Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(772)

Unified Diff: src/pathops/SkDCubicIntersection.cpp

Issue 1002693002: pathops version two (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: fix arm 64 inspired coincident handling Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/pathops/SkAddIntersections.cpp ('k') | src/pathops/SkDCubicLineIntersection.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/pathops/SkDCubicIntersection.cpp
diff --git a/src/pathops/SkDCubicIntersection.cpp b/src/pathops/SkDCubicIntersection.cpp
deleted file mode 100644
index 2fb35e182794dcec2bb86cb654a0d7d22a3b0af0..0000000000000000000000000000000000000000
--- a/src/pathops/SkDCubicIntersection.cpp
+++ /dev/null
@@ -1,704 +0,0 @@
-/*
- * Copyright 2012 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "SkIntersections.h"
-#include "SkPathOpsCubic.h"
-#include "SkPathOpsLine.h"
-#include "SkPathOpsPoint.h"
-#include "SkPathOpsQuad.h"
-#include "SkPathOpsRect.h"
-#include "SkReduceOrder.h"
-#include "SkTSort.h"
-
-#if ONE_OFF_DEBUG
-static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}};
-static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}};
-#endif
-
-#define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1
-#define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0
-#define SWAP_TOP_DEBUG 0
-
-static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision
-
-static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) {
- SkDCubic part = cubic.subDivide(tStart, tEnd);
- SkDQuad quad = part.toQuad();
- // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
- // extremely shallow quadratic?
- int order = reducer->reduce(quad);
-#if DEBUG_QUAD_PART
- SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
- " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
- cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
- cubic[3].fX, cubic[3].fY, tStart, tEnd);
- SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n"
- " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
- part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY,
- part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
- quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
-#if DEBUG_QUAD_PART_SHOW_SIMPLE
- SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY);
- if (order > 1) {
- SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
- }
- if (order > 2) {
- SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
- }
- SkDebugf(")\n");
- SkASSERT(order < 4 && order > 0);
-#endif
-#endif
- return order;
-}
-
-static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2,
- int order2, SkIntersections& i) {
- if (order1 == 3 && order2 == 3) {
- i.intersect(simple1, simple2);
- } else if (order1 <= 2 && order2 <= 2) {
- i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
- } else if (order1 == 3 && order2 <= 2) {
- i.intersect(simple1, (const SkDLine&) simple2);
- } else {
- SkASSERT(order1 <= 2 && order2 == 3);
- i.intersect(simple2, (const SkDLine&) simple1);
- i.swapPts();
- }
-}
-
-// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
-// chase intersections near quadratic ends, requiring odd hacks to find them.
-static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
- double t2s, double t2e, double precisionScale, SkIntersections& i) {
- i.upDepth();
- SkDCubic c1 = cubic1.subDivide(t1s, t1e);
- SkDCubic c2 = cubic2.subDivide(t2s, t2e);
- SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
- // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
- c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
- SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
- c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
- double t1Start = t1s;
- int ts1Count = ts1.count();
- for (int i1 = 0; i1 <= ts1Count; ++i1) {
- const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
- const double t1 = t1s + (t1e - t1s) * tEnd1;
- SkReduceOrder s1;
- int o1 = quadPart(cubic1, t1Start, t1, &s1);
- double t2Start = t2s;
- int ts2Count = ts2.count();
- for (int i2 = 0; i2 <= ts2Count; ++i2) {
- const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
- const double t2 = t2s + (t2e - t2s) * tEnd2;
- if (&cubic1 == &cubic2 && t1Start >= t2Start) {
- t2Start = t2;
- continue;
- }
- SkReduceOrder s2;
- int o2 = quadPart(cubic2, t2Start, t2, &s2);
- #if ONE_OFF_DEBUG
- char tab[] = " ";
- if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
- && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
- SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
- __FUNCTION__, t1Start, t1, t2Start, t2);
- SkIntersections xlocals;
- xlocals.allowNear(false);
- xlocals.allowFlatMeasure(true);
- intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
- SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
- }
- #endif
- SkIntersections locals;
- locals.allowNear(false);
- locals.allowFlatMeasure(true);
- intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
- int tCount = locals.used();
- for (int tIdx = 0; tIdx < tCount; ++tIdx) {
- double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
- double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
- // if the computed t is not sufficiently precise, iterate
- SkDPoint p1 = cubic1.ptAtT(to1);
- SkDPoint p2 = cubic2.ptAtT(to2);
- if (p1.approximatelyEqual(p2)) {
- // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller
-// SkASSERT(!locals.isCoincident(tIdx));
- if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
- if (i.swapped()) { // FIXME: insert should respect swap
- i.insert(to2, to1, p1);
- } else {
- i.insert(to1, to2, p1);
- }
- }
- } else {
-/*for random cubics, 16 below catches 99.997% of the intersections. To test for the remaining 0.003%
- look for nearly coincident curves. and check each 1/16th section.
