| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2012 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "SkIntersections.h" | |
| 9 #include "SkPathOpsCubic.h" | |
| 10 #include "SkPathOpsLine.h" | |
| 11 #include "SkPathOpsPoint.h" | |
| 12 #include "SkPathOpsQuad.h" | |
| 13 #include "SkPathOpsRect.h" | |
| 14 #include "SkReduceOrder.h" | |
| 15 #include "SkTSort.h" | |
| 16 | |
| 17 #if ONE_OFF_DEBUG | |
| 18 static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}}; | |
| 19 static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}}; | |
| 20 #endif | |
| 21 | |
| 22 #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1 | |
| 23 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0 | |
| 24 #define SWAP_TOP_DEBUG 0 | |
| 25 | |
| 26 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic t
o quads subdivision | |
| 27 | |
| 28 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceO
rder* reducer) { | |
| 29 SkDCubic part = cubic.subDivide(tStart, tEnd); | |
| 30 SkDQuad quad = part.toQuad(); | |
| 31 // FIXME: should reduceOrder be looser in this use case if quartic is going
to blow up on an | |
| 32 // extremely shallow quadratic? | |
| 33 int order = reducer->reduce(quad); | |
| 34 #if DEBUG_QUAD_PART | |
| 35 SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" | |
| 36 " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY, | |
| 37 cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, | |
| 38 cubic[3].fX, cubic[3].fY, tStart, tEnd); | |
| 39 SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n" | |
| 40 " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", | |
| 41 part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].
fY, | |
| 42 part[3].fX, part[3].fY, quad[0].fX, quad[0].fY, | |
| 43 quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); | |
| 44 #if DEBUG_QUAD_PART_SHOW_SIMPLE | |
| 45 SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reduc
er->fQuad[0].fY); | |
| 46 if (order > 1) { | |
| 47 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY); | |
| 48 } | |
| 49 if (order > 2) { | |
| 50 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY); | |
| 51 } | |
| 52 SkDebugf(")\n"); | |
| 53 SkASSERT(order < 4 && order > 0); | |
| 54 #endif | |
| 55 #endif | |
| 56 return order; | |
| 57 } | |
| 58 | |
| 59 static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad
& simple2, | |
| 60 int order2, SkIntersections& i) { | |
| 61 if (order1 == 3 && order2 == 3) { | |
| 62 i.intersect(simple1, simple2); | |
| 63 } else if (order1 <= 2 && order2 <= 2) { | |
| 64 i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2); | |
| 65 } else if (order1 == 3 && order2 <= 2) { | |
| 66 i.intersect(simple1, (const SkDLine&) simple2); | |
| 67 } else { | |
| 68 SkASSERT(order1 <= 2 && order2 == 3); | |
| 69 i.intersect(simple2, (const SkDLine&) simple1); | |
| 70 i.swapPts(); | |
| 71 } | |
| 72 } | |
| 73 | |
| 74 // this flavor centers potential intersections recursively. In contrast, '2' may
inadvertently | |
| 75 // chase intersections near quadratic ends, requiring odd hacks to find them. | |
| 76 static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDC
ubic& cubic2, | |
| 77 double t2s, double t2e, double precisionScale, SkIntersections& i) { | |
| 78 i.upDepth(); | |
| 79 SkDCubic c1 = cubic1.subDivide(t1s, t1e); | |
| 80 SkDCubic c2 = cubic2.subDivide(t2s, t2e); | |
| 81 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1; | |
| 82 // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersectio
n) | |
| 83 c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1); | |
| 84 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2; | |
| 85 c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2); | |
| 86 double t1Start = t1s; | |
| 87 int ts1Count = ts1.count(); | |
| 88 for (int i1 = 0; i1 <= ts1Count; ++i1) { | |
