Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(76)

Unified Diff: src/codegen-ia32.cc

Issue 92068: Move backend specific files to separate directories. (Closed)
Patch Set: Added CPPPATH flag and made all includes use same base path. Created 11 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/codegen-ia32.h ('k') | src/constants-arm.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/codegen-ia32.cc
diff --git a/src/codegen-ia32.cc b/src/codegen-ia32.cc
deleted file mode 100644
index fb2f8bf26167288063b5d5ab4e3236f197183819..0000000000000000000000000000000000000000
--- a/src/codegen-ia32.cc
+++ /dev/null
@@ -1,7128 +0,0 @@
-// Copyright 2006-2009 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "v8.h"
-
-#include "bootstrapper.h"
-#include "codegen-inl.h"
-#include "debug.h"
-#include "parser.h"
-#include "register-allocator-inl.h"
-#include "runtime.h"
-#include "scopes.h"
-
-namespace v8 { namespace internal {
-
-#define __ ACCESS_MASM(masm_)
-
-// -------------------------------------------------------------------------
-// CodeGenState implementation.
-
-CodeGenState::CodeGenState(CodeGenerator* owner)
- : owner_(owner),
- typeof_state_(NOT_INSIDE_TYPEOF),
- destination_(NULL),
- previous_(NULL) {
- owner_->set_state(this);
-}
-
-
-CodeGenState::CodeGenState(CodeGenerator* owner,
- TypeofState typeof_state,
- ControlDestination* destination)
- : owner_(owner),
- typeof_state_(typeof_state),
- destination_(destination),
- previous_(owner->state()) {
- owner_->set_state(this);
-}
-
-
-CodeGenState::~CodeGenState() {
- ASSERT(owner_->state() == this);
- owner_->set_state(previous_);
-}
-
-
-// -------------------------------------------------------------------------
-// CodeGenerator implementation
-
-CodeGenerator::CodeGenerator(int buffer_size, Handle<Script> script,
- bool is_eval)
- : is_eval_(is_eval),
- script_(script),
- deferred_(8),
- masm_(new MacroAssembler(NULL, buffer_size)),
- scope_(NULL),
- frame_(NULL),
- allocator_(NULL),
- state_(NULL),
- loop_nesting_(0),
- function_return_is_shadowed_(false),
- in_spilled_code_(false) {
-}
-
-
-// Calling conventions:
-// ebp: caller's frame pointer
-// esp: stack pointer
-// edi: called JS function
-// esi: callee's context
-
-void CodeGenerator::GenCode(FunctionLiteral* fun) {
- // Record the position for debugging purposes.
- CodeForFunctionPosition(fun);
-
- ZoneList<Statement*>* body = fun->body();
-
- // Initialize state.
- ASSERT(scope_ == NULL);
- scope_ = fun->scope();
- ASSERT(allocator_ == NULL);
- RegisterAllocator register_allocator(this);
- allocator_ = &register_allocator;
- ASSERT(frame_ == NULL);
- frame_ = new VirtualFrame(this);
- set_in_spilled_code(false);
-
- // Adjust for function-level loop nesting.
- loop_nesting_ += fun->loop_nesting();
-
- {
- CodeGenState state(this);
-
- // Entry:
- // Stack: receiver, arguments, return address.
- // ebp: caller's frame pointer
- // esp: stack pointer
- // edi: called JS function
- // esi: callee's context
- allocator_->Initialize();
- frame_->Enter();
-
-#ifdef DEBUG
- if (strlen(FLAG_stop_at) > 0 &&
- fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
- frame_->SpillAll();
- __ int3();
- }
-#endif
-
- // Allocate space for locals and initialize them.
- frame_->AllocateStackSlots(scope_->num_stack_slots());
- // Initialize the function return target after the locals are set
- // up, because it needs the expected frame height from the frame.
- function_return_.Initialize(this, JumpTarget::BIDIRECTIONAL);
- function_return_is_shadowed_ = false;
-
- // Allocate the arguments object and copy the parameters into it.
- if (scope_->arguments() != NULL) {
- ASSERT(scope_->arguments_shadow() != NULL);
- Comment cmnt(masm_, "[ Allocate arguments object");
- ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
- frame_->PushFunction();
- frame_->PushReceiverSlotAddress();
- frame_->Push(Smi::FromInt(scope_->num_parameters()));
- Result answer = frame_->CallStub(&stub, 3);
- frame_->Push(&answer);
- }
-
- if (scope_->num_heap_slots() > 0) {
- Comment cmnt(masm_, "[ allocate local context");
- // Allocate local context.