-*/
- double offset = precisionScale / 16; // FIXME: const is arbitrary: test, refine
- double c1Bottom = tIdx == 0 ? 0 :
- (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
- double c1Min = SkTMax(c1Bottom, to1 - offset);
- double c1Top = tIdx == tCount - 1 ? 1 :
- (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
- double c1Max = SkTMin(c1Top, to1 + offset);
- double c2Min = SkTMax(0., to2 - offset);
- double c2Max = SkTMin(1., to2 + offset);
- #if ONE_OFF_DEBUG
- SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
- __FUNCTION__,
- c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
- && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
- to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
- && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
- c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
- && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
- to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
- && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
- SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
- " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
- i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
- to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
- SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
- " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
- c1Max, c2Min, c2Max);
- #endif
- intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
- #if ONE_OFF_DEBUG
- SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
- i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
- #endif
- if (tCount > 1) {
- c1Min = SkTMax(0., to1 - offset);
- c1Max = SkTMin(1., to1 + offset);
- double c2Bottom = tIdx == 0 ? to2 :
- (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
- double c2Top = tIdx == tCount - 1 ? to2 :
- (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
- if (c2Bottom > c2Top) {
- SkTSwap(c2Bottom, c2Top);
- }
- if (c2Bottom == to2) {
- c2Bottom = 0;
- }
- if (c2Top == to2) {
- c2Top = 1;
- }
- c2Min = SkTMax(c2Bottom, to2 - offset);
- c2Max = SkTMin(c2Top, to2 + offset);
- #if ONE_OFF_DEBUG
- SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
- __FUNCTION__,
- c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
- && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
- to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
- && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
- c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
- && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
- to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
- && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
- SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
- " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
- i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
- to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
- SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
- " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
- c1Max, c2Min, c2Max);
- #endif
- intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
- #if ONE_OFF_DEBUG
- SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
- i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
- #endif
- c1Min = SkTMax(c1Bottom, to1 - offset);
- c1Max = SkTMin(c1Top, to1 + offset);
- #if ONE_OFF_DEBUG
- SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
- __FUNCTION__,
- c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
- && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
- to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
- && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
- c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
- && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
- to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
- && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
- SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
- " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
- i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
- to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
- SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
- " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
- c1Max, c2Min, c2Max);
- #endif
- intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
- #if ONE_OFF_DEBUG
- SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
- i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
- #endif
- }
- // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
- // FIXME: if no intersection is found, either quadratics intersected where
- // cubics did not, or the intersection was missed. In the former case, expect
- // the quadratics to be nearly parallel at the point of intersection, and check
- // for that.
- }
- }
- t2Start = t2;
- }
- t1Start = t1;
- }
- i.downDepth();
-}
-
- // if two ends intersect, check middle for coincidence
-bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) {
- if (fUsed < 2) {
- return false;
- }
- int last = fUsed - 1;
- double tRange1 = fT[0][last] - fT[0][0];
- double tRange2 = fT[1][last] - fT[1][0];
- for (int index = 1; index < 5; ++index) {
- double testT1 = fT[0][0] + tRange1 * index / 5;
- double testT2 = fT[1][0] + tRange2 * index / 5;
- SkDPoint testPt1 = c1.ptAtT(testT1);
- SkDPoint testPt2 = c2.ptAtT(testT2);
- if (!testPt1.approximatelyEqual(testPt2)) {
- return false;
- }
- }
- if (fUsed > 2) {
- fPt[1] = fPt[last];
- fT[0][1] = fT[0][last];
- fT[1][1] = fT[1][last];
- fUsed = 2;
- }
- fIsCoincident[0] = fIsCoincident[1] = 0x03;
- return true;
-}
-
-#define LINE_FRACTION 0.1
-
-// intersect the end of the cubic with the other. Try lines from the end to control and opposite
-// end to determine range of t on opposite cubic.
-bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) {
- int t1Index = start ? 0 : 3;
- double testT = (double) !start;
- bool swap = swapped();
- // quad/quad at this point checks to see if exact matches have already been found
- // cubic/cubic can't reject so easily since cubics can intersect same point more than once
- SkDLine tmpLine;
- tmpLine[0] = tmpLine[1] = cubic2[t1Index];
- tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
- tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
- SkIntersections impTs;
- impTs.allowNear(false);
- impTs.allowFlatMeasure(true);
- impTs.intersectRay(cubic1, tmpLine);
- for (int index = 0; index < impTs.used(); ++index) {
- SkDPoint realPt = impTs.pt(index);
- if (!tmpLine[0].approximatelyEqual(realPt)) {
- continue;
- }
- if (swap) {
- cubicInsert(testT, impTs[0][index], tmpLine[0], cubic2, cubic1);
- } else {
- cubicInsert(impTs[0][index], testT, tmpLine[0], cubic1, cubic2);
- }
- return true;
- }
- return false;
-}
-
-
-void SkIntersections::cubicInsert(double one, double two, const SkDPoint& pt,
- const SkDCubic& cubic1, const SkDCubic& cubic2) {
- for (int index = 0; index < fUsed; ++index) {
- if (fT[0][index] == one) {
- double oldTwo = fT[1][index];
- if (oldTwo == two) {
- return;
- }
- SkDPoint mid = cubic2.ptAtT((oldTwo + two) / 2);
- if (mid.approximatelyEqual(fPt[index])) {
- return;
- }
- }
- if (fT[1][index] == two) {
- SkDPoint mid = cubic1.ptAtT((fT[0][index] + two) / 2);
- if (mid.approximatelyEqual(fPt[index])) {
- return;
- }
- }
- }
- insert(one, two, pt);
-}
-
-void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
- const SkDRect& bounds2) {
- SkDLine line;
- int t1Index = start ? 0 : 3;
- double testT = (double) !start;
- // don't bother if the two cubics are connnected
- static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this
- static const int kMaxLineCubicIntersections = 3;
- SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals;
- line[0] = cubic1[t1Index];
- // this variant looks for intersections with the end point and lines parallel to other points
- for (int index = 0; index < kPointsInCubic; ++index) {
- if (index == t1Index) {
- continue;
- }
- SkDVector dxy1 = cubic1[index] - line[0];
- dxy1 /= SkDCubic::gPrecisionUnit;
- line[1] = line[0] + dxy1;
- SkDRect lineBounds;
- lineBounds.setBounds(line);
- if (!bounds2.intersects(&lineBounds)) {
- continue;
- }
- SkIntersections local;
- if (!local.intersect(cubic2, line)) {
- continue;
- }
- for (int idx2 = 0; idx2 < local.used(); ++idx2) {
- double foundT = local[0][idx2];
- if (approximately_less_than_zero(foundT)
- || approximately_greater_than_one(foundT)) {
- continue;
- }
- if (local.pt(idx2).approximatelyEqual(line[0])) {
- if (swapped()) { // FIXME: insert should respect swap
- insert(foundT, testT, line[0]);
- } else {
- insert(testT, foundT, line[0]);
- }
- } else {
- tVals.push_back(foundT);
- }
- }
- }
- if (tVals.count() == 0) {
- return;
- }
- SkTQSort<double>(tVals.begin(), tVals.end() - 1);
- double tMin1 = start ? 0 : 1 - LINE_FRACTION;
- double tMax1 = start ? LINE_FRACTION : 1;
- int tIdx = 0;
- do {
- int tLast = tIdx;
- while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
- ++tLast;
- }
- double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
- double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
- int lastUsed = used();
- if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
- ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
- }
- if (lastUsed == used()) {
- tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
- tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
- if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
- ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
- }
- }
- tIdx = tLast + 1;
- } while (tIdx < tVals.count());
- return;
-}
-
-const double CLOSE_ENOUGH = 0.001;
-
-static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
- if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
- return false;
- }
- pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