| 89 const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; | |
| 90 const double t1 = t1s + (t1e - t1s) * tEnd1; | |
| 91 SkReduceOrder s1; | |
| 92 int o1 = quadPart(cubic1, t1Start, t1, &s1); | |
| 93 double t2Start = t2s; | |
| 94 int ts2Count = ts2.count(); | |
| 95 for (int i2 = 0; i2 <= ts2Count; ++i2) { | |
| 96 const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; | |
| 97 const double t2 = t2s + (t2e - t2s) * tEnd2; | |
| 98 if (&cubic1 == &cubic2 && t1Start >= t2Start) { | |
| 99 t2Start = t2; | |
| 100 continue; | |
| 101 } | |
| 102 SkReduceOrder s2; | |
| 103 int o2 = quadPart(cubic2, t2Start, t2, &s2); | |
| 104 #if ONE_OFF_DEBUG | |
| 105 char tab[] = " "; | |
| 106 if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 | |
| 107 && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { | |
| 108 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*
2, tab, | |
| 109 __FUNCTION__, t1Start, t1, t2Start, t2); | |
| 110 SkIntersections xlocals; | |
| 111 xlocals.allowNear(false); | |
| 112 xlocals.allowFlatMeasure(true); | |
| 113 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals); | |
| 114 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); | |
| 115 } | |
| 116 #endif | |
| 117 SkIntersections locals; | |
| 118 locals.allowNear(false); | |
| 119 locals.allowFlatMeasure(true); | |
| 120 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); | |
| 121 int tCount = locals.used(); | |
| 122 for (int tIdx = 0; tIdx < tCount; ++tIdx) { | |
| 123 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; | |
| 124 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; | |
| 125 // if the computed t is not sufficiently precise, iterate | |
| 126 SkDPoint p1 = cubic1.ptAtT(to1); | |
| 127 SkDPoint p2 = cubic2.ptAtT(to2); | |
| 128 if (p1.approximatelyEqual(p2)) { | |
| 129 // FIXME: local edge may be coincident -- experiment with not propagating co
incidence to caller | |
| 130 // SkASSERT(!locals.isCoincident(tIdx)); | |
| 131 if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { | |
| 132 if (i.swapped()) { // FIXME: insert should respect swa
p | |
| 133 i.insert(to2, to1, p1); | |
| 134 } else { | |
| 135 i.insert(to1, to2, p1); | |
| 136 } | |
| 137 } | |
| 138 } else { | |
| 139 /*for random cubics, 16 below catches 99.997% of the intersections. To test for
the remaining 0.003% | |
| 140 look for nearly coincident curves. and check each 1/16th section. | |
| 141 */ | |
| 142 double offset = precisionScale / 16; // FIXME: const is arb
itrary: test, refine | |
| 143 double c1Bottom = tIdx == 0 ? 0 : | |
| 144 (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to
1) / 2; | |
| 145 double c1Min = SkTMax(c1Bottom, to1 - offset); | |
| 146 double c1Top = tIdx == tCount - 1 ? 1 : | |
| 147 (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to
1) / 2; | |
| 148 double c1Max = SkTMin(c1Top, to1 + offset); | |
| 149 double c2Min = SkTMax(0., to2 - offset); | |
| 150 double c2Max = SkTMin(1., to2 + offset); | |
| 151 #if ONE_OFF_DEBUG | |
| 152 SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.de
pth()*2, tab, | |
| 153 __FUNCTION__, | |
| 154 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max | |
| 155 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, | |
| 156 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <=
to1 + offset | |
| 157 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <=
to2 + offset, | |
| 158 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max | |
| 159 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, | |
| 160 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <=
to1 + offset | |
| 161 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <=
to2 + offset); | |
| 162 SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9
g c2Top=%1.9g" | |
| 163 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.
