapCompressionMethod { |
- kNone_BitmapCompressionMethod = 0, |
- k8BitRLE_BitmapCompressionMethod = 1, |
- k4BitRLE_BitmapCompressionMethod = 2, |
- kBitMasks_BitmapCompressionMethod = 3, |
- kJpeg_BitmapCompressionMethod = 4, |
- kPng_BitmapCompressionMethod = 5, |
- kAlphaBitMasks_BitmapCompressionMethod = 6, |
- kCMYK_BitmapCompressionMethod = 11, |
- kCMYK8BitRLE_BitmapCompressionMethod = 12, |
- kCMYK4BitRLE_BitmapCompressionMethod = 13 |
-}; |
- |
-/* |
- * |
- * Checks the start of the stream to see if the image is a bitmap |
- * |
- */ |
-bool SkBmpCodec::IsBmp(SkStream* stream) { |
- // TODO: Support "IC", "PT", "CI", "CP", "BA" |
- // TODO: ICO files may contain a BMP and need to use this decoder |
- const char bmpSig[] = { 'B', 'M' }; |
- char buffer[sizeof(bmpSig)]; |
- return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && |
- !memcmp(buffer, bmpSig, sizeof(bmpSig)); |
-} |
- |
-/* |
- * |
- * Assumes IsBmp was called and returned true |
- * Creates a bitmap decoder |
- * Reads enough of the stream to determine the image format |
- * |
- */ |
-SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { |
- // Header size constants |
- static const uint32_t kBmpHeaderBytes = 14; |
- static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; |
- static const uint32_t kBmpOS2V1Bytes = 12; |
- static const uint32_t kBmpOS2V2Bytes = 64; |
- static const uint32_t kBmpInfoBaseBytes = 16; |
- static const uint32_t kBmpInfoV1Bytes = 40; |
- static const uint32_t kBmpInfoV2Bytes = 52; |
- static const uint32_t kBmpInfoV3Bytes = 56; |
- static const uint32_t kBmpInfoV4Bytes = 108; |
- static const uint32_t kBmpInfoV5Bytes = 124; |
- static const uint32_t kBmpMaskBytes = 12; |
- |
- // Read the first header and the size of the second header |
- SkAutoTDeleteArray<uint8_t> hBuffer( |
- SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); |
- if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != |
- kBmpHeaderBytesPlusFour) { |
- SkDebugf("Error: unable to read first bitmap header.\n"); |
- return NULL; |
- } |
- |
- // The total bytes in the bmp file |
- // We only need to use this value for RLE decoding, so we will only check |
- // that it is valid in the RLE case. |
- const uint32_t totalBytes = get_int(hBuffer.get(), 2); |
- |
- // The offset from the start of the file where the pixel data begins |
- const uint32_t offset = get_int(hBuffer.get(), 10); |
- if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { |
- SkDebugf("Error: invalid starting location for pixel data\n"); |
- return NULL; |
- } |
- |
- // The size of the second (info) header in bytes |
- // The size is the first field of the second header, so we have already |
- // read the first four infoBytes. |
- const uint32_t infoBytes = get_int(hBuffer.get(), 14); |
- if (infoBytes < kBmpOS2V1Bytes) { |
- SkDebugf("Error: invalid second header size.\n"); |
- return NULL; |
- } |
- const uint32_t infoBytesRemaining = infoBytes - 4; |
- hBuffer.free(); |
- |
- // Read the second header |
- SkAutoTDeleteArray<uint8_t> iBuffer( |
- SkNEW_ARRAY(uint8_t, infoBytesRemaining)); |
- if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { |
- SkDebugf("Error: unable to read second bitmap header.\n"); |
- return NULL; |
- } |
- |
- // The number of bits used per pixel in the pixel data |
- uint16_t bitsPerPixel; |
- |
- // The compression method for the pixel data |
- uint32_t compression = kNone_BitmapCompressionMethod; |
- |
- // Number of colors in the color table, defaults to 0 or max (see below) |
- uint32_t numColors = 0; |
- |
- // Bytes per color in the color table, early versions use 3, most use 4 |
- uint32_t bytesPerColor; |
- |
- // The image width and height |
- int width, height; |
- |
- // Determine image information depending on second header format |
- BitmapHeaderType headerType; |
- if (infoBytes >= kBmpInfoBaseBytes) { |
- // Check the version of the header |
- switch (infoBytes) { |
- case kBmpInfoV1Bytes: |
