Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(3)

Side by Side Diff: src/codec/SkCodec_libbmp.cpp

Issue 1012873002: Revert "Implementation of image decoding for bmp files, in accordance with the new API." (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/codec/SkCodec_libbmp.h ('k') | src/codec/SkCodec_libpng.cpp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkCodec_libbmp.h"
9 #include "SkCodecPriv.h"
10 #include "SkColorPriv.h"
11 #include "SkStream.h"
12
13 /*
14 *
15 * Checks if the conversion between the input image and the requested output
16 * image has been implemented
17 *
18 */
19 static bool conversion_possible(const SkImageInfo& dst,
20 const SkImageInfo& src) {
21 // All of the swizzles convert to kN32
22 // TODO: Update this when more swizzles are supported
23 if (kN32_SkColorType != dst.colorType()) {
24 return false;
25 }
26 // Support the swizzle if the requested alpha type is the same as our guess
27 // for the input alpha type
28 if (src.alphaType() == dst.alphaType()) {
29 return true;
30 }
31 // TODO: Support more swizzles, especially premul
32 return false;
33 }
34
35 /*
36 *
37 * Defines the version and type of the second bitmap header
38 *
39 */
40 enum BitmapHeaderType {
41 kInfoV1_BitmapHeaderType,
42 kInfoV2_BitmapHeaderType,
43 kInfoV3_BitmapHeaderType,
44 kInfoV4_BitmapHeaderType,
45 kInfoV5_BitmapHeaderType,
46 kOS2V1_BitmapHeaderType,
47 kOS2VX_BitmapHeaderType,
48 kUnknown_BitmapHeaderType
49 };
50
51 /*
52 *
53 * Possible bitmap compression types
54 *
55 */
56 enum BitmapCompressionMethod {
57 kNone_BitmapCompressionMethod = 0,
58 k8BitRLE_BitmapCompressionMethod = 1,
59 k4BitRLE_BitmapCompressionMethod = 2,
60 kBitMasks_BitmapCompressionMethod = 3,
61 kJpeg_BitmapCompressionMethod = 4,
62 kPng_BitmapCompressionMethod = 5,
63 kAlphaBitMasks_BitmapCompressionMethod = 6,
64 kCMYK_BitmapCompressionMethod = 11,
65 kCMYK8BitRLE_BitmapCompressionMethod = 12,
66 kCMYK4BitRLE_BitmapCompressionMethod = 13
67 };
68
69 /*
70 *
71 * Checks the start of the stream to see if the image is a bitmap
72 *
73 */
74 bool SkBmpCodec::IsBmp(SkStream* stream) {
75 // TODO: Support "IC", "PT", "CI", "CP", "BA"
76 // TODO: ICO files may contain a BMP and need to use this decoder
77 const char bmpSig[] = { 'B', 'M' };
78 char buffer[sizeof(bmpSig)];
79 return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) &&
80 !memcmp(buffer, bmpSig, sizeof(bmpSig));
81 }
82
83 /*
84 *
85 * Assumes IsBmp was called and returned true
86 * Creates a bitmap decoder
87 * Reads enough of the stream to determine the image format
88 *
89 */
90 SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) {
91 // Header size constants
92 static const uint32_t kBmpHeaderBytes = 14;
93 static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4;
94 static const uint32_t kBmpOS2V1Bytes = 12;
95 static const uint32_t kBmpOS2V2Bytes = 64;
96 static const uint32_t kBmpInfoBaseBytes = 16;
97 static const uint32_t kBmpInfoV1Bytes = 40;
98 static const uint32_t kBmpInfoV2Bytes = 52;
99 static const uint32_t kBmpInfoV3Bytes = 56;
100 static const uint32_t kBmpInfoV4Bytes = 108;
101 static const uint32_t kBmpInfoV5Bytes = 124;
102 static const uint32_t kBmpMaskBytes = 12;
103
104 // Read the first header and the size of the second header
105 SkAutoTDeleteArray<uint8_t> hBuffer(
106 SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour));
107 if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) !=
108 kBmpHeaderBytesPlusFour) {
109 SkDebugf("Error: unable to read first bitmap header.\n");
110 return NULL;
111 }
112
113 // The total bytes in the bmp file
114 // We only need to use this value for RLE decoding, so we will only check
115 // that it is valid in the RLE case.