9g\n", | |
| 164 i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0.,
1., | |
| 165 to1 - offset, to1 + offset, to2 - offset, to2 + offs
et, offset); | |
| 166 SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1
.9g c2Min=%1.9g" | |
| 167 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to
1, to2, c1Min, | |
| 168 c1Max, c2Min, c2Max); | |
| 169 #endif | |
| 170 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset
, i); | |
| 171 #if ONE_OFF_DEBUG | |
| 172 SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab,
__FUNCTION__, | |
| 173 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); | |
| 174 #endif | |
| 175 if (tCount > 1) { | |
| 176 c1Min = SkTMax(0., to1 - offset); | |
| 177 c1Max = SkTMin(1., to1 + offset); | |
| 178 double c2Bottom = tIdx == 0 ? to2 : | |
| 179 (t2Start + (t2 - t2Start) * locals[1][tIdx - 1]
+ to2) / 2; | |
| 180 double c2Top = tIdx == tCount - 1 ? to2 : | |
| 181 (t2Start + (t2 - t2Start) * locals[1][tIdx + 1]
+ to2) / 2; | |
| 182 if (c2Bottom > c2Top) { | |
| 183 SkTSwap(c2Bottom, c2Top); | |
| 184 } | |
| 185 if (c2Bottom == to2) { | |
| 186 c2Bottom = 0; | |
| 187 } | |
| 188 if (c2Top == to2) { | |
| 189 c2Top = 1; | |
| 190 } | |
| 191 c2Min = SkTMax(c2Bottom, to2 - offset); | |
| 192 c2Max = SkTMin(c2Top, to2 + offset); | |
| 193 #if ONE_OFF_DEBUG | |
| 194 SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n",
i.depth()*2, tab, | |
| 195 __FUNCTION__, | |
| 196 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max | |
| 197 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, | |
| 198 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <=
to1 + offset | |
| 199 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <=
to2 + offset, | |
| 200 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max | |
| 201 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, | |
| 202 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <=
to1 + offset | |
| 203 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <=
to2 + offset); | |
| 204 SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=
%1.9g c2Top=%1.9g" | |
| 205 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset
=%1.9g\n", | |
| 206 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom
, c2Top, | |
| 207 to1 - offset, to1 + offset, to2 - offset, to2 +
offset, offset); | |
| 208 SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Ma
x=%1.9g c2Min=%1.9g" | |
| 209 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__
, to1, to2, c1Min, | |
| 210 c1Max, c2Min, c2Max); | |
| 211 #endif | |
| 212 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, of
fset, i); | |
| 213 #if ONE_OFF_DEBUG | |
| 214 SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab,
__FUNCTION__, | |
| 215 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); | |
| 216 #endif | |
| 217 c1Min = SkTMax(c1Bottom, to1 - offset); | |
| 218 c1Max = SkTMin(c1Top, to1 + offset); | |
| 219 #if ONE_OFF_DEBUG | |
| 220 SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n",
i.depth()*2, tab, | |
| 221 __FUNCTION__, | |
| 222 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max | |
| 223 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, | |
| 224 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <=
to1 + offset | |
| 225 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <=
to2 + offset, | |
| 226 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max | |
| 227 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, | |
| 228 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <=
to1 + offset | |
| 229 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <=