- headerType = kInfoV1_BitmapHeaderType; |
- break; |
- case kBmpInfoV2Bytes: |
- headerType = kInfoV2_BitmapHeaderType; |
- break; |
- case kBmpInfoV3Bytes: |
- headerType = kInfoV3_BitmapHeaderType; |
- break; |
- case kBmpInfoV4Bytes: |
- headerType = kInfoV4_BitmapHeaderType; |
- break; |
- case kBmpInfoV5Bytes: |
- headerType = kInfoV5_BitmapHeaderType; |
- break; |
- case 16: |
- case 20: |
- case 24: |
- case 28: |
- case 32: |
- case 36: |
- case 42: |
- case 46: |
- case 48: |
- case 60: |
- case kBmpOS2V2Bytes: |
- headerType = kOS2VX_BitmapHeaderType; |
- break; |
- default: |
- // We do not signal an error here because there is the |
- // possibility of new or undocumented bmp header types. Most |
- // of the newer versions of bmp headers are similar to and |
- // build off of the older versions, so we may still be able to |
- // decode the bmp. |
- SkDebugf("Warning: unknown bmp header format.\n"); |
- headerType = kUnknown_BitmapHeaderType; |
- break; |
- } |
- // We check the size of the header before entering the if statement. |
- // We should not reach this point unless the size is large enough for |
- // these required fields. |
- SkASSERT(infoBytesRemaining >= 12); |
- width = get_int(iBuffer.get(), 0); |
- height = get_int(iBuffer.get(), 4); |
- bitsPerPixel = get_short(iBuffer.get(), 10); |
- |
- // Some versions do not have these fields, so we check before |
- // overwriting the default value. |
- if (infoBytesRemaining >= 16) { |
- compression = get_int(iBuffer.get(), 12); |
- if (infoBytesRemaining >= 32) { |
- numColors = get_int(iBuffer.get(), 28); |
- } |
- } |
- |
- // All of the headers that reach this point, store color table entries |
- // using 4 bytes per pixel. |
- bytesPerColor = 4; |
- } else if (infoBytes >= kBmpOS2V1Bytes) { |
- // The OS2V1 is treated separately because it has a unique format |
- headerType = kOS2V1_BitmapHeaderType; |
- width = (int) get_short(iBuffer.get(), 0); |
- height = (int) get_short(iBuffer.get(), 2); |
- bitsPerPixel = get_short(iBuffer.get(), 6); |
- bytesPerColor = 3; |
- } else { |
- // There are no valid bmp headers |
- SkDebugf("Error: second bitmap header size is invalid.\n"); |
- return NULL; |
- } |
- |
- // Check for valid dimensions from header |
- RowOrder rowOrder = kBottomUp_RowOrder; |
- if (height < 0) { |
- height = -height; |
- rowOrder = kTopDown_RowOrder; |
- } |
- static const int kBmpMaxDim = 1 << 16; |
- if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { |
- // TODO: Decide if we want to support really large bmps. |
- SkDebugf("Error: invalid bitmap dimensions.\n"); |
- return NULL; |
- } |
- |
- // Create mask struct |
- SkMasks::InputMasks inputMasks; |
- memset(&inputMasks, 0, 4*sizeof(uint32_t)); |
- |
- // Determine the input compression format and set bit masks if necessary |
- uint32_t maskBytes = 0; |
- BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; |
- switch (compression) { |
- case kNone_BitmapCompressionMethod: |
- inputFormat = kStandard_BitmapInputFormat; |
- break; |
- case k8BitRLE_BitmapCompressionMethod: |
- if (bitsPerPixel != 8) { |
- SkDebugf("Warning: correcting invalid bitmap format.\n"); |
- bitsPerPixel = 8; |
- } |
- inputFormat = kRLE_BitmapInputFormat; |
- break; |
- case k4BitRLE_BitmapCompressionMethod: |
- if (bitsPerPixel != 4) { |
- SkDebugf("Warning: correcting invalid bitmap format.\n"); |
- bitsPerPixel = 4; |
- } |
- inputFormat = kRLE_BitmapInputFormat; |
- break; |
- case kAlphaBitMasks_BitmapCompressionMethod: |
- case kBitMasks_BitmapCompressionMethod: |
- // Load the masks |
- inputFormat = kBitMask_BitmapInputFormat; |
- switch (headerType) { |
- case kInfoV1_BitmapHeaderType: { |
- // The V1 header stores the bit masks after the header |
- SkAutoTDeleteArray<uint8_t> mBuffer( |
- SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); |
- if (stream->read(mBuffer.get(), kBmpMaskBytes) != |
- kBmpMaskBytes) { |
- SkDebugf("Error: unable to read bit inputMasks.\n"); |