116 const uint32_t totalBytes = get_int(hBuffer.get(), 2);
117
118 // The offset from the start of the file where the pixel data begins
119 const uint32_t offset = get_int(hBuffer.get(), 10);
120 if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) {
121 SkDebugf("Error: invalid starting location for pixel data\n");
122 return NULL;
123 }
124
125 // The size of the second (info) header in bytes
126 // The size is the first field of the second header, so we have already
127 // read the first four infoBytes.
128 const uint32_t infoBytes = get_int(hBuffer.get(), 14);
129 if (infoBytes < kBmpOS2V1Bytes) {
130 SkDebugf("Error: invalid second header size.\n");
131 return NULL;
132 }
133 const uint32_t infoBytesRemaining = infoBytes - 4;
134 hBuffer.free();
135
136 // Read the second header
137 SkAutoTDeleteArray<uint8_t> iBuffer(
138 SkNEW_ARRAY(uint8_t, infoBytesRemaining));
139 if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) {
140 SkDebugf("Error: unable to read second bitmap header.\n");
141 return NULL;
142 }
143
144 // The number of bits used per pixel in the pixel data
145 uint16_t bitsPerPixel;
146
147 // The compression method for the pixel data
148 uint32_t compression = kNone_BitmapCompressionMethod;
149
150 // Number of colors in the color table, defaults to 0 or max (see below)
151 uint32_t numColors = 0;
152
153 // Bytes per color in the color table, early versions use 3, most use 4
154 uint32_t bytesPerColor;
155
156 // The image width and height
157 int width, height;
158
159 // Determine image information depending on second header format
160 BitmapHeaderType headerType;
161 if (infoBytes >= kBmpInfoBaseBytes) {
162 // Check the version of the header
163 switch (infoBytes) {
164 case kBmpInfoV1Bytes:
165 headerType = kInfoV1_BitmapHeaderType;
166 break;
167 case kBmpInfoV2Bytes:
168 headerType = kInfoV2_BitmapHeaderType;
169 break;
170 case kBmpInfoV3Bytes:
171 headerType = kInfoV3_BitmapHeaderType;
172 break;
173 case kBmpInfoV4Bytes:
174 headerType = kInfoV4_BitmapHeaderType;
175 break;
176 case kBmpInfoV5Bytes:
177 headerType = kInfoV5_BitmapHeaderType;
178 break;
179 case 16:
180 case 20:
181 case 24:
182 case 28:
183 case 32:
184 case 36:
185 case 42:
186 case 46:
187 case 48:
188 case 60:
189 case kBmpOS2V2Bytes:
190 headerType = kOS2VX_BitmapHeaderType;
191 break;
192 default:
193 // We do not signal an error here because there is the
194 // possibility of new or undocumented bmp header types. Most
195 // of the newer versions of bmp headers are similar to and
196 // build off of the older versions, so we may still be able to
197 // decode the bmp.
198 SkDebugf("Warning: unknown bmp header format.\n");
199 headerType = kUnknown_BitmapHeaderType;
200 break;
201 }
202 // We check the size of the header before entering the if statement.
203 // We should not reach this point unless the size is large enough for
204 // these required fields.
205 SkASSERT(infoBytesRemaining >= 12);
206 width = get_int(iBuffer.get(), 0);
207 height = get_int(iBuffer.get(), 4);
208 bitsPerPixel = get_short(iBuffer.get(), 10);
209
210 // Some versions do not have these fields, so we check before
211 // overwriting the default value.
212 if (infoBytesRemaining >= 16) {
213 compression = get_int(iBuffer.get(), 12);
214 if (infoBytesRemaining >= 32) {
215 numColors = get_int(iBuffer.get(), 28);
216 }
217 }
218
219 // All of the headers that reach this point, store color table entries
220 // using 4 bytes per pixel.