to2 + offset); | |
| 230 SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=
%1.9g c2Top=%1.9g" | |
| 231 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset
=%1.9g\n", | |
| 232 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom
, c2Top, | |
| 233 to1 - offset, to1 + offset, to2 - offset, to2 +
offset, offset); | |
| 234 SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Ma
x=%1.9g c2Min=%1.9g" | |
| 235 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__
, to1, to2, c1Min, | |
| 236 c1Max, c2Min, c2Max); | |
| 237 #endif | |
| 238 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, of
fset, i); | |
| 239 #if ONE_OFF_DEBUG | |
| 240 SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab,
__FUNCTION__, | |
| 241 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); | |
| 242 #endif | |
| 243 } | |
| 244 // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offs
et, i); | |
| 245 // FIXME: if no intersection is found, either quadratics int
ersected where | |
| 246 // cubics did not, or the intersection was missed. In the fo
rmer case, expect | |
| 247 // the quadratics to be nearly parallel at the point of inte
rsection, and check | |
| 248 // for that. | |
| 249 } | |
| 250 } | |
| 251 t2Start = t2; | |
| 252 } | |
| 253 t1Start = t1; | |
| 254 } | |
| 255 i.downDepth(); | |
| 256 } | |
| 257 | |
| 258 // if two ends intersect, check middle for coincidence | |
| 259 bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic&
c2) { | |
| 260 if (fUsed < 2) { | |
| 261 return false; | |
| 262 } | |
| 263 int last = fUsed - 1; | |
| 264 double tRange1 = fT[0][last] - fT[0][0]; | |
| 265 double tRange2 = fT[1][last] - fT[1][0]; | |
| 266 for (int index = 1; index < 5; ++index) { | |
| 267 double testT1 = fT[0][0] + tRange1 * index / 5; | |
| 268 double testT2 = fT[1][0] + tRange2 * index / 5; | |
| 269 SkDPoint testPt1 = c1.ptAtT(testT1); | |
| 270 SkDPoint testPt2 = c2.ptAtT(testT2); | |
| 271 if (!testPt1.approximatelyEqual(testPt2)) { | |
| 272 return false; | |
| 273 } | |
| 274 } | |
| 275 if (fUsed > 2) { | |
| 276 fPt[1] = fPt[last]; | |
| 277 fT[0][1] = fT[0][last]; | |
| 278 fT[1][1] = fT[1][last]; | |
| 279 fUsed = 2; | |
| 280 } | |
| 281 fIsCoincident[0] = fIsCoincident[1] = 0x03; | |
| 282 return true; | |
| 283 } | |
| 284 | |
| 285 #define LINE_FRACTION 0.1 | |
| 286 | |
| 287 // intersect the end of the cubic with the other. Try lines from the end to cont
rol and opposite | |
| 288 // end to determine range of t on opposite cubic. | |
| 289 bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const Sk
DCubic& cubic2) { | |
| 290 int t1Index = start ? 0 : 3; | |
| 291 double testT = (double) !start; | |
| 292 bool swap = swapped(); | |
| 293 // quad/quad at this point checks to see if exact matches have already been
found | |
| 294 // cubic/cubic can't reject so easily since cubics can intersect same point
more than once | |
| 295 SkDLine tmpLine; | |
| 296 tmpLine[0] = tmpLine[1] = cubic2[t1Index]; | |
| 297 tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY; | |
| 298 tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX; | |
| 299 SkIntersections impTs; | |
| 300 impTs.allowNear(false); | |
| 301 impTs.allowFlatMeasure(true); | |
| 302 impTs.intersectRay(cubic1, tmpLine); | |
| 303 for (int index = 0; index < impTs.used(); ++index) { | |
| 304 SkDPoint realPt = impTs.pt(index); | |
| 305 if (!tmpLine[0].approximatelyEqual(realPt)) { | |
| 306 continue; | |
| 307 } | |
| 308 if (swap) { | |
| 309 cubicInsert(testT, impTs[0][index], tmpLine[0], cubic2, cubic1); | |
| 310 } else { | |