- return NULL; |
- } |
- maskBytes = kBmpMaskBytes; |
- inputMasks.red = get_int(mBuffer.get(), 0); |
- inputMasks.green = get_int(mBuffer.get(), 4); |
- inputMasks.blue = get_int(mBuffer.get(), 8); |
- break; |
- } |
- case kInfoV2_BitmapHeaderType: |
- case kInfoV3_BitmapHeaderType: |
- case kInfoV4_BitmapHeaderType: |
- case kInfoV5_BitmapHeaderType: |
- // Header types are matched based on size. If the header |
- // is V2+, we are guaranteed to be able to read at least |
- // this size. |
- SkASSERT(infoBytesRemaining >= 48); |
- inputMasks.red = get_int(iBuffer.get(), 36); |
- inputMasks.green = get_int(iBuffer.get(), 40); |
- inputMasks.blue = get_int(iBuffer.get(), 44); |
- break; |
- case kOS2VX_BitmapHeaderType: |
- // TODO: Decide if we intend to support this. |
- // It is unsupported in the previous version and |
- // in chromium. I have not come across a test case |
- // that uses this format. |
- SkDebugf("Error: huffman format unsupported.\n"); |
- return NULL; |
- default: |
- SkDebugf("Error: invalid bmp bit masks header.\n"); |
- return NULL; |
- } |
- break; |
- case kJpeg_BitmapCompressionMethod: |
- if (24 == bitsPerPixel) { |
- inputFormat = kRLE_BitmapInputFormat; |
- break; |
- } |
- // Fall through |
- case kPng_BitmapCompressionMethod: |
- // TODO: Decide if we intend to support this. |
- // It is unsupported in the previous version and |
- // in chromium. I think it is used mostly for printers. |
- SkDebugf("Error: compression format not supported.\n"); |
- return NULL; |
- case kCMYK_BitmapCompressionMethod: |
- case kCMYK8BitRLE_BitmapCompressionMethod: |
- case kCMYK4BitRLE_BitmapCompressionMethod: |
- // TODO: Same as above. |
- SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); |
- return NULL; |
- default: |
- SkDebugf("Error: invalid format for bitmap decoding.\n"); |
- return NULL; |
- } |
- |
- // Most versions of bmps should be rendered as opaque. Either they do |
- // not have an alpha channel, or they expect the alpha channel to be |
- // ignored. V4+ bmp files introduce an alpha mask and allow the creator |
- // of the image to use the alpha channels. However, many of these images |
- // leave the alpha channel blank and expect to be rendered as opaque. For |
- // this reason, we set the alpha type to kUnknown for V4+ bmps and figure |
- // out the alpha type during the decode. |
- SkAlphaType alphaType = kOpaque_SkAlphaType; |
- if (kInfoV4_BitmapHeaderType == headerType || |
- kInfoV5_BitmapHeaderType == headerType) { |
- // Header types are matched based on size. If the header is |
- // V4+, we are guaranteed to be able to read at least this size. |
- SkASSERT(infoBytesRemaining > 52); |
- inputMasks.alpha = get_int(iBuffer.get(), 48); |
- if (inputMasks.alpha != 0) { |
- alphaType = kUnpremul_SkAlphaType; |
- } |
- } |
- iBuffer.free(); |
- |
- // Check for valid bits per pixel input |
- switch (bitsPerPixel) { |
- // In addition to more standard pixel compression formats, bmp supports |
- // the use of bit masks to determine pixel components. The standard |
- // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), |
- // which does not map well to any Skia color formats. For this reason, |
- // we will always enable mask mode with 16 bits per pixel. |
- case 16: |
- if (kBitMask_BitmapInputFormat != inputFormat) { |
- inputMasks.red = 0x7C00; |
- inputMasks.green = 0x03E0; |
- inputMasks.blue = 0x001F; |
- inputFormat = kBitMask_BitmapInputFormat; |
- } |
- break; |
- case 1: |
- case 2: |
- case 4: |
- case 8: |
- case 24: |
- case 32: |
- break; |
- default: |
- SkDebugf("Error: invalid input value for bits per pixel.\n"); |
- return NULL; |
- } |
- |
- // Check that input bit masks are valid and create the masks object |
- SkAutoTDelete<SkMasks> |
- masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel)); |
- if (NULL == masks) { |
- SkDebugf("Error: invalid input masks.\n"); |
- return NULL; |
- } |
- |
- // Process the color table |