221 bytesPerColor = 4;
222 } else if (infoBytes >= kBmpOS2V1Bytes) {
223 // The OS2V1 is treated separately because it has a unique format
224 headerType = kOS2V1_BitmapHeaderType;
225 width = (int) get_short(iBuffer.get(), 0);
226 height = (int) get_short(iBuffer.get(), 2);
227 bitsPerPixel = get_short(iBuffer.get(), 6);
228 bytesPerColor = 3;
229 } else {
230 // There are no valid bmp headers
231 SkDebugf("Error: second bitmap header size is invalid.\n");
232 return NULL;
233 }
234
235 // Check for valid dimensions from header
236 RowOrder rowOrder = kBottomUp_RowOrder;
237 if (height < 0) {
238 height = -height;
239 rowOrder = kTopDown_RowOrder;
240 }
241 static const int kBmpMaxDim = 1 << 16;
242 if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) {
243 // TODO: Decide if we want to support really large bmps.
244 SkDebugf("Error: invalid bitmap dimensions.\n");
245 return NULL;
246 }
247
248 // Create mask struct
249 SkMasks::InputMasks inputMasks;
250 memset(&inputMasks, 0, 4*sizeof(uint32_t));
251
252 // Determine the input compression format and set bit masks if necessary
253 uint32_t maskBytes = 0;
254 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat;
255 switch (compression) {
256 case kNone_BitmapCompressionMethod:
257 inputFormat = kStandard_BitmapInputFormat;
258 break;
259 case k8BitRLE_BitmapCompressionMethod:
260 if (bitsPerPixel != 8) {
261 SkDebugf("Warning: correcting invalid bitmap format.\n");
262 bitsPerPixel = 8;
263 }
264 inputFormat = kRLE_BitmapInputFormat;
265 break;
266 case k4BitRLE_BitmapCompressionMethod:
267 if (bitsPerPixel != 4) {
268 SkDebugf("Warning: correcting invalid bitmap format.\n");
269 bitsPerPixel = 4;
270 }
271 inputFormat = kRLE_BitmapInputFormat;
272 break;
273 case kAlphaBitMasks_BitmapCompressionMethod:
274 case kBitMasks_BitmapCompressionMethod:
275 // Load the masks
276 inputFormat = kBitMask_BitmapInputFormat;
277 switch (headerType) {
278 case kInfoV1_BitmapHeaderType: {
279 // The V1 header stores the bit masks after the header
280 SkAutoTDeleteArray<uint8_t> mBuffer(
281 SkNEW_ARRAY(uint8_t, kBmpMaskBytes));
282 if (stream->read(mBuffer.get(), kBmpMaskBytes) !=
283 kBmpMaskBytes) {
284 SkDebugf("Error: unable to read bit inputMasks.\n");
285 return NULL;
286 }
287 maskBytes = kBmpMaskBytes;
288 inputMasks.red = get_int(mBuffer.get(), 0);
289 inputMasks.green = get_int(mBuffer.get(), 4);
290 inputMasks.blue = get_int(mBuffer.get(), 8);
291 break;
292 }
293 case kInfoV2_BitmapHeaderType:
294 case kInfoV3_BitmapHeaderType:
295 case kInfoV4_BitmapHeaderType:
296 case kInfoV5_BitmapHeaderType:
297 // Header types are matched based on size. If the header
298 // is V2+, we are guaranteed to be able to read at least
299 // this size.
300 SkASSERT(infoBytesRemaining >= 48);
301 inputMasks.red = get_int(iBuffer.get(), 36);
302 inputMasks.green = get_int(iBuffer.get(), 40);
303 inputMasks.blue = get_int(iBuffer.get(), 44);
304 break;
305 case kOS2VX_BitmapHeaderType:
306 // TODO: Decide if we intend to support this.
307 // It is unsupported in the previous version and
308 // in chromium. I have not come across a test case
309 // that uses this format.
310 SkDebugf("Error: huffman format unsupported.\n");
311 return NULL;
312 default:
313 SkDebugf("Error: invalid bmp bit masks header.\n");
314 return NULL;
315 }
316 break;
317 case kJpeg_BitmapCompressionMethod:
318 if (24 == bitsPerPixel) {
319 inputFormat = kRLE_BitmapInputFormat;
320 break;
321 }
322 // Fall through
323 case kPng_BitmapCompressionMethod:
324 // TODO: Decide if we intend to support this.