- return true;
-}
-
-static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
- int last = i.used() - 1;
- if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
- return false;
- }
- pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
- return true;
-}
-
-static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) {
-// the idea here is to see at minimum do a quick reject by rotating all points
-// to either side of the line formed by connecting the endpoints
-// if the opposite curves points are on the line or on the other side, the
-// curves at most intersect at the endpoints
- for (int oddMan = 0; oddMan < 4; ++oddMan) {
- const SkDPoint* endPt[3];
- for (int opp = 1; opp < 4; ++opp) {
- int end = oddMan ^ opp; // choose a value not equal to oddMan
- endPt[opp - 1] = &c1[end];
- }
- for (int triTest = 0; triTest < 3; ++triTest) {
- double origX = endPt[triTest]->fX;
- double origY = endPt[triTest]->fY;
- int oppTest = triTest + 1;
- if (3 == oppTest) {
- oppTest = 0;
- }
- double adj = endPt[oppTest]->fX - origX;
- double opp = endPt[oppTest]->fY - origY;
- if (adj == 0 && opp == 0) { // if the other point equals the test point, ignore it
- continue;
- }
- double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp;
- if (approximately_zero(sign)) {
- goto tryNextHalfPlane;
- }
- for (int n = 0; n < 4; ++n) {
- double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp;
- if (test * sign > 0 && !precisely_zero(test)) {
- goto tryNextHalfPlane;
- }
- }
- }
- return true;
-tryNextHalfPlane:
- ;
- }
- return false;
-}
-
-int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
- if (fMax == 0) {
- fMax = 9;
- }
- bool selfIntersect = &c1 == &c2;
- if (selfIntersect) {
- if (c1[0].approximatelyEqual(c1[3])) {
- insert(0, 1, c1[0]);
- return fUsed;
- }
- } else {
- // OPTIMIZATION: set exact end bits here to avoid cubic exact end later
- for (int i1 = 0; i1 < 4; i1 += 3) {
- for (int i2 = 0; i2 < 4; i2 += 3) {
- if (c1[i1].approximatelyEqual(c2[i2])) {
- insert(i1 >> 1, i2 >> 1, c1[i1]);
- }
- }
- }
- }
- SkASSERT(fUsed < 4);
- if (!selfIntersect) {
- if (only_end_pts_in_common(c1, c2)) {
- return fUsed;
- }
- if (only_end_pts_in_common(c2, c1)) {
- return fUsed;
- }
- }
- // quad/quad does linear test here -- cubic does not
- // cubics which are really lines should have been detected in reduce step earlier
- int exactEndBits = 0;
- if (selfIntersect) {
- if (fUsed) {
- return fUsed;
- }
- } else {
- exactEndBits |= cubicExactEnd(c1, false, c2) << 0;
- exactEndBits |= cubicExactEnd(c1, true, c2) << 1;
- swap();
- exactEndBits |= cubicExactEnd(c2, false, c1) << 2;
- exactEndBits |= cubicExactEnd(c2, true, c1) << 3;
- swap();
- }
- if (cubicCheckCoincidence(c1, c2)) {
- SkASSERT(!selfIntersect);
- return fUsed;
- }
- // FIXME: pass in cached bounds from caller
- SkDRect c2Bounds;
- c2Bounds.setBounds(c2);
- if (!(exactEndBits & 4)) {
- cubicNearEnd(c1, false, c2, c2Bounds);
- }
- if (!(exactEndBits & 8)) {
- if (selfIntersect && fUsed) {
- return fUsed;
- }
- cubicNearEnd(c1, true, c2, c2Bounds);
- if (selfIntersect && fUsed && ((approximately_less_than_zero(fT[0][0])
- && approximately_less_than_zero(fT[1][0]))
- || (approximately_greater_than_one(fT[0][0])
- && approximately_greater_than_one(fT[1][0])))) {
- SkASSERT(fUsed == 1);
- fUsed = 0;
- return fUsed;
- }
- }
- if (!selfIntersect) {
- SkDRect c1Bounds;
- c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
- swap();
- if (!(exactEndBits & 1)) {
- cubicNearEnd(c2, false, c1, c1Bounds);
- }
- if (!(exactEndBits & 2)) {
- cubicNearEnd(c2, true, c1, c1Bounds);
- }
- swap();
- }
- if (cubicCheckCoincidence(c1, c2)) {
- SkASSERT(!selfIntersect);
- return fUsed;
- }
- SkIntersections i;
- i.fAllowNear = false;
- i.fFlatMeasure = true;
- i.fMax = 9;
- ::intersect(c1, 0, 1, c2, 0, 1, 1, i);
- int compCount = i.used();
- if (compCount) {
- int exactCount = used();
- if (exactCount == 0) {
- *this = i;
- } else {
- // at least one is exact or near, and at least one was computed. Eliminate duplicates