- uint32_t colorBytes = 0; |
- SkPMColor* colorTable = NULL; |
- if (bitsPerPixel < 16) { |
- // Verify the number of colors for the color table |
- const uint32_t maxColors = 1 << bitsPerPixel; |
- // Zero is a default for maxColors |
- // Also set numColors to maxColors when input is too large |
- if (numColors <= 0 || numColors > maxColors) { |
- numColors = maxColors; |
- } |
- colorTable = SkNEW_ARRAY(SkPMColor, maxColors); |
- |
- // Construct the color table |
- colorBytes = numColors * bytesPerColor; |
- SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); |
- if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { |
- SkDebugf("Error: unable to read color table.\n"); |
- return NULL; |
- } |
- |
- // Fill in the color table (colors are stored unpremultiplied) |
- uint32_t i = 0; |
- for (; i < numColors; i++) { |
- uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); |
- uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); |
- uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); |
- uint8_t alpha = 0xFF; |
- if (kOpaque_SkAlphaType != alphaType) { |
- alpha = (inputMasks.alpha >> 24) & |
- get_byte(cBuffer.get(), i*bytesPerColor + 3); |
- } |
- // Store the unpremultiplied color |
- colorTable[i] = SkPackARGB32NoCheck(alpha, red, green, blue); |
- } |
- |
- // To avoid segmentation faults on bad pixel data, fill the end of the |
- // color table with black. This is the same the behavior as the |
- // chromium decoder. |
- for (; i < maxColors; i++) { |
- colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); |
- } |
- } |
- |
- // Ensure that the stream now points to the start of the pixel array |
- uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; |
- |
- // Check that we have not read past the pixel array offset |
- if(bytesRead > offset) { |
- // This may occur on OS 2.1 and other old versions where the color |
- // table defaults to max size, and the bmp tries to use a smaller color |
- // table. This is invalid, and our decision is to indicate an error, |
- // rather than try to guess the intended size of the color table and |
- // rewind the stream to display the image. |
- SkDebugf("Error: pixel data offset less than header size.\n"); |
- return NULL; |
- } |
- |
- // Skip to the start of the pixel array |
- if (stream->skip(offset - bytesRead) != offset - bytesRead) { |
- SkDebugf("Error: unable to skip to image data.\n"); |
- return NULL; |
- } |
- |
- // Remaining bytes is only used for RLE |
- const int remainingBytes = totalBytes - offset; |
- if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { |
- SkDebugf("Error: RLE requires valid input size.\n"); |
- return NULL; |
- } |
- |
- // Return the codec |
- // We will use ImageInfo to store width, height, and alpha type. We will |
- // choose kN32_SkColorType as the input color type because that is the |
- // expected choice for a destination color type. In reality, the input |
- // color type has many possible formats. |
- const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, |
- kN32_SkColorType, alphaType); |
- return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, |
- inputFormat, masks.detach(), colorTable, |
- rowOrder, remainingBytes)); |
-} |
- |
-/* |
- * |
- * Creates an instance of the decoder |
- * Called only by NewFromStream |
- * |
- */ |
-SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, |
- uint16_t bitsPerPixel, BitmapInputFormat inputFormat, |
- SkMasks* masks, SkPMColor* colorTable, |
- RowOrder rowOrder, |
- const uint32_t remainingBytes) |
- : INHERITED(info, stream) |
- , fBitsPerPixel(bitsPerPixel) |
- , fInputFormat(inputFormat) |
- , fMasks(masks) |
- , fColorTable(colorTable) |
- , fRowOrder(rowOrder) |
- , fRemainingBytes(remainingBytes) |
-{} |
- |
-/* |
- * |
- * Initiates the bitmap decode |
- * |
- */ |
-SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes, |
- SkPMColor*, int*) { |
- if (!this->rewindIfNeeded()) { |
- return kCouldNotRewind; |
- } |