325 // It is unsupported in the previous version and
326 // in chromium. I think it is used mostly for printers.
327 SkDebugf("Error: compression format not supported.\n");
328 return NULL;
329 case kCMYK_BitmapCompressionMethod:
330 case kCMYK8BitRLE_BitmapCompressionMethod:
331 case kCMYK4BitRLE_BitmapCompressionMethod:
332 // TODO: Same as above.
333 SkDebugf("Error: CMYK not supported for bitmap decoding.\n");
334 return NULL;
335 default:
336 SkDebugf("Error: invalid format for bitmap decoding.\n");
337 return NULL;
338 }
339
340 // Most versions of bmps should be rendered as opaque. Either they do
341 // not have an alpha channel, or they expect the alpha channel to be
342 // ignored. V4+ bmp files introduce an alpha mask and allow the creator
343 // of the image to use the alpha channels. However, many of these images
344 // leave the alpha channel blank and expect to be rendered as opaque. For
345 // this reason, we set the alpha type to kUnknown for V4+ bmps and figure
346 // out the alpha type during the decode.
347 SkAlphaType alphaType = kOpaque_SkAlphaType;
348 if (kInfoV4_BitmapHeaderType == headerType ||
349 kInfoV5_BitmapHeaderType == headerType) {
350 // Header types are matched based on size. If the header is
351 // V4+, we are guaranteed to be able to read at least this size.
352 SkASSERT(infoBytesRemaining > 52);
353 inputMasks.alpha = get_int(iBuffer.get(), 48);
354 if (inputMasks.alpha != 0) {
355 alphaType = kUnpremul_SkAlphaType;
356 }
357 }
358 iBuffer.free();
359
360 // Check for valid bits per pixel input
361 switch (bitsPerPixel) {
362 // In addition to more standard pixel compression formats, bmp supports
363 // the use of bit masks to determine pixel components. The standard
364 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB),
365 // which does not map well to any Skia color formats. For this reason,
366 // we will always enable mask mode with 16 bits per pixel.
367 case 16:
368 if (kBitMask_BitmapInputFormat != inputFormat) {
369 inputMasks.red = 0x7C00;
370 inputMasks.green = 0x03E0;
371 inputMasks.blue = 0x001F;
372 inputFormat = kBitMask_BitmapInputFormat;
373 }
374 break;
375 case 1:
376 case 2:
377 case 4:
378 case 8:
379 case 24:
380 case 32:
381 break;
382 default:
383 SkDebugf("Error: invalid input value for bits per pixel.\n");
384 return NULL;
385 }
386
387 // Check that input bit masks are valid and create the masks object
388 SkAutoTDelete<SkMasks>
389 masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel));
390 if (NULL == masks) {
391 SkDebugf("Error: invalid input masks.\n");
392 return NULL;
393 }
394
395 // Process the color table
396 uint32_t colorBytes = 0;
397 SkPMColor* colorTable = NULL;
398 if (bitsPerPixel < 16) {
399 // Verify the number of colors for the color table
400 const uint32_t maxColors = 1 << bitsPerPixel;
401 // Zero is a default for maxColors
402 // Also set numColors to maxColors when input is too large
403 if (numColors <= 0 || numColors > maxColors) {
404 numColors = maxColors;
405 }
406 colorTable = SkNEW_ARRAY(SkPMColor, maxColors);
407
408 // Construct the color table
409 colorBytes = numColors * bytesPerColor;
410 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes));
411 if (stream->read(cBuffer.get(), colorBytes) != colorBytes) {
412 SkDebugf("Error: unable to read color table.\n");
413 return NULL;
414 }
415
416 // Fill in the color table (colors are stored unpremultiplied)
417 uint32_t i = 0;
418 for (; i < numColors; i++) {
419 uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor);
420 uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1);
421 uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2);
422 uint8_t alpha = 0xFF;
423 if (kOpaque_SkAlphaType != alphaType) {
424 alpha = (inputMasks.alpha >> 24) &
425 get_byte(cBuffer.get(), i*bytesPerColor + 3);
426 }
427 // Store the unpremultiplied color
428 colorTable[i] = SkPackARGB32NoCheck(alpha, red, green, blue);
429 }
430
431 // To avoid segmentation faults on bad pixel data, fill the end of the
432 // color table with black. This is the same the behavior as the
433 // chromium decoder.