- // Get outer context and create a new context based on it.
- frame_->PushFunction();
- Result context = frame_->CallRuntime(Runtime::kNewContext, 1);
-
- // Update context local.
- frame_->SaveContextRegister();
-
- // Verify that the runtime call result and esi agree.
- if (FLAG_debug_code) {
- __ cmp(context.reg(), Operand(esi));
- __ Assert(equal, "Runtime::NewContext should end up in esi");
- }
- }
-
- // TODO(1241774): Improve this code:
- // 1) only needed if we have a context
- // 2) no need to recompute context ptr every single time
- // 3) don't copy parameter operand code from SlotOperand!
- {
- Comment cmnt2(masm_, "[ copy context parameters into .context");
-
- // Note that iteration order is relevant here! If we have the same
- // parameter twice (e.g., function (x, y, x)), and that parameter
- // needs to be copied into the context, it must be the last argument
- // passed to the parameter that needs to be copied. This is a rare
- // case so we don't check for it, instead we rely on the copying
- // order: such a parameter is copied repeatedly into the same
- // context location and thus the last value is what is seen inside
- // the function.
- for (int i = 0; i < scope_->num_parameters(); i++) {
- Variable* par = scope_->parameter(i);
- Slot* slot = par->slot();
- if (slot != NULL && slot->type() == Slot::CONTEXT) {
- // The use of SlotOperand below is safe in unspilled code
- // because the slot is guaranteed to be a context slot.
- //
- // There are no parameters in the global scope.
- ASSERT(!scope_->is_global_scope());
- frame_->PushParameterAt(i);
- Result value = frame_->Pop();
- value.ToRegister();
-
- // SlotOperand loads context.reg() with the context object
- // stored to, used below in RecordWrite.
- Result context = allocator_->Allocate();
- ASSERT(context.is_valid());
- __ mov(SlotOperand(slot, context.reg()), value.reg());
- int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- frame_->Spill(context.reg());
- frame_->Spill(value.reg());
- __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg());
- }
- }
- }
-
- // This section stores the pointer to the arguments object that
- // was allocated and copied into above. If the address was not
- // saved to TOS, we push ecx onto the stack.
- //
- // Store the arguments object. This must happen after context
- // initialization because the arguments object may be stored in the
- // context.
- if (scope_->arguments() != NULL) {
- Comment cmnt(masm_, "[ store arguments object");
- { Reference shadow_ref(this, scope_->arguments_shadow());
- ASSERT(shadow_ref.is_slot());
- { Reference arguments_ref(this, scope_->arguments());
- ASSERT(arguments_ref.is_slot());
- // Here we rely on the convenient property that references to slot
- // take up zero space in the frame (ie, it doesn't matter that the
- // stored value is actually below the reference on the frame).
- arguments_ref.SetValue(NOT_CONST_INIT);
- }
- shadow_ref.SetValue(NOT_CONST_INIT);
- }
- frame_->Drop(); // Value is no longer needed.
- }
-
- // Generate code to 'execute' declarations and initialize functions
- // (source elements). In case of an illegal redeclaration we need to
- // handle that instead of processing the declarations.
- if (scope_->HasIllegalRedeclaration()) {
- Comment cmnt(masm_, "[ illegal redeclarations");
- scope_->VisitIllegalRedeclaration(this);
- } else {
- Comment cmnt(masm_, "[ declarations");
- ProcessDeclarations(scope_->declarations());
- // Bail out if a stack-overflow exception occurred when processing
- // declarations.
- if (HasStackOverflow()) return;
- }
-
- if (FLAG_trace) {
- frame_->CallRuntime(Runtime::kTraceEnter, 0);
- // Ignore the return value.
- }
- CheckStack();
-
- // Compile the body of the function in a vanilla state. Don't
- // bother compiling all the code if the scope has an illegal
- // redeclaration.
- if (!scope_->HasIllegalRedeclaration()) {
- Comment cmnt(masm_, "[ function body");
-#ifdef DEBUG
- bool is_builtin = Bootstrapper::IsActive();
- bool should_trace =
- is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
- if (should_trace) {
- frame_->CallRuntime(Runtime::kDebugTrace, 0);
- // Ignore the return value.