- if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) { |
- SkDebugf("Error: scaling not supported.\n"); |
- return kInvalidScale; |
- } |
- if (!conversion_possible(dstInfo, this->getOriginalInfo())) { |
- SkDebugf("Error: cannot convert input type to output type.\n"); |
- return kInvalidConversion; |
- } |
- |
- switch (fInputFormat) { |
- case kBitMask_BitmapInputFormat: |
- return decodeMask(dstInfo, dst, dstRowBytes); |
- case kRLE_BitmapInputFormat: |
- return decodeRLE(dstInfo, dst, dstRowBytes); |
- case kStandard_BitmapInputFormat: |
- return decode(dstInfo, dst, dstRowBytes); |
- default: |
- SkASSERT(false); |
- return kInvalidInput; |
- } |
-} |
- |
-/* |
- * |
- * Performs the bitmap decoding for bit masks input format |
- * |
- */ |
-SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes) { |
- // Set constant values |
- const int width = dstInfo.width(); |
- const int height = dstInfo.height(); |
- const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
- |
- // Allocate space for a row buffer and a source for the swizzler |
- SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); |
- |
- // Get the destination start row and delta |
- SkPMColor* dstRow; |
- int delta; |
- if (kTopDown_RowOrder == fRowOrder) { |
- dstRow = (SkPMColor*) dst; |
- delta = (int) dstRowBytes; |
- } else { |
- dstRow = (SkPMColor*) SkTAddOffset<void>(dst, (height-1) * dstRowBytes); |
- delta = -((int) dstRowBytes); |
- } |
- |
- // Create the swizzler |
- SkMaskSwizzler* swizzler = SkMaskSwizzler::CreateMaskSwizzler( |
- dstInfo, fMasks, fBitsPerPixel); |
- |
- // Iterate over rows of the image |
- bool transparent = true; |
- for (int y = 0; y < height; y++) { |
- // Read a row of the input |
- if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
- SkDebugf("Warning: incomplete input stream.\n"); |
- return kIncompleteInput; |
- } |
- |
- // Decode the row in destination format |
- SkSwizzler::ResultAlpha r = swizzler->next(dstRow, srcBuffer.get()); |
- transparent &= SkSwizzler::IsTransparent(r); |
- |
- // Move to the next row |
- dstRow = SkTAddOffset<SkPMColor>(dstRow, delta); |
- } |
- |
- // Some fully transparent bmp images are intended to be opaque. Here, we |
- // correct for this possibility. |
- dstRow = (SkPMColor*) dst; |
- if (transparent) { |
- for (int y = 0; y < height; y++) { |
- for (int x = 0; x < width; x++) { |
- dstRow[x] |= 0xFF000000; |
- } |
- dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); |
- } |
- } |
- |
- // Finished decoding the entire image |
- return kSuccess; |
-} |
- |
-/* |
- * |
- * Set an RLE pixel using the color table |
- * |
- */ |
-void SkBmpCodec::setRLEPixel(SkPMColor* dst, size_t dstRowBytes, int height, |
- uint32_t x, uint32_t y, uint8_t index) { |
- if (kBottomUp_RowOrder == fRowOrder) { |
- y = height - y - 1; |
- } |
- SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes); |
- dstRow[x] = fColorTable.get()[index]; |
-} |
- |
-/* |
- * |
- * Performs the bitmap decoding for RLE input format |
- * RLE decoding is performed all at once, rather than a one row at a time |
- * |
- */ |
-SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes) { |
- // Set RLE flags |
- static const uint8_t RLE_ESCAPE = 0; |
- static const uint8_t RLE_EOL = 0; |
- static const uint8_t RLE_EOF = 1; |
- static const uint8_t RLE_DELTA = 2; |
- |
- // Set constant values |
- const int width = dstInfo.width(); |
- const int height = dstInfo.height(); |
- |
- // Input buffer parameters |
- uint32_t currByte = 0; |
- SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); |
- size_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); |
- if ((uint32_t) totalBytes < fRemainingBytes) { |
- SkDebugf("Warning: incomplete RLE file.\n"); |
- } else if (totalBytes <= 0) { |
- SkDebugf("Error: could not read RLE image data.\n"); |
- return kInvalidInput; |
- } |
- |
- // Destination parameters |
- int x = 0; |
- int y = 0; |
- // If the code skips pixels, remaining pixels are transparent or black |