434 for (; i < maxColors; i++) {
435 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0);
436 }
437 }
438
439 // Ensure that the stream now points to the start of the pixel array
440 uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes;
441
442 // Check that we have not read past the pixel array offset
443 if(bytesRead > offset) {
444 // This may occur on OS 2.1 and other old versions where the color
445 // table defaults to max size, and the bmp tries to use a smaller color
446 // table. This is invalid, and our decision is to indicate an error,
447 // rather than try to guess the intended size of the color table and
448 // rewind the stream to display the image.
449 SkDebugf("Error: pixel data offset less than header size.\n");
450 return NULL;
451 }
452
453 // Skip to the start of the pixel array
454 if (stream->skip(offset - bytesRead) != offset - bytesRead) {
455 SkDebugf("Error: unable to skip to image data.\n");
456 return NULL;
457 }
458
459 // Remaining bytes is only used for RLE
460 const int remainingBytes = totalBytes - offset;
461 if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) {
462 SkDebugf("Error: RLE requires valid input size.\n");
463 return NULL;
464 }
465
466 // Return the codec
467 // We will use ImageInfo to store width, height, and alpha type. We will
468 // choose kN32_SkColorType as the input color type because that is the
469 // expected choice for a destination color type. In reality, the input
470 // color type has many possible formats.
471 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height,
472 kN32_SkColorType, alphaType);
473 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel,
474 inputFormat, masks.detach(), colorTable,
475 rowOrder, remainingBytes));
476 }
477
478 /*
479 *
480 * Creates an instance of the decoder
481 * Called only by NewFromStream
482 *
483 */
484 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream,
485 uint16_t bitsPerPixel, BitmapInputFormat inputFormat,
486 SkMasks* masks, SkPMColor* colorTable,
487 RowOrder rowOrder,
488 const uint32_t remainingBytes)
489 : INHERITED(info, stream)
490 , fBitsPerPixel(bitsPerPixel)
491 , fInputFormat(inputFormat)
492 , fMasks(masks)
493 , fColorTable(colorTable)
494 , fRowOrder(rowOrder)
495 , fRemainingBytes(remainingBytes)
496 {}
497
498 /*
499 *
500 * Initiates the bitmap decode
501 *
502 */
503 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo,
504 void* dst, size_t dstRowBytes,
505 SkPMColor*, int*) {
506 if (!this->rewindIfNeeded()) {
507 return kCouldNotRewind;
508 }
509 if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) {
510 SkDebugf("Error: scaling not supported.\n");
511 return kInvalidScale;
512 }
513 if (!conversion_possible(dstInfo, this->getOriginalInfo())) {
514 SkDebugf("Error: cannot convert input type to output type.\n");
515 return kInvalidConversion;
516 }
517
518 switch (fInputFormat) {
519 case kBitMask_BitmapInputFormat:
520 return decodeMask(dstInfo, dst, dstRowBytes);
521 case kRLE_BitmapInputFormat:
522 return decodeRLE(dstInfo, dst, dstRowBytes);
523 case kStandard_BitmapInputFormat:
524 return decode(dstInfo, dst, dstRowBytes);
525 default:
526 SkASSERT(false);
527 return kInvalidInput;
528 }
529 }
530
531 /*
532 *
533 * Performs the bitmap decoding for bit masks input format
534 *
535 */
536 SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo,
537 void* dst, size_t dstRowBytes) {
538 // Set constant values
539 const int width = dstInfo.width();
540 const int height = dstInfo.height();
541 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel));
542
543 // Allocate space for a row buffer and a source for the swizzler
544 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes));
545