- }
-#endif
- VisitStatements(body);
-
- // Handle the return from the function.
- if (has_valid_frame()) {
- // If there is a valid frame, control flow can fall off the end of
- // the body. In that case there is an implicit return statement.
- ASSERT(!function_return_is_shadowed_);
- CodeForReturnPosition(fun);
- frame_->PrepareForReturn();
- Result undefined(Factory::undefined_value(), this);
- if (function_return_.is_bound()) {
- function_return_.Jump(&undefined);
- } else {
- // Though this is a (possibly) backward block, the frames
- // can only differ on their top element.
- function_return_.Bind(&undefined, 1);
- GenerateReturnSequence(&undefined);
- }
- } else if (function_return_.is_linked()) {
- // If the return target has dangling jumps to it, then we have not
- // yet generated the return sequence. This can happen when (a)
- // control does not flow off the end of the body so we did not
- // compile an artificial return statement just above, and (b) there
- // are return statements in the body but (c) they are all shadowed.
- Result return_value(this);
- // Though this is a (possibly) backward block, the frames can
- // only differ on their top element.
- function_return_.Bind(&return_value, 1);
- GenerateReturnSequence(&return_value);
- }
- }
- }
-
- // Adjust for function-level loop nesting.
- loop_nesting_ -= fun->loop_nesting();
-
- // Code generation state must be reset.
- ASSERT(state_ == NULL);
- ASSERT(loop_nesting() == 0);
- ASSERT(!function_return_is_shadowed_);
- function_return_.Unuse();
- DeleteFrame();
-
- // Process any deferred code using the register allocator.
- if (HasStackOverflow()) {
- ClearDeferred();
- } else {
- ProcessDeferred();
- }
-
- // There is no need to delete the register allocator, it is a
- // stack-allocated local.
- allocator_ = NULL;
- scope_ = NULL;
-}
-
-
-Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
- // Currently, this assertion will fail if we try to assign to
- // a constant variable that is constant because it is read-only
- // (such as the variable referring to a named function expression).
- // We need to implement assignments to read-only variables.
- // Ideally, we should do this during AST generation (by converting
- // such assignments into expression statements); however, in general
- // we may not be able to make the decision until past AST generation,
- // that is when the entire program is known.
- ASSERT(slot != NULL);
- int index = slot->index();
- switch (slot->type()) {
- case Slot::PARAMETER:
- return frame_->ParameterAt(index);
-
- case Slot::LOCAL:
- return frame_->LocalAt(index);
-
- case Slot::CONTEXT: {
- // Follow the context chain if necessary.
- ASSERT(!tmp.is(esi)); // do not overwrite context register
- Register context = esi;
- int chain_length = scope()->ContextChainLength(slot->var()->scope());
- for (int i = 0; i < chain_length; i++) {
- // Load the closure.
- // (All contexts, even 'with' contexts, have a closure,
- // and it is the same for all contexts inside a function.
- // There is no need to go to the function context first.)
- __ mov(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
- // Load the function context (which is the incoming, outer context).
- __ mov(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
- context = tmp;
- }
- // We may have a 'with' context now. Get the function context.
- // (In fact this mov may never be the needed, since the scope analysis
- // may not permit a direct context access in this case and thus we are
- // always at a function context. However it is safe to dereference be-
- // cause the function context of a function context is itself. Before
- // deleting this mov we should try to create a counter-example first,
- // though...)
- __ mov(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
- return ContextOperand(tmp, index);
- }
-
- default:
- UNREACHABLE();
- return Operand(eax);
- }
-}
-
-
-Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
- Result tmp,
- JumpTarget* slow) {
- ASSERT(slot->type() == Slot::CONTEXT);
- ASSERT(tmp.is_register());
- Result context(esi, this);
-
- for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
- if (s->num_heap_slots() > 0) {
- if (s->calls_eval()) {
- // Check that extension is NULL.
- __ cmp(ContextOperand(context.reg(), Context::EXTENSION_INDEX),
- Immediate(0));
- slow->Branch(not_equal, not_taken);
- }
- __ mov(tmp.reg(), ContextOperand(context.reg(), Context::CLOSURE_INDEX));
- __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- context = tmp;
- }
- }
- // Check that last extension is NULL.