| 311 cubicInsert(impTs[0][index], testT, tmpLine[0], cubic1, cubic2); | |
| 312 } | |
| 313 return true; | |
| 314 } | |
| 315 return false; | |
| 316 } | |
| 317 | |
| 318 | |
| 319 void SkIntersections::cubicInsert(double one, double two, const SkDPoint& pt, | |
| 320 const SkDCubic& cubic1, const SkDCubic& cubic2) { | |
| 321 for (int index = 0; index < fUsed; ++index) { | |
| 322 if (fT[0][index] == one) { | |
| 323 double oldTwo = fT[1][index]; | |
| 324 if (oldTwo == two) { | |
| 325 return; | |
| 326 } | |
| 327 SkDPoint mid = cubic2.ptAtT((oldTwo + two) / 2); | |
| 328 if (mid.approximatelyEqual(fPt[index])) { | |
| 329 return; | |
| 330 } | |
| 331 } | |
| 332 if (fT[1][index] == two) { | |
| 333 SkDPoint mid = cubic1.ptAtT((fT[0][index] + two) / 2); | |
| 334 if (mid.approximatelyEqual(fPt[index])) { | |
| 335 return; | |
| 336 } | |
| 337 } | |
| 338 } | |
| 339 insert(one, two, pt); | |
| 340 } | |
| 341 | |
| 342 void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkD
Cubic& cubic2, | |
| 343 const SkDRect& bounds2) { | |
| 344 SkDLine line; | |
| 345 int t1Index = start ? 0 : 3; | |
| 346 double testT = (double) !start; | |
| 347 // don't bother if the two cubics are connnected | |
| 348 static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' w
ith this | |
| 349 static const int kMaxLineCubicIntersections = 3; | |
| 350 SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, dou
ble, true> tVals; | |
| 351 line[0] = cubic1[t1Index]; | |
| 352 // this variant looks for intersections with the end point and lines paralle
l to other points | |
| 353 for (int index = 0; index < kPointsInCubic; ++index) { | |
| 354 if (index == t1Index) { | |
| 355 continue; | |
| 356 } | |
| 357 SkDVector dxy1 = cubic1[index] - line[0]; | |
| 358 dxy1 /= SkDCubic::gPrecisionUnit; | |
| 359 line[1] = line[0] + dxy1; | |
| 360 SkDRect lineBounds; | |
| 361 lineBounds.setBounds(line); | |
| 362 if (!bounds2.intersects(&lineBounds)) { | |
| 363 continue; | |
| 364 } | |
| 365 SkIntersections local; | |
| 366 if (!local.intersect(cubic2, line)) { | |
| 367 continue; | |
| 368 } | |
| 369 for (int idx2 = 0; idx2 < local.used(); ++idx2) { | |
| 370 double foundT = local[0][idx2]; | |
| 371 if (approximately_less_than_zero(foundT) | |
| 372 || approximately_greater_than_one(foundT)) { | |
| 373 continue; | |
| 374 } | |
| 375 if (local.pt(idx2).approximatelyEqual(line[0])) { | |
| 376 if (swapped()) { // FIXME: insert should respect swap | |
| 377 insert(foundT, testT, line[0]); | |
| 378 } else { | |
| 379 insert(testT, foundT, line[0]); | |
| 380 } | |
| 381 } else { | |
| 382 tVals.push_back(foundT); | |
| 383 } | |
| 384 } | |
| 385 } | |
| 386 if (tVals.count() == 0) { | |
| 387 return; | |
| 388 } | |
| 389 SkTQSort<double>(tVals.begin(), tVals.end() - 1); | |
| 390 double tMin1 = start ? 0 : 1 - LINE_FRACTION; | |
| 391 double tMax1 = start ? LINE_FRACTION : 1; | |
| 392 int tIdx = 0; | |
| 393 do { | |
| 394 int tLast = tIdx; | |
| 395 while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVal
s[tIdx])) { | |
| 396 ++tLast; | |
| 397 } | |
| 398 double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); | |
| 399 double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); | |
| 400 int lastUsed = used(); | |
| 401 if (start ? tMax1 < tMin2 : tMax2 < tMin1) { | |
| 402 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); | |
| 403 } | |
| 404 if (lastUsed == used()) { | |
| 405 tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); | |
| 406 tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0)
; | |
| 407 if (start ? tMax1 < tMin2 : tMax2 < tMin1) { | |