546 // Get the destination start row and delta
547 SkPMColor* dstRow;
548 int delta;
549 if (kTopDown_RowOrder == fRowOrder) {
550 dstRow = (SkPMColor*) dst;
551 delta = (int) dstRowBytes;
552 } else {
553 dstRow = (SkPMColor*) SkTAddOffset<void>(dst, (height-1) * dstRowBytes);
554 delta = -((int) dstRowBytes);
555 }
556
557 // Create the swizzler
558 SkMaskSwizzler* swizzler = SkMaskSwizzler::CreateMaskSwizzler(
559 dstInfo, fMasks, fBitsPerPixel);
560
561 // Iterate over rows of the image
562 bool transparent = true;
563 for (int y = 0; y < height; y++) {
564 // Read a row of the input
565 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) {
566 SkDebugf("Warning: incomplete input stream.\n");
567 return kIncompleteInput;
568 }
569
570 // Decode the row in destination format
571 SkSwizzler::ResultAlpha r = swizzler->next(dstRow, srcBuffer.get());
572 transparent &= SkSwizzler::IsTransparent(r);
573
574 // Move to the next row
575 dstRow = SkTAddOffset<SkPMColor>(dstRow, delta);
576 }
577
578 // Some fully transparent bmp images are intended to be opaque. Here, we
579 // correct for this possibility.
580 dstRow = (SkPMColor*) dst;
581 if (transparent) {
582 for (int y = 0; y < height; y++) {
583 for (int x = 0; x < width; x++) {
584 dstRow[x] |= 0xFF000000;
585 }
586 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes);
587 }
588 }
589
590 // Finished decoding the entire image
591 return kSuccess;
592 }
593
594 /*
595 *
596 * Set an RLE pixel using the color table
597 *
598 */
599 void SkBmpCodec::setRLEPixel(SkPMColor* dst, size_t dstRowBytes, int height,
600 uint32_t x, uint32_t y, uint8_t index) {
601 if (kBottomUp_RowOrder == fRowOrder) {
602 y = height - y - 1;
603 }
604 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes);
605 dstRow[x] = fColorTable.get()[index];
606 }
607
608 /*
609 *
610 * Performs the bitmap decoding for RLE input format
611 * RLE decoding is performed all at once, rather than a one row at a time
612 *
613 */
614 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo,
615 void* dst, size_t dstRowBytes) {
616 // Set RLE flags
617 static const uint8_t RLE_ESCAPE = 0;
618 static const uint8_t RLE_EOL = 0;
619 static const uint8_t RLE_EOF = 1;
620 static const uint8_t RLE_DELTA = 2;
621
622 // Set constant values
623 const int width = dstInfo.width();
624 const int height = dstInfo.height();
625
626 // Input buffer parameters
627 uint32_t currByte = 0;
628 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes));
629 size_t totalBytes = stream()->read(buffer.get(), fRemainingBytes);
630 if ((uint32_t) totalBytes < fRemainingBytes) {
631 SkDebugf("Warning: incomplete RLE file.\n");
632 } else if (totalBytes <= 0) {
633 SkDebugf("Error: could not read RLE image data.\n");
634 return kInvalidInput;
635 }
636
637 // Destination parameters
638 int x = 0;
639 int y = 0;
640 // If the code skips pixels, remaining pixels are transparent or black
641 // TODO: Skip this if memory was already zeroed.
642 memset(dst, 0, dstRowBytes * height);
643 SkPMColor* dstPtr = (SkPMColor*) dst;
644
645 while (true) {
646 // Every entry takes at least two bytes
647 if ((int) totalBytes - currByte < 2) {
648 SkDebugf("Warning: incomplete RLE input.\n");
649 return kIncompleteInput;
650 }
651
652 // Read the next two bytes. These bytes have different meanings
653 // depending on their values. In the first interpretation, the first
654 // byte is an escape flag and the second byte indicates what special
655 // task to perform.
656 const uint8_t flag = buffer.get()[currByte++];
657 const uint8_t task = buffer.get()[currByte++];
658
659 // If we have reached a row that is beyond the image size, and the RLE
660 // code does not indicate end of file, abort and signal a warning.