- __ cmp(ContextOperand(context.reg(), Context::EXTENSION_INDEX),
- Immediate(0));
- slow->Branch(not_equal, not_taken);
- __ mov(tmp.reg(), ContextOperand(context.reg(), Context::FCONTEXT_INDEX));
- return ContextOperand(tmp.reg(), slot->index());
-}
-
-
-// Emit code to load the value of an expression to the top of the
-// frame. If the expression is boolean-valued it may be compiled (or
-// partially compiled) into control flow to the control destination.
-// If force_control is true, control flow is forced.
-void CodeGenerator::LoadCondition(Expression* x,
- TypeofState typeof_state,
- ControlDestination* dest,
- bool force_control) {
- ASSERT(!in_spilled_code());
- int original_height = frame_->height();
-
- { CodeGenState new_state(this, typeof_state, dest);
- Visit(x);
-
- // If we hit a stack overflow, we may not have actually visited
- // the expression. In that case, we ensure that we have a
- // valid-looking frame state because we will continue to generate
- // code as we unwind the C++ stack.
- //
- // It's possible to have both a stack overflow and a valid frame
- // state (eg, a subexpression overflowed, visiting it returned
- // with a dummied frame state, and visiting this expression
- // returned with a normal-looking state).
- if (HasStackOverflow() &&
- !dest->is_used() &&
- frame_->height() == original_height) {
- dest->Goto(true);
- }
- }
-
- if (force_control && !dest->is_used()) {
- // Convert the TOS value into flow to the control destination.
- ToBoolean(dest);
- }
-
- ASSERT(!(force_control && !dest->is_used()));
- ASSERT(dest->is_used() || frame_->height() == original_height + 1);
-}
-
-
-void CodeGenerator::LoadAndSpill(Expression* expression,
- TypeofState typeof_state) {
- ASSERT(in_spilled_code());
- set_in_spilled_code(false);
- Load(expression, typeof_state);
- frame_->SpillAll();
- set_in_spilled_code(true);
-}
-
-
-void CodeGenerator::Load(Expression* x, TypeofState typeof_state) {
-#ifdef DEBUG
- int original_height = frame_->height();
-#endif
- ASSERT(!in_spilled_code());
- JumpTarget true_target(this);
- JumpTarget false_target(this);
- ControlDestination dest(&true_target, &false_target, true);
- LoadCondition(x, typeof_state, &dest, false);
-
- if (dest.false_was_fall_through()) {
- // The false target was just bound.
- JumpTarget loaded(this);
- frame_->Push(Factory::false_value());
- // There may be dangling jumps to the true target.
- if (true_target.is_linked()) {
- loaded.Jump();
- true_target.Bind();
- frame_->Push(Factory::true_value());
- loaded.Bind();
- }
-
- } else if (dest.is_used()) {
- // There is true, and possibly false, control flow (with true as
- // the fall through).
- JumpTarget loaded(this);
- frame_->Push(Factory::true_value());
- if (false_target.is_linked()) {
- loaded.Jump();
- false_target.Bind();
- frame_->Push(Factory::false_value());
- loaded.Bind();
- }
-
- } else {
- // We have a valid value on top of the frame, but we still may
- // have dangling jumps to the true and false targets from nested
- // subexpressions (eg, the left subexpressions of the
- // short-circuited boolean operators).
- ASSERT(has_valid_frame());
- if (true_target.is_linked() || false_target.is_linked()) {
- JumpTarget loaded(this);
- loaded.Jump(); // Don't lose the current TOS.
- if (true_target.is_linked()) {
- true_target.Bind();
- frame_->Push(Factory::true_value());
- if (false_target.is_linked()) {
- loaded.Jump();
- }
- }
- if (false_target.is_linked()) {
- false_target.Bind();
- frame_->Push(Factory::false_value());
- }
- loaded.Bind();
- }
- }
-
- ASSERT(has_valid_frame());
- ASSERT(frame_->height() == original_height + 1);
-}
-
-
-void CodeGenerator::LoadGlobal() {
- if (in_spilled_code()) {
- frame_->EmitPush(GlobalObject());
- } else {
- Result temp = allocator_->Allocate();
- __ mov(temp.reg(), GlobalObject());
- frame_->Push(&temp);
- }
-}
-
-
-void CodeGenerator::LoadGlobalReceiver() {
- Result temp = allocator_->Allocate();
- Register reg = temp.reg();
- __ mov(reg, GlobalObject());
- __ mov(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
- frame_->Push(&temp);
-}
-
-
-// TODO(1241834): Get rid of this function in favor of just using Load, now
-// that we have the INSIDE_TYPEOF typeof state. => Need to handle global
-// variables w/o reference errors elsewhere.