- // TODO: Skip this if memory was already zeroed. |
- memset(dst, 0, dstRowBytes * height); |
- SkPMColor* dstPtr = (SkPMColor*) dst; |
- |
- while (true) { |
- // Every entry takes at least two bytes |
- if ((int) totalBytes - currByte < 2) { |
- SkDebugf("Warning: incomplete RLE input.\n"); |
- return kIncompleteInput; |
- } |
- |
- // Read the next two bytes. These bytes have different meanings |
- // depending on their values. In the first interpretation, the first |
- // byte is an escape flag and the second byte indicates what special |
- // task to perform. |
- const uint8_t flag = buffer.get()[currByte++]; |
- const uint8_t task = buffer.get()[currByte++]; |
- |
- // If we have reached a row that is beyond the image size, and the RLE |
- // code does not indicate end of file, abort and signal a warning. |
- if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { |
- SkDebugf("Warning: invalid RLE input.\n"); |
- return kIncompleteInput; |
- } |
- |
- // Perform decoding |
- if (RLE_ESCAPE == flag) { |
- switch (task) { |
- case RLE_EOL: |
- x = 0; |
- y++; |
- break; |
- case RLE_EOF: |
- return kSuccess; |
- case RLE_DELTA: { |
- // Two bytes are needed to specify delta |
- if ((int) totalBytes - currByte < 2) { |
- SkDebugf("Warning: incomplete RLE input\n"); |
- return kIncompleteInput; |
- } |
- // Modify x and y |
- const uint8_t dx = buffer.get()[currByte++]; |
- const uint8_t dy = buffer.get()[currByte++]; |
- x += dx; |
- y += dy; |
- if (x > width || y > height) { |
- SkDebugf("Warning: invalid RLE input.\n"); |
- return kIncompleteInput; |
- } |
- break; |
- } |
- default: { |
- // If task does not match any of the above signals, it |
- // indicates that we have a sequence of non-RLE pixels. |
- // Furthermore, the value of task is equal to the number |
- // of pixels to interpret. |
- uint8_t numPixels = task; |
- const size_t rowBytes = compute_row_bytes(numPixels, |
- fBitsPerPixel); |
- // Abort if setting numPixels moves us off the edge of the |
- // image. Also abort if there are not enough bytes |
- // remaining in the stream to set numPixels. |
- if (x + numPixels > width || |
- (int) totalBytes - currByte < SkAlign2(rowBytes)) { |
- SkDebugf("Warning: invalid RLE input.\n"); |
- return kIncompleteInput; |
- } |
- // Set numPixels number of pixels |
- SkPMColor* dstRow = SkTAddOffset<SkPMColor>( |
- dstPtr, y * dstRowBytes); |
- while (numPixels > 0) { |
- switch(fBitsPerPixel) { |
- case 4: { |
- SkASSERT(currByte < totalBytes); |
- uint8_t val = buffer.get()[currByte++]; |
- setRLEPixel(dstPtr, dstRowBytes, height, x++, y, |
- val >> 4); |
- numPixels--; |
- if (numPixels != 0) { |
- setRLEPixel(dstPtr, dstRowBytes, height, |
- x++, y, val & 0xF); |
- numPixels--; |
- } |
- break; |
- } |
- case 8: |
- SkASSERT(currByte < totalBytes); |
- setRLEPixel(dstPtr, dstRowBytes, height, x++, y, |
- buffer.get()[currByte++]); |
- numPixels--; |
- break; |
- case 24: { |
- SkASSERT(currByte + 2 < totalBytes); |
- uint8_t blue = buffer.get()[currByte++]; |
- uint8_t green = buffer.get()[currByte++]; |
- uint8_t red = buffer.get()[currByte++]; |
- SkPMColor color = SkPackARGB32NoCheck( |
- 0xFF, red, green, blue); |
- dstRow[x++] = color; |
- numPixels--; |
- } |
- default: |
- SkASSERT(false); |
- return kInvalidInput; |
- } |
- } |
- // Skip a byte if necessary to maintain alignment |
- if (!SkIsAlign2(rowBytes)) { |
- currByte++; |
- } |
- break; |
- } |
- } |
- } else { |
- // If the first byte read is not a flag, it indicates the number of |
- // pixels to set in RLE mode. |
- const uint8_t numPixels = flag; |
- const int endX = SkTMin<int>(x + numPixels, width); |
- |
- if (24 == fBitsPerPixel) { |
- // In RLE24, the second byte read is part of the pixel color. |
- // There are two more required bytes to finish encoding the |
- // color. |
- if ((int) totalBytes - currByte < 2) { |
- SkDebugf("Warning: incomplete RLE input\n"); |
- return kIncompleteInput; |