661 if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) {
662 SkDebugf("Warning: invalid RLE input.\n");
663 return kIncompleteInput;
664 }
665
666 // Perform decoding
667 if (RLE_ESCAPE == flag) {
668 switch (task) {
669 case RLE_EOL:
670 x = 0;
671 y++;
672 break;
673 case RLE_EOF:
674 return kSuccess;
675 case RLE_DELTA: {
676 // Two bytes are needed to specify delta
677 if ((int) totalBytes - currByte < 2) {
678 SkDebugf("Warning: incomplete RLE input\n");
679 return kIncompleteInput;
680 }
681 // Modify x and y
682 const uint8_t dx = buffer.get()[currByte++];
683 const uint8_t dy = buffer.get()[currByte++];
684 x += dx;
685 y += dy;
686 if (x > width || y > height) {
687 SkDebugf("Warning: invalid RLE input.\n");
688 return kIncompleteInput;
689 }
690 break;
691 }
692 default: {
693 // If task does not match any of the above signals, it
694 // indicates that we have a sequence of non-RLE pixels.
695 // Furthermore, the value of task is equal to the number
696 // of pixels to interpret.
697 uint8_t numPixels = task;
698 const size_t rowBytes = compute_row_bytes(numPixels,
699 fBitsPerPixel);
700 // Abort if setting numPixels moves us off the edge of the
701 // image. Also abort if there are not enough bytes
702 // remaining in the stream to set numPixels.
703 if (x + numPixels > width ||
704 (int) totalBytes - currByte < SkAlign2(rowBytes)) {
705 SkDebugf("Warning: invalid RLE input.\n");
706 return kIncompleteInput;
707 }
708 // Set numPixels number of pixels
709 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(
710 dstPtr, y * dstRowBytes);
711 while (numPixels > 0) {
712 switch(fBitsPerPixel) {
713 case 4: {
714 SkASSERT(currByte < totalBytes);
715 uint8_t val = buffer.get()[currByte++];
716 setRLEPixel(dstPtr, dstRowBytes, height, x++, y,
717 val >> 4);
718 numPixels--;
719 if (numPixels != 0) {
720 setRLEPixel(dstPtr, dstRowBytes, height,
721 x++, y, val & 0xF);
722 numPixels--;
723 }
724 break;
725 }
726 case 8:
727 SkASSERT(currByte < totalBytes);
728 setRLEPixel(dstPtr, dstRowBytes, height, x++, y,
729 buffer.get()[currByte++]);
730 numPixels--;
731 break;
732 case 24: {
733 SkASSERT(currByte + 2 < totalBytes);
734 uint8_t blue = buffer.get()[currByte++];
735 uint8_t green = buffer.get()[currByte++];
736 uint8_t red = buffer.get()[currByte++];
737 SkPMColor color = SkPackARGB32NoCheck(
738 0xFF, red, green, blue);
739 dstRow[x++] = color;
740 numPixels--;
741 }
742 default:
743 SkASSERT(false);
744 return kInvalidInput;
745 }
746 }
747 // Skip a byte if necessary to maintain alignment
748 if (!SkIsAlign2(rowBytes)) {
749 currByte++;
750 }
751 break;
752 }
753 }
754 } else {
755 // If the first byte read is not a flag, it indicates the number of
756 // pixels to set in RLE mode.
757 const uint8_t numPixels = flag;
758 const int endX = SkTMin<int>(x + numPixels, width);
759
760 if (24 == fBitsPerPixel) {
761 // In RLE24, the second byte read is part of the pixel color.
762 // There are two more required bytes to finish encoding the
763 // color.
764 if ((int) totalBytes - currByte < 2) {
765 SkDebugf("Warning: incomplete RLE input\n");
766 return kIncompleteInput;
767 }
768
769 // Fill the pixels up to endX with the specified color
770 uint8_t blue = task;
771 uint8_t green = buffer.get()[currByte++];
772 uint8_t red = buffer.get()[currByte++];
773 SkPMColor color = SkPackARGB32NoCheck(0xFF, red, green, blue);
774 SkPMColor* dstRow =
775 SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes);
776 while (x < endX) {
777 dstRow[x++] = color;
778 }
779 } else {
780 // In RLE8 or RLE4, the second byte read gives the index in the
781 // color table to look up the pixel color.