-void CodeGenerator::LoadTypeofExpression(Expression* x) {
- Variable* variable = x->AsVariableProxy()->AsVariable();
- if (variable != NULL && !variable->is_this() && variable->is_global()) {
- // NOTE: This is somewhat nasty. We force the compiler to load
- // the variable as if through '<global>.<variable>' to make sure we
- // do not get reference errors.
- Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
- Literal key(variable->name());
- // TODO(1241834): Fetch the position from the variable instead of using
- // no position.
- Property property(&global, &key, RelocInfo::kNoPosition);
- Load(&property);
- } else {
- Load(x, INSIDE_TYPEOF);
- }
-}
-
-
-Reference::Reference(CodeGenerator* cgen, Expression* expression)
- : cgen_(cgen), expression_(expression), type_(ILLEGAL) {
- cgen->LoadReference(this);
-}
-
-
-Reference::~Reference() {
- cgen_->UnloadReference(this);
-}
-
-
-void CodeGenerator::LoadReference(Reference* ref) {
- // References are loaded from both spilled and unspilled code. Set the
- // state to unspilled to allow that (and explicitly spill after
- // construction at the construction sites).
- bool was_in_spilled_code = in_spilled_code_;
- in_spilled_code_ = false;
-
- Comment cmnt(masm_, "[ LoadReference");
- Expression* e = ref->expression();
- Property* property = e->AsProperty();
- Variable* var = e->AsVariableProxy()->AsVariable();
-
- if (property != NULL) {
- // The expression is either a property or a variable proxy that rewrites
- // to a property.
- Load(property->obj());
- // We use a named reference if the key is a literal symbol, unless it is
- // a string that can be legally parsed as an integer. This is because
- // otherwise we will not get into the slow case code that handles [] on
- // String objects.
- Literal* literal = property->key()->AsLiteral();
- uint32_t dummy;
- if (literal != NULL &&
- literal->handle()->IsSymbol() &&
- !String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
- ref->set_type(Reference::NAMED);
- } else {
- Load(property->key());
- ref->set_type(Reference::KEYED);
- }
- } else if (var != NULL) {
- // The expression is a variable proxy that does not rewrite to a
- // property. Global variables are treated as named property references.
- if (var->is_global()) {
- LoadGlobal();
- ref->set_type(Reference::NAMED);
- } else {
- ASSERT(var->slot() != NULL);
- ref->set_type(Reference::SLOT);
- }
- } else {
- // Anything else is a runtime error.
- Load(e);
- frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
- }
-
- in_spilled_code_ = was_in_spilled_code;
-}
-
-
-void CodeGenerator::UnloadReference(Reference* ref) {
- // Pop a reference from the stack while preserving TOS.
- Comment cmnt(masm_, "[ UnloadReference");
- frame_->Nip(ref->size());
-}
-
-
-class ToBooleanStub: public CodeStub {
- public:
- ToBooleanStub() { }
-
- void Generate(MacroAssembler* masm);
-
- private:
- Major MajorKey() { return ToBoolean; }
- int MinorKey() { return 0; }
-};
-
-
-// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
-// convert it to a boolean in the condition code register or jump to
-// 'false_target'/'true_target' as appropriate.
-void CodeGenerator::ToBoolean(ControlDestination* dest) {
- Comment cmnt(masm_, "[ ToBoolean");
-
- // The value to convert should be popped from the frame.
- Result value = frame_->Pop();
- value.ToRegister();
- // Fast case checks.
-
- // 'false' => false.
- __ cmp(value.reg(), Factory::false_value());
- dest->false_target()->Branch(equal);
-
- // 'true' => true.
- __ cmp(value.reg(), Factory::true_value());
- dest->true_target()->Branch(equal);
-
- // 'undefined' => false.
- __ cmp(value.reg(), Factory::undefined_value());
- dest->false_target()->Branch(equal);
-
- // Smi => false iff zero.
- ASSERT(kSmiTag == 0);
- __ test(value.reg(), Operand(value.reg()));
- dest->false_target()->Branch(zero);
- __ test(value.reg(), Immediate(kSmiTagMask));
- dest->true_target()->Branch(zero);
-
- // Call the stub for all other cases.