| 408 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this
); | |
| 409 } | |
| 410 } | |
| 411 tIdx = tLast + 1; | |
| 412 } while (tIdx < tVals.count()); | |
| 413 return; | |
| 414 } | |
| 415 | |
| 416 const double CLOSE_ENOUGH = 0.001; | |
| 417 | |
| 418 static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i
, SkDPoint& pt) { | |
| 419 if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { | |
| 420 return false; | |
| 421 } | |
| 422 pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2); | |
| 423 return true; | |
| 424 } | |
| 425 | |
| 426 static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i,
SkDPoint& pt) { | |
| 427 int last = i.used() - 1; | |
| 428 if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH)
{ | |
| 429 return false; | |
| 430 } | |
| 431 pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2); | |
| 432 return true; | |
| 433 } | |
| 434 | |
| 435 static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) { | |
| 436 // the idea here is to see at minimum do a quick reject by rotating all points | |
| 437 // to either side of the line formed by connecting the endpoints | |
| 438 // if the opposite curves points are on the line or on the other side, the | |
| 439 // curves at most intersect at the endpoints | |
| 440 for (int oddMan = 0; oddMan < 4; ++oddMan) { | |
| 441 const SkDPoint* endPt[3]; | |
| 442 for (int opp = 1; opp < 4; ++opp) { | |
| 443 int end = oddMan ^ opp; // choose a value not equal to oddMan | |
| 444 endPt[opp - 1] = &c1[end]; | |
| 445 } | |
| 446 for (int triTest = 0; triTest < 3; ++triTest) { | |
| 447 double origX = endPt[triTest]->fX; | |
| 448 double origY = endPt[triTest]->fY; | |
| 449 int oppTest = triTest + 1; | |
| 450 if (3 == oppTest) { | |
| 451 oppTest = 0; | |
| 452 } | |
| 453 double adj = endPt[oppTest]->fX - origX; | |
| 454 double opp = endPt[oppTest]->fY - origY; | |
| 455 if (adj == 0 && opp == 0) { // if the other point equals the test p
oint, ignore it | |
| 456 continue; | |
| 457 } | |
| 458 double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX
) * opp; | |
| 459 if (approximately_zero(sign)) { | |
| 460 goto tryNextHalfPlane; | |
| 461 } | |
| 462 for (int n = 0; n < 4; ++n) { | |
| 463 double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * op
p; | |
| 464 if (test * sign > 0 && !precisely_zero(test)) { | |
| 465 goto tryNextHalfPlane; | |
| 466 } | |
| 467 } | |
| 468 } | |
| 469 return true; | |
| 470 tryNextHalfPlane: | |
| 471 ; | |
| 472 } | |
| 473 return false; | |
| 474 } | |
| 475 | |
| 476 int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { | |
| 477 if (fMax == 0) { | |
| 478 fMax = 9; | |
| 479 } | |
| 480 bool selfIntersect = &c1 == &c2; | |
| 481 if (selfIntersect) { | |
| 482 if (c1[0].approximatelyEqual(c1[3])) { | |
| 483 insert(0, 1, c1[0]); | |
| 484 return fUsed; | |
| 485 } | |
| 486 } else { | |
| 487 // OPTIMIZATION: set exact end bits here to avoid cubic exact end later | |
| 488 for (int i1 = 0; i1 < 4; i1 += 3) { | |
| 489 for (int i2 = 0; i2 < 4; i2 += 3) { | |
| 490 if (c1[i1].approximatelyEqual(c2[i2])) { | |
| 491 insert(i1 >> 1, i2 >> 1, c1[i1]); | |
| 492 } | |
| 493 } | |
| 494 } | |
| 495 } | |
| 496 SkASSERT(fUsed < 4); | |
| 497 if (!selfIntersect) { | |
| 498 if (only_end_pts_in_common(c1, c2)) { | |
| 499 return fUsed; | |
| 500 } | |
| 501 if (only_end_pts_in_common(c2, c1)) { | |
| 502 return fUsed; | |
| 503 } | |
| 504 } | |
| 505 // quad/quad does linear test here -- cubic does not | |
| 506 // cubics which are really lines should have been detected in reduce step ea
rlier | |
