Index: client/touch/BezierPhysics.dart |
=================================================================== |
--- client/touch/BezierPhysics.dart (revision 4144) |
+++ client/touch/BezierPhysics.dart (working copy) |
@@ -1,114 +0,0 @@ |
-// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file |
-// for details. All rights reserved. Use of this source code is governed by a |
-// BSD-style license that can be found in the LICENSE file. |
- |
-/** |
- * Functions to model constant acceleration as a cubic Bezier |
- * curve (http://en.wikipedia.org/wiki/Bezier_curve). These functions are |
- * intended to generate the transition timing function for CSS transitions. |
- * Please see |
- * [http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag]. |
- * |
- * The main operation of computing a cubic Bezier is split up into multiple |
- * functions so that, should it be required, more operations and cases can be |
- * supported in the future. |
- */ |
-class BezierPhysics { |
- static final _ONE_THIRD = 1 / 3; |
- static final _TWO_THIRDS = 2 / 3; |
- |
- /** |
- * A list [:[x1, y1, x2, y2]:] of the intermediate control points of a cubic |
- * bezier when the final velocity is zero. This is a special case for which |
- * these control points are constants. |
- */ |
- static final List<num> _FINAL_VELOCITY_ZERO_BEZIER = |
- const [_ONE_THIRD, _TWO_THIRDS, _TWO_THIRDS, 1]; |
- |
- /** |
- * Given consistent kinematics parameters for constant acceleration, returns |
- * the intermediate control points of the cubic Bezier curve that models the |
- * motion. All input values must have correct signs. |
- * Returns a list [:[x1, y1, x2, y2]:] representing the intermediate control |
- * points of the cubic Bezier. |
- */ |
- static List<num> calculateCubicBezierFromKinematics( |
- num initialVelocity, num finalVelocity, num totalTime, |
- num totalDisplacement) { |
- // Total time must be greater than 0. |
- assert(!GoogleMath.nearlyEquals(totalTime, 0) && totalTime > 0); |
- // Total displacement must not be 0. |
- assert(!GoogleMath.nearlyEquals(totalDisplacement, 0)); |
- // Parameters must form a consistent constant acceleration model in |
- // Newtonian kinematics. |
- assert(GoogleMath.nearlyEquals(totalDisplacement, |
- (initialVelocity + finalVelocity) * 0.5 * totalTime)); |
- |
- if (GoogleMath.nearlyEquals(finalVelocity, 0)) { |
- return _FINAL_VELOCITY_ZERO_BEZIER; |
- } |
- List<num> controlPoint = _tangentLinesToQuadraticBezier( |
- initialVelocity, finalVelocity, totalTime, totalDisplacement); |
- controlPoint = _normalizeQuadraticBezier(controlPoint[0], controlPoint[1], |
- totalTime, totalDisplacement); |
- return _quadraticToCubic(controlPoint[0], controlPoint[1]); |
- } |
- |
- /** |
- * Given a quadratic curve crossing points (0, 0) and (x2, y2), calculates the |
- * intermediate control point (x1, y1) of the equivalent quadratic Bezier |
- * curve with starting point (0, 0) and ending point (x2, y2). |
- * [m0] The slope of the line tangent to the curve at (0, 0). |
- * [m2] The slope of the line tangent to the curve at a different |
- * point (x2, y2). |
- * [x2] The x-coordinate of the other point on the curve. |
- * [y2] The y-coordinate of the other point on the curve. |
- * Returns a list [:[x1, y1]:] representing the intermediate |
- * control point of the quadratic Bezier. |
- */ |
- static List<num> _tangentLinesToQuadraticBezier( |
- num m0, num m2, num x2, num y2) { |
- if (GoogleMath.nearlyEquals(m0, m2)) { |
- return [0, 0]; |
- } |
- num x1 = (y2 - x2 * m2) / (m0 - m2); |
- num y1 = x1 * m0; |
- return [x1, y1]; |
- } |
- |
- /** |
- * Normalizes a quadratic Bezier curve to have end point at (1, 1). |
- * [x1] The x-coordinate of the intermediate control point. |
- * [y1] The y-coordinate of the intermediate control point. |
- * [x2] The x-coordinate of the end point. |
- * [y2] The y-coordinate of the end point. |
- * Returns a list [:[x1, y1]:] representing the intermediate control point. |
- */ |
- static List<num> _normalizeQuadraticBezier( |
- num x1, num y1, num x2, num y2) { |
- // The end point must not lie on any axes. |
- assert(!GoogleMath.nearlyEquals(x2, 0) && !GoogleMath.nearlyEquals(y2, 0)); |
- return [x1 / x2, y1 / y2]; |
- } |
- |
- /** |
- * Converts a quadratic Bezier curve defined by the control points |
- * (x0, y0) = (0, 0), (x1, y1) = (x, y), and (x2, y2) = (1, 1) into an |
- * equivalent cubic Bezier curve with four control points. Note that the start |
- * and end points will be unchanged. |
- * [x] The x-coordinate of the intermediate control point. |
- * [y] The y-coordinate of the intermediate control point. |
- * Returns a list [:[x1, y1, x2, y2]:] containing the two |
- * intermediate points of the equivalent cubic Bezier curve. |
- */ |
- static List<num> _quadraticToCubic(num x, num y) { |
- // The intermediate control point must have coordinates within the |
- // interval [0,1]. |
- assert(x >= 0 && x <= 1 && y >= 0 && y <= 1); |
- num x1 = x * _TWO_THIRDS; |
- num y1 = y * _TWO_THIRDS; |
- num x2 = x1 + _ONE_THIRD; |
- num y2 = y1 + _ONE_THIRD; |
- return [x1, y1, x2, y2]; |
- } |
-} |