- frame_->Push(&value); // Undo the Pop() from above.
- ToBooleanStub stub;
- Result temp = frame_->CallStub(&stub, 1);
- // Convert the result to a condition code.
- __ test(temp.reg(), Operand(temp.reg()));
- temp.Unuse();
- dest->Split(not_equal);
-}
-
-
-class FloatingPointHelper : public AllStatic {
- public:
- // Code pattern for loading floating point values. Input values must
- // be either smi or heap number objects (fp values). Requirements:
- // operand_1 on TOS+1 , operand_2 on TOS+2; Returns operands as
- // floating point numbers on FPU stack.
- static void LoadFloatOperands(MacroAssembler* masm, Register scratch);
- // Test if operands are smi or number objects (fp). Requirements:
- // operand_1 in eax, operand_2 in edx; falls through on float
- // operands, jumps to the non_float label otherwise.
- static void CheckFloatOperands(MacroAssembler* masm,
- Label* non_float,
- Register scratch);
- // Allocate a heap number in new space with undefined value.
- // Returns tagged pointer in eax, or jumps to need_gc if new space is full.
- static void AllocateHeapNumber(MacroAssembler* masm,
- Label* need_gc,
- Register scratch1,
- Register scratch2);
-};
-
-
-// Flag that indicates whether or not the code that handles smi arguments
-// should be placed in the stub, inlined, or omitted entirely.
-enum GenericBinaryFlags {
- SMI_CODE_IN_STUB,
- SMI_CODE_INLINED
-};
-
-
-class GenericBinaryOpStub: public CodeStub {
- public:
- GenericBinaryOpStub(Token::Value op,
- OverwriteMode mode,
- GenericBinaryFlags flags)
- : op_(op), mode_(mode), flags_(flags) {
- ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
- }
-
- void GenerateSmiCode(MacroAssembler* masm, Label* slow);
-
- private:
- Token::Value op_;
- OverwriteMode mode_;
- GenericBinaryFlags flags_;
-
- const char* GetName();
-
-#ifdef DEBUG
- void Print() {
- PrintF("GenericBinaryOpStub (op %s), (mode %d, flags %d)\n",
- Token::String(op_),
- static_cast<int>(mode_),
- static_cast<int>(flags_));
- }
-#endif
-
- // Minor key encoding in 16 bits FOOOOOOOOOOOOOMM.
- class ModeBits: public BitField<OverwriteMode, 0, 2> {};
- class OpBits: public BitField<Token::Value, 2, 13> {};
- class FlagBits: public BitField<GenericBinaryFlags, 15, 1> {};
-
- Major MajorKey() { return GenericBinaryOp; }
- int MinorKey() {
- // Encode the parameters in a unique 16 bit value.
- return OpBits::encode(op_)
- | ModeBits::encode(mode_)
- | FlagBits::encode(flags_);
- }
- void Generate(MacroAssembler* masm);
-};
-
-
-const char* GenericBinaryOpStub::GetName() {
- switch (op_) {
- case Token::ADD: return "GenericBinaryOpStub_ADD";
- case Token::SUB: return "GenericBinaryOpStub_SUB";
- case Token::MUL: return "GenericBinaryOpStub_MUL";
- case Token::DIV: return "GenericBinaryOpStub_DIV";
- case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR";
- case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND";
- case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR";
- case Token::SAR: return "GenericBinaryOpStub_SAR";
- case Token::SHL: return "GenericBinaryOpStub_SHL";
- case Token::SHR: return "GenericBinaryOpStub_SHR";
- default: return "GenericBinaryOpStub";
- }
-}
-
-
-// A deferred code class implementing binary operations on likely smis.
-// This class generates both inline code and deferred code.
-// The fastest path is implemented inline. Deferred code calls
-// the GenericBinaryOpStub stub for slow cases.
-class DeferredInlineBinaryOperation: public DeferredCode {
- public:
- DeferredInlineBinaryOperation(CodeGenerator* generator,
- Token::Value op,
- OverwriteMode mode,
- GenericBinaryFlags flags)
- : DeferredCode(generator), stub_(op, mode, flags), op_(op) {
- set_comment("[ DeferredInlineBinaryOperation");
- }
-
- // Consumes its arguments, left and right, leaving them invalid.