- } |
- |
- // Fill the pixels up to endX with the specified color |
- uint8_t blue = task; |
- uint8_t green = buffer.get()[currByte++]; |
- uint8_t red = buffer.get()[currByte++]; |
- SkPMColor color = SkPackARGB32NoCheck(0xFF, red, green, blue); |
- SkPMColor* dstRow = |
- SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes); |
- while (x < endX) { |
- dstRow[x++] = color; |
- } |
- } else { |
- // In RLE8 or RLE4, the second byte read gives the index in the |
- // color table to look up the pixel color. |
- // RLE8 has one color index that gets repeated |
- // RLE4 has two color indexes in the upper and lower 4 bits of |
- // the bytes, which are alternated |
- uint8_t indices[2] = { task, task }; |
- if (4 == fBitsPerPixel) { |
- indices[0] >>= 4; |
- indices[1] &= 0xf; |
- } |
- |
- // Set the indicated number of pixels |
- for (int which = 0; x < endX; x++) { |
- setRLEPixel(dstPtr, dstRowBytes, height, x, y, |
- indices[which]); |
- which = !which; |
- } |
- } |
- } |
- } |
-} |
- |
-/* |
- * |
- * Performs the bitmap decoding for standard input format |
- * |
- */ |
-SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes) { |
- // Set constant values |
- const int width = dstInfo.width(); |
- const int height = dstInfo.height(); |
- const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
- const uint32_t alphaMask = fMasks->getAlphaMask(); |
- |
- // Get swizzler configuration |
- SkSwizzler::SrcConfig config; |
- switch (fBitsPerPixel) { |
- case 1: |
- config = SkSwizzler::kIndex1; |
- break; |
- case 2: |
- config = SkSwizzler::kIndex2; |
- break; |
- case 4: |
- config = SkSwizzler::kIndex4; |
- break; |
- case 8: |
- config = SkSwizzler::kIndex; |
- break; |
- case 24: |
- config = SkSwizzler::kBGR; |
- break; |
- case 32: |
- if (0 == alphaMask) { |
- config = SkSwizzler::kBGRX; |
- } else { |
- config = SkSwizzler::kBGRA; |
- } |
- break; |
- default: |
- SkASSERT(false); |
- return kInvalidInput; |
- } |
- |
- // Create swizzler |
- SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), |
- dstInfo, dst, dstRowBytes, false); |
- |
- // Allocate space for a row buffer and a source for the swizzler |
- SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); |
- |
- // Iterate over rows of the image |
- // FIXME: bool transparent = true; |
- for (int y = 0; y < height; y++) { |
- // Read a row of the input |
- if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
- SkDebugf("Warning: incomplete input stream.\n"); |
- return kIncompleteInput; |
- } |
- |
- // Decode the row in destination format |
- uint32_t row; |
- if (kTopDown_RowOrder == fRowOrder) { |
- row = y; |
- } else { |
- row = height - 1 - y; |
- } |
- |
- swizzler->next(srcBuffer.get(), row); |
- // FIXME: SkSwizzler::ResultAlpha r = |
- // swizzler->next(srcBuffer.get(), row); |
- // FIXME: transparent &= SkSwizzler::IsTransparent(r); |
- } |
- |
- // FIXME: This code exists to match the behavior in the chromium decoder |
- // and to follow the bmp specification as it relates to alpha masks. It is |
- // commented out because we have yet to discover a test image that provides |
- // an alpha mask and uses this decode mode. |
- |
- // Now we adjust the output image with some additional behavior that |
- // SkSwizzler does not support. Firstly, all bmp images that contain |
- // alpha are masked by the alpha mask. Secondly, many fully transparent |
- // bmp images are intended to be opaque. Here, we make those corrections. |
- // Modifying alpha is safe because colors are stored unpremultiplied. |
- /* |
- SkPMColor* dstRow = (SkPMColor*) dst; |
- if (SkSwizzler::kBGRA == config) { |
- for (int y = 0; y < height; y++) { |
- for (int x = 0; x < width; x++) { |
- if (transparent) { |
- dstRow[x] |= 0xFF000000; |
- } else { |
- dstRow[x] &= alphaMask; |
- } |
- dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); |
- } |
- } |
- } |
- */ |
- |
- // Finished decoding the entire image |
- return kSuccess; |
-} |