OLD | NEW |
| (Empty) |
1 // Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file | |
2 // for details. All rights reserved. Use of this source code is governed by a | |
3 // BSD-style license that can be found in the LICENSE file. | |
4 | |
5 /** | |
6 * Functions to model constant acceleration as a cubic Bezier | |
7 * curve (http://en.wikipedia.org/wiki/Bezier_curve). These functions are | |
8 * intended to generate the transition timing function for CSS transitions. | |
9 * Please see | |
10 * [http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag]. | |
11 * | |
12 * The main operation of computing a cubic Bezier is split up into multiple | |
13 * functions so that, should it be required, more operations and cases can be | |
14 * supported in the future. | |
15 */ | |
16 class BezierPhysics { | |
17 static final _ONE_THIRD = 1 / 3; | |
18 static final _TWO_THIRDS = 2 / 3; | |
19 | |
20 /** | |
21 * A list [:[x1, y1, x2, y2]:] of the intermediate control points of a cubic | |
22 * bezier when the final velocity is zero. This is a special case for which | |
23 * these control points are constants. | |
24 */ | |
25 static final List<num> _FINAL_VELOCITY_ZERO_BEZIER = | |
26 const [_ONE_THIRD, _TWO_THIRDS, _TWO_THIRDS, 1]; | |
27 | |
28 /** | |
29 * Given consistent kinematics parameters for constant acceleration, returns | |
30 * the intermediate control points of the cubic Bezier curve that models the | |
31 * motion. All input values must have correct signs. | |
32 * Returns a list [:[x1, y1, x2, y2]:] representing the intermediate control | |
33 * points of the cubic Bezier. | |
34 */ | |
35 static List<num> calculateCubicBezierFromKinematics( | |
36 num initialVelocity, num finalVelocity, num totalTime, | |
37 num totalDisplacement) { | |
38 // Total time must be greater than 0. | |
39 assert(!GoogleMath.nearlyEquals(totalTime, 0) && totalTime > 0); | |
40 // Total displacement must not be 0. | |
41 assert(!GoogleMath.nearlyEquals(totalDisplacement, 0)); | |
42 // Parameters must form a consistent constant acceleration model in | |
43 // Newtonian kinematics. | |
44 assert(GoogleMath.nearlyEquals(totalDisplacement, | |
45 (initialVelocity + finalVelocity) * 0.5 * totalTime)); | |
46 | |
47 if (GoogleMath.nearlyEquals(finalVelocity, 0)) { | |
48 return _FINAL_VELOCITY_ZERO_BEZIER; | |
49 } | |
50 List<num> controlPoint = _tangentLinesToQuadraticBezier( | |
51 initialVelocity, finalVelocity, totalTime, totalDisplacement); | |
52 controlPoint = _normalizeQuadraticBezier(controlPoint[0], controlPoint[1], | |
53 totalTime, totalDisplacement); | |
54 return _quadraticToCubic(controlPoint[0], controlPoint[1]); | |
55 } | |
56 | |
57 /** | |
58 * Given a quadratic curve crossing points (0, 0) and (x2, y2), calculates the | |
59 * intermediate control point (x1, y1) of the equivalent quadratic Bezier | |
60 * curve with starting point (0, 0) and ending point (x2, y2). | |
61 * [m0] The slope of the line tangent to the curve at (0, 0). | |
62 * [m2] The slope of the line tangent to the curve at a different | |
63 * point (x2, y2). | |
64 * [x2] The x-coordinate of the other point on the curve. | |
65 * [y2] The y-coordinate of the other point on the curve. | |
66 * Returns a list [:[x1, y1]:] representing the intermediate | |
67 * control point of the quadratic Bezier. | |
68 */ | |
69 static List<num> _tangentLinesToQuadraticBezier( | |
70 num m0, num m2, num x2, num y2) { | |
71 if (GoogleMath.nearlyEquals(m0, m2)) { | |
72 return [0, 0]; | |
73 } | |
74 num x1 = (y2 - x2 * m2) / (m0 - m2); | |
75 num y1 = x1 * m0; | |
76 return [x1, y1]; | |
77 } | |
78 | |
79 /** | |
80 * Normalizes a quadratic Bezier curve to have end point at (1, 1). | |
81 * [x1] The x-coordinate of the intermediate control point. | |
82 * [y1] The y-coordinate of the intermediate control point. | |
83 * [x2] The x-coordinate of the end point. | |
84 * [y2] The y-coordinate of the end point. | |
85 * Returns a list [:[x1, y1]:] representing the intermediate control point. | |
86 */ | |
87 static List<num> _normalizeQuadraticBezier( | |
88 num x1, num y1, num x2, num y2) { | |
89 // The end point must not lie on any axes. | |
90 assert(!GoogleMath.nearlyEquals(x2, 0) && !GoogleMath.nearlyEquals(y2, 0)); | |
91 return [x1 / x2, y1 / y2]; | |
92 } | |
93 | |
94 /** | |
95 * Converts a quadratic Bezier curve defined by the control points | |
96 * (x0, y0) = (0, 0), (x1, y1) = (x, y), and (x2, y2) = (1, 1) into an | |
97 * equivalent cubic Bezier curve with four control points. Note that the start | |
98 * and end points will be unchanged. | |
99 * [x] The x-coordinate of the intermediate control point. | |
100 * [y] The y-coordinate of the intermediate control point. | |
101 * Returns a list [:[x1, y1, x2, y2]:] containing the two | |
102 * intermediate points of the equivalent cubic Bezier curve. | |
103 */ | |
104 static List<num> _quadraticToCubic(num x, num y) { | |
105 // The intermediate control point must have coordinates within the | |
106 // interval [0,1]. | |
107 assert(x >= 0 && x <= 1 && y >= 0 && y <= 1); | |
108 num x1 = x * _TWO_THIRDS; | |
109 num y1 = y * _TWO_THIRDS; | |
110 num x2 = x1 + _ONE_THIRD; | |
111 num y2 = y1 + _ONE_THIRD; | |
112 return [x1, y1, x2, y2]; | |
113 } | |
114 } | |
OLD | NEW |