- Result GenerateInlineCode(Result* left, Result* right);
-
- virtual void Generate();
-
- private:
- GenericBinaryOpStub stub_;
- Token::Value op_;
-};
-
-
-void DeferredInlineBinaryOperation::Generate() {
- Result left(generator());
- Result right(generator());
- enter()->Bind(&left, &right);
- generator()->frame()->Push(&left);
- generator()->frame()->Push(&right);
- Result answer = generator()->frame()->CallStub(&stub_, 2);
- exit_.Jump(&answer);
-}
-
-
-void CodeGenerator::GenericBinaryOperation(Token::Value op,
- SmiAnalysis* type,
- OverwriteMode overwrite_mode) {
- Comment cmnt(masm_, "[ BinaryOperation");
- Comment cmnt_token(masm_, Token::String(op));
-
- if (op == Token::COMMA) {
- // Simply discard left value.
- frame_->Nip(1);
- return;
- }
-
- // Set the flags based on the operation, type and loop nesting level.
- GenericBinaryFlags flags;
- switch (op) {
- case Token::BIT_OR:
- case Token::BIT_AND:
- case Token::BIT_XOR:
- case Token::SHL:
- case Token::SHR:
- case Token::SAR:
- // Bit operations always assume they likely operate on Smis. Still only
- // generate the inline Smi check code if this operation is part of a loop.
- flags = (loop_nesting() > 0)
- ? SMI_CODE_INLINED
- : SMI_CODE_IN_STUB;
- break;
-
- default:
- // By default only inline the Smi check code for likely smis if this
- // operation is part of a loop.
- flags = ((loop_nesting() > 0) && type->IsLikelySmi())
- ? SMI_CODE_INLINED
- : SMI_CODE_IN_STUB;
- break;
- }
-
- Result right = frame_->Pop();
- Result left = frame_->Pop();
-
- if (op == Token::ADD) {
- bool left_is_string = left.static_type().is_jsstring();
- bool right_is_string = right.static_type().is_jsstring();
- if (left_is_string || right_is_string) {
- frame_->Push(&left);
- frame_->Push(&right);
- Result answer(this);
- if (left_is_string) {
- if (right_is_string) {
- // TODO(lrn): if (left.is_constant() && right.is_constant())
- // -- do a compile time cons, if allocation during codegen is allowed.
- answer = frame_->CallRuntime(Runtime::kStringAdd, 2);
- } else {
- answer =
- frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2);
- }
- } else if (right_is_string) {
- answer =
- frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2);
- }
- answer.set_static_type(StaticType::jsstring());
- frame_->Push(&answer);
- return;
- }
- // Neither operand is known to be a string.
- }
-
- bool left_is_smi = left.is_constant() && left.handle()->IsSmi();
- bool left_is_non_smi = left.is_constant() && !left.handle()->IsSmi();
- bool right_is_smi = right.is_constant() && right.handle()->IsSmi();
- bool right_is_non_smi = right.is_constant() && !right.handle()->IsSmi();
- bool generate_no_smi_code = false; // No smi code at all, inline or in stub.
-
- if (left_is_smi && right_is_smi) {
- // Compute the constant result at compile time, and leave it on the frame.
- int left_int = Smi::cast(*left.handle())->value();
- int right_int = Smi::cast(*right.handle())->value();
- if (FoldConstantSmis(op, left_int, right_int)) return;
- }
-
- if (left_is_non_smi || right_is_non_smi) {
- // Set flag so that we go straight to the slow case, with no smi code.
- generate_no_smi_code = true;
- } else if (right_is_smi) {
- ConstantSmiBinaryOperation(op, &left, right.handle(),
- type, false, overwrite_mode);
- return;
- } else if (left_is_smi) {
- ConstantSmiBinaryOperation(op, &right, left.handle(),
- type, true, overwrite_mode);
- return;
- }
-
- if (flags == SMI_CODE_INLINED && !generate_no_smi_code) {
- LikelySmiBinaryOperation(op, &left, &right, overwrite_mode);
- } else {
- frame_->Push(&left);
- frame_->Push(&right);
- // If we know the arguments aren't smis, use the binary operation stub
- // that does not check for the fast smi case.
- // The same stub is used for NO_SMI_CODE and SMI_CODE_INLINED.