- for (int exIdx = 0; exIdx < exactCount; ++exIdx) {
- for (int cpIdx = 0; cpIdx < compCount; ) {
- if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) {
- i.removeOne(cpIdx);
- --compCount;
- continue;
- }
- double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2;
- SkDPoint pt = c1.ptAtT(tAvg);
- if (!pt.approximatelyEqual(fPt[exIdx])) {
- ++cpIdx;
- continue;
- }
- tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2;
- pt = c2.ptAtT(tAvg);
- if (!pt.approximatelyEqual(fPt[exIdx])) {
- ++cpIdx;
- continue;
- }
- i.removeOne(cpIdx);
- --compCount;
- }
- }
- // if mid t evaluates to nearly the same point, skip the t
- for (int cpIdx = 0; cpIdx < compCount - 1; ) {
- double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2;
- SkDPoint pt = c1.ptAtT(tAvg);
- if (!pt.approximatelyEqual(fPt[cpIdx])) {
- ++cpIdx;
- continue;
- }
- tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2;
- pt = c2.ptAtT(tAvg);
- if (!pt.approximatelyEqual(fPt[cpIdx])) {
- ++cpIdx;
- continue;
- }
- i.removeOne(cpIdx);
- --compCount;
- }
- // in addition to adding below missing function, think about how to say
- append(i);
- }
- }
- // If an end point and a second point very close to the end is returned, the second
- // point may have been detected because the approximate quads
- // intersected at the end and close to it. Verify that the second point is valid.
- if (fUsed <= 1) {
- return fUsed;
- }
- SkDPoint pt[2];
- if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
- && pt[0].approximatelyEqual(pt[1])) {
- removeOne(1);
- }
- if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
- && pt[0].approximatelyEqual(pt[1])) {
- removeOne(used() - 2);
- }
- // vet the pairs of t values to see if the mid value is also on the curve. If so, mark
- // the span as coincident
- if (fUsed >= 2 && !coincidentUsed()) {
- int last = fUsed - 1;
- int match = 0;
- for (int index = 0; index < last; ++index) {
- double mid1 = (fT[0][index] + fT[0][index + 1]) / 2;
- double mid2 = (fT[1][index] + fT[1][index + 1]) / 2;
- pt[0] = c1.ptAtT(mid1);
- pt[1] = c2.ptAtT(mid2);
- if (pt[0].approximatelyEqual(pt[1])) {
- match |= 1 << index;
- }
- }
- if (match) {
-#if DEBUG_CONCIDENT
- if (((match + 1) & match) != 0) {
- SkDebugf("%s coincident hole\n", __FUNCTION__);
- }
-#endif
- // for now, assume that everything from start to finish is coincident
- if (fUsed > 2) {
- fPt[1] = fPt[last];
- fT[0][1] = fT[0][last];
- fT[1][1] = fT[1][last];
- fIsCoincident[0] = 0x03;
- fIsCoincident[1] = 0x03;
- fUsed = 2;
- }
- }
- }
- return fUsed;
-}
-
-// Up promote the quad to a cubic.
-// OPTIMIZATION If this is a common use case, optimize by duplicating
-// the intersect 3 loop to avoid the promotion / demotion code
-int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
- fMax = 7;
- SkDCubic up = quad.toCubic();
- (void) intersect(cubic, up);
- return used();
-}
-
-/* http://www.ag.jku.at/compass/compasssample.pdf
-( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
-Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
-SINTEF Applied Mathematics http://www.sintef.no )
-describes a method to find the self intersection of a cubic by taking the gradient of the implicit
-form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
-
-int SkIntersections::intersect(const SkDCubic& c) {
- fMax = 1;
- // check to see if x or y end points are the extrema. Are other quick rejects possible?
- if (c.endsAreExtremaInXOrY()) {
- return false;
- }
- // OPTIMIZATION: could quick reject if neither end point tangent ray intersected the line
- // segment formed by the opposite end point to the control point
- (void) intersect(c, c);
- if (used() > 1) {
- fUsed = 0;
- } else if (used() > 0) {
- if (approximately_equal_double(fT[0][0], fT[1][0])) {
- fUsed = 0;
- } else {
- SkASSERT(used() == 1);
- if (fT[0][0] > fT[1][0]) {
- swapPts();
- }
- }
- }
- return used();
-}
« no previous file with comments | « src/pathops/SkAddIntersections.cpp ('k') | src/pathops/SkDCubicLineIntersection.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698