| 507 int exactEndBits = 0; | |
| 508 if (selfIntersect) { | |
| 509 if (fUsed) { | |
| 510 return fUsed; | |
| 511 } | |
| 512 } else { | |
| 513 exactEndBits |= cubicExactEnd(c1, false, c2) << 0; | |
| 514 exactEndBits |= cubicExactEnd(c1, true, c2) << 1; | |
| 515 swap(); | |
| 516 exactEndBits |= cubicExactEnd(c2, false, c1) << 2; | |
| 517 exactEndBits |= cubicExactEnd(c2, true, c1) << 3; | |
| 518 swap(); | |
| 519 } | |
| 520 if (cubicCheckCoincidence(c1, c2)) { | |
| 521 SkASSERT(!selfIntersect); | |
| 522 return fUsed; | |
| 523 } | |
| 524 // FIXME: pass in cached bounds from caller | |
| 525 SkDRect c2Bounds; | |
| 526 c2Bounds.setBounds(c2); | |
| 527 if (!(exactEndBits & 4)) { | |
| 528 cubicNearEnd(c1, false, c2, c2Bounds); | |
| 529 } | |
| 530 if (!(exactEndBits & 8)) { | |
| 531 if (selfIntersect && fUsed) { | |
| 532 return fUsed; | |
| 533 } | |
| 534 cubicNearEnd(c1, true, c2, c2Bounds); | |
| 535 if (selfIntersect && fUsed && ((approximately_less_than_zero(fT[0][0]) | |
| 536 && approximately_less_than_zero(fT[1][0])) | |
| 537 || (approximately_greater_than_one(fT[0][0]) | |
| 538 && approximately_greater_than_one(fT[1][0])))) { | |
| 539 SkASSERT(fUsed == 1); | |
| 540 fUsed = 0; | |
| 541 return fUsed; | |
| 542 } | |
| 543 } | |
| 544 if (!selfIntersect) { | |
| 545 SkDRect c1Bounds; | |
| 546 c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? | |
| 547 swap(); | |
| 548 if (!(exactEndBits & 1)) { | |
| 549 cubicNearEnd(c2, false, c1, c1Bounds); | |
| 550 } | |
| 551 if (!(exactEndBits & 2)) { | |
| 552 cubicNearEnd(c2, true, c1, c1Bounds); | |
| 553 } | |
| 554 swap(); | |
| 555 } | |
| 556 if (cubicCheckCoincidence(c1, c2)) { | |
| 557 SkASSERT(!selfIntersect); | |
| 558 return fUsed; | |
| 559 } | |
| 560 SkIntersections i; | |
| 561 i.fAllowNear = false; | |
| 562 i.fFlatMeasure = true; | |
| 563 i.fMax = 9; | |
| 564 ::intersect(c1, 0, 1, c2, 0, 1, 1, i); | |
| 565 int compCount = i.used(); | |
| 566 if (compCount) { | |
| 567 int exactCount = used(); | |
| 568 if (exactCount == 0) { | |
| 569 *this = i; | |
| 570 } else { | |
| 571 // at least one is exact or near, and at least one was computed. Eli
minate duplicates | |
| 572 for (int exIdx = 0; exIdx < exactCount; ++exIdx) { | |
| 573 for (int cpIdx = 0; cpIdx < compCount; ) { | |
| 574 if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) { | |
| 575 i.removeOne(cpIdx); | |
| 576 --compCount; | |
| 577 continue; | |
| 578 } | |
| 579 double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2; | |
| 580 SkDPoint pt = c1.ptAtT(tAvg); | |
| 581 if (!pt.approximatelyEqual(fPt[exIdx])) { | |
| 582 ++cpIdx; | |
| 583 continue; | |
| 584 } | |
| 585 tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2; | |
| 586 pt = c2.ptAtT(tAvg); | |
| 587 if (!pt.approximatelyEqual(fPt[exIdx])) { | |
| 588 ++cpIdx; | |
| 589 continue; | |
| 590 } | |
| 591 i.removeOne(cpIdx); | |
| 592 --compCount; | |
| 593 } | |
| 594 } | |
| 595 // if mid t evaluates to nearly the same point, skip the t | |
| 596 for (int cpIdx = 0; cpIdx < compCount - 1; ) { | |
| 597 double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2; | |
| 598 SkDPoint pt = c1.ptAtT(tAvg); | |
| 599 if (!pt.approximatelyEqual(fPt[cpIdx])) { | |
| 600 ++cpIdx; | |
| 601 continue; | |
| 602 } | |
| 603 tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2; | |
| 604 pt = c2.ptAtT(tAvg); | |
| 605 if (!pt.approximatelyEqual(fPt[cpIdx])) { | |
| 606 ++cpIdx; | |
| 607 continue; | |
| 608 } | |
| 609 i.removeOne(cpIdx); | |
| 610 --compCount; | |
| 611 } | |
| 612 // in addition to adding below missing function, think about how to