782 // RLE8 has one color index that gets repeated
783 // RLE4 has two color indexes in the upper and lower 4 bits of
784 // the bytes, which are alternated
785 uint8_t indices[2] = { task, task };
786 if (4 == fBitsPerPixel) {
787 indices[0] >>= 4;
788 indices[1] &= 0xf;
789 }
790
791 // Set the indicated number of pixels
792 for (int which = 0; x < endX; x++) {
793 setRLEPixel(dstPtr, dstRowBytes, height, x, y,
794 indices[which]);
795 which = !which;
796 }
797 }
798 }
799 }
800 }
801
802 /*
803 *
804 * Performs the bitmap decoding for standard input format
805 *
806 */
807 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo,
808 void* dst, size_t dstRowBytes) {
809 // Set constant values
810 const int width = dstInfo.width();
811 const int height = dstInfo.height();
812 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel));
813 const uint32_t alphaMask = fMasks->getAlphaMask();
814
815 // Get swizzler configuration
816 SkSwizzler::SrcConfig config;
817 switch (fBitsPerPixel) {
818 case 1:
819 config = SkSwizzler::kIndex1;
820 break;
821 case 2:
822 config = SkSwizzler::kIndex2;
823 break;
824 case 4:
825 config = SkSwizzler::kIndex4;
826 break;
827 case 8:
828 config = SkSwizzler::kIndex;
829 break;
830 case 24:
831 config = SkSwizzler::kBGR;
832 break;
833 case 32:
834 if (0 == alphaMask) {
835 config = SkSwizzler::kBGRX;
836 } else {
837 config = SkSwizzler::kBGRA;
838 }
839 break;
840 default:
841 SkASSERT(false);
842 return kInvalidInput;
843 }
844
845 // Create swizzler
846 SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(),
847 dstInfo, dst, dstRowBytes, false);
848
849 // Allocate space for a row buffer and a source for the swizzler
850 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes));
851
852 // Iterate over rows of the image
853 // FIXME: bool transparent = true;
854 for (int y = 0; y < height; y++) {
855 // Read a row of the input
856 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) {
857 SkDebugf("Warning: incomplete input stream.\n");
858 return kIncompleteInput;
859 }
860
861 // Decode the row in destination format
862 uint32_t row;
863 if (kTopDown_RowOrder == fRowOrder) {
864 row = y;
865 } else {
866 row = height - 1 - y;
867 }
868
869 swizzler->next(srcBuffer.get(), row);
870 // FIXME: SkSwizzler::ResultAlpha r =
871 // swizzler->next(srcBuffer.get(), row);
872 // FIXME: transparent &= SkSwizzler::IsTransparent(r);
873 }
874
875 // FIXME: This code exists to match the behavior in the chromium decoder
876 // and to follow the bmp specification as it relates to alpha masks. It is
877 // commented out because we have yet to discover a test image that provides
878 // an alpha mask and uses this decode mode.
879
880 // Now we adjust the output image with some additional behavior that
881 // SkSwizzler does not support. Firstly, all bmp images that contain
882 // alpha are masked by the alpha mask. Secondly, many fully transparent
883 // bmp images are intended to be opaque. Here, we make those corrections.
884 // Modifying alpha is safe because colors are stored unpremultiplied.
885 /*
886 SkPMColor* dstRow = (SkPMColor*) dst;
887 if (SkSwizzler::kBGRA == config) {
888 for (int y = 0; y < height; y++) {
889 for (int x = 0; x < width; x++) {
890 if (transparent) {
891 dstRow[x] |= 0xFF000000;
892 } else {
893 dstRow[x] &= alphaMask;
894 }
895 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes);
896 }
897 }
898 }
899 */
900
901 // Finished decoding the entire image
902 return kSuccess;
903 }
OLDNEW
« no previous file with comments | « src/codec/SkCodec_libbmp.h ('k') | src/codec/SkCodec_libpng.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698