say | |
| 613 append(i); | |
| 614 } | |
| 615 } | |
| 616 // If an end point and a second point very close to the end is returned, the
second | |
| 617 // point may have been detected because the approximate quads | |
| 618 // intersected at the end and close to it. Verify that the second point is v
alid. | |
| 619 if (fUsed <= 1) { | |
| 620 return fUsed; | |
| 621 } | |
| 622 SkDPoint pt[2]; | |
| 623 if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) | |
| 624 && pt[0].approximatelyEqual(pt[1])) { | |
| 625 removeOne(1); | |
| 626 } | |
| 627 if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1]) | |
| 628 && pt[0].approximatelyEqual(pt[1])) { | |
| 629 removeOne(used() - 2); | |
| 630 } | |
| 631 // vet the pairs of t values to see if the mid value is also on the curve. I
f so, mark | |
| 632 // the span as coincident | |
| 633 if (fUsed >= 2 && !coincidentUsed()) { | |
| 634 int last = fUsed - 1; | |
| 635 int match = 0; | |
| 636 for (int index = 0; index < last; ++index) { | |
| 637 double mid1 = (fT[0][index] + fT[0][index + 1]) / 2; | |
| 638 double mid2 = (fT[1][index] + fT[1][index + 1]) / 2; | |
| 639 pt[0] = c1.ptAtT(mid1); | |
| 640 pt[1] = c2.ptAtT(mid2); | |
| 641 if (pt[0].approximatelyEqual(pt[1])) { | |
| 642 match |= 1 << index; | |
| 643 } | |
| 644 } | |
| 645 if (match) { | |
| 646 #if DEBUG_CONCIDENT | |
| 647 if (((match + 1) & match) != 0) { | |
| 648 SkDebugf("%s coincident hole\n", __FUNCTION__); | |
| 649 } | |
| 650 #endif | |
| 651 // for now, assume that everything from start to finish is coinciden
t | |
| 652 if (fUsed > 2) { | |
| 653 fPt[1] = fPt[last]; | |
| 654 fT[0][1] = fT[0][last]; | |
| 655 fT[1][1] = fT[1][last]; | |
| 656 fIsCoincident[0] = 0x03; | |
| 657 fIsCoincident[1] = 0x03; | |
| 658 fUsed = 2; | |
| 659 } | |
| 660 } | |
| 661 } | |
| 662 return fUsed; | |
| 663 } | |
| 664 | |
| 665 // Up promote the quad to a cubic. | |
| 666 // OPTIMIZATION If this is a common use case, optimize by duplicating | |
| 667 // the intersect 3 loop to avoid the promotion / demotion code | |
| 668 int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { | |
| 669 fMax = 7; | |
| 670 SkDCubic up = quad.toCubic(); | |
| 671 (void) intersect(cubic, up); | |
| 672 return used(); | |
| 673 } | |
| 674 | |
| 675 /* http://www.ag.jku.at/compass/compasssample.pdf | |
| 676 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen | |
| 677 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no
janbth@math.uio.no | |
| 678 SINTEF Applied Mathematics http://www.sintef.no ) | |
| 679 describes a method to find the self intersection of a cubic by taking the gradie
nt of the implicit | |
| 680 form dotted with the normal, and solving for the roots. My math foo is too poor
to implement this.*/ | |
| 681 | |
| 682 int SkIntersections::intersect(const SkDCubic& c) { | |
| 683 fMax = 1; | |
| 684 // check to see if x or y end points are the extrema. Are other quick reject
s possible? | |
| 685 if (c.endsAreExtremaInXOrY()) { | |
| 686 return false; | |
| 687 } | |
| 688 // OPTIMIZATION: could quick reject if neither end point tangent ray interse
cted the line | |
| 689 // segment formed by the opposite end point to the control point | |
| 690 (void) intersect(c, c); | |
| 691 if (used() > 1) { | |
| 692 fUsed = 0; | |
| 693 } else if (used() > 0) { | |
| 694 if (approximately_equal_double(fT[0][0], fT[1][0])) { | |
| 695 fUsed = 0; | |
| 696 } else { | |
| 697 SkASSERT(used() == 1); | |
| 698 if (fT[0][0] > fT[1][0]) { | |
| 699 swapPts(); | |
| 700 } | |
| 701 } | |
| 702 } | |
| 703 return used(); | |
| 704 } | |
| OLD | NEW |