- if (generate_no_smi_code) {
- flags = SMI_CODE_INLINED;
- }
- GenericBinaryOpStub stub(op, overwrite_mode, flags);
- Result answer = frame_->CallStub(&stub, 2);
- frame_->Push(&answer);
- }
-}
-
-
-bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
- Object* answer_object = Heap::undefined_value();
- switch (op) {
- case Token::ADD:
- if (Smi::IsValid(left + right)) {
- answer_object = Smi::FromInt(left + right);
- }
- break;
- case Token::SUB:
- if (Smi::IsValid(left - right)) {
- answer_object = Smi::FromInt(left - right);
- }
- break;
- case Token::MUL: {
- double answer = static_cast<double>(left) * right;
- if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
- // If the product is zero and the non-zero factor is negative,
- // the spec requires us to return floating point negative zero.
- if (answer != 0 || (left >= 0 && right >= 0)) {
- answer_object = Smi::FromInt(static_cast<int>(answer));
- }
- }
- }
- break;
- case Token::DIV:
- case Token::MOD:
- break;
- case Token::BIT_OR:
- answer_object = Smi::FromInt(left | right);
- break;
- case Token::BIT_AND:
- answer_object = Smi::FromInt(left & right);
- break;
- case Token::BIT_XOR:
- answer_object = Smi::FromInt(left ^ right);
- break;
-
- case Token::SHL: {
- int shift_amount = right & 0x1F;
- if (Smi::IsValid(left << shift_amount)) {
- answer_object = Smi::FromInt(left << shift_amount);
- }
- break;
- }
- case Token::SHR: {
- int shift_amount = right & 0x1F;
- unsigned int unsigned_left = left;
- unsigned_left >>= shift_amount;
- if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
- answer_object = Smi::FromInt(unsigned_left);
- }
- break;
- }
- case Token::SAR: {
- int shift_amount = right & 0x1F;
- unsigned int unsigned_left = left;
- if (left < 0) {
- // Perform arithmetic shift of a negative number by
- // complementing number, logical shifting, complementing again.
- unsigned_left = ~unsigned_left;
- unsigned_left >>= shift_amount;
- unsigned_left = ~unsigned_left;
- } else {
- unsigned_left >>= shift_amount;
- }
- ASSERT(Smi::IsValid(unsigned_left)); // Converted to signed.
- answer_object = Smi::FromInt(unsigned_left); // Converted to signed.
- break;
- }
- default:
- UNREACHABLE();
- break;
- }
- if (answer_object == Heap::undefined_value()) {
- return false;
- }
- frame_->Push(Handle<Object>(answer_object));
- return true;
-}
-
-
-void CodeGenerator::LikelySmiBinaryOperation(Token::Value op,
- Result* left,
- Result* right,
- OverwriteMode overwrite_mode) {
- // Implements a binary operation using a deferred code object
- // and some inline code to operate on smis quickly.
- DeferredInlineBinaryOperation* deferred =
- new DeferredInlineBinaryOperation(this, op, overwrite_mode,
- SMI_CODE_INLINED);
- // Generate the inline code that handles some smi operations,
- // and jumps to the deferred code for everything else.
- Result answer = deferred->GenerateInlineCode(left, right);
- deferred->BindExit(&answer);
- frame_->Push(&answer);
-}
-
-
-class DeferredInlineSmiOperation: public DeferredCode {
- public:
- DeferredInlineSmiOperation(CodeGenerator* generator,
- Token::Value op,
- Smi* value,
- OverwriteMode overwrite_mode)
- : DeferredCode(generator),
- op_(op),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiOperation");
- }
-
- virtual void Generate();
-
- private:
- Token::Value op_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiOperation::Generate() {
- Result left(generator());
- enter()->Bind(&left);
- generator()->frame()->Push(&left);
- generator()->frame()->Push(value_);
- GenericBinaryOpStub igostub(op_, overwrite_mode_, SMI_CODE_INLINED);
- Result answer = generator()->frame()->CallStub(&igostub, 2);
- exit_.Jump(&answer);
-}
-
-
-class DeferredInlineSmiOperationReversed: public DeferredCode {
- public:
- DeferredInlineSmiOperationReversed(CodeGenerator* generator,
- Token::Value op,
- Smi* value,
- OverwriteMode overwrite_mode)
- : DeferredCode(generator),
- op_(op),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiOperationReversed");
- }
-
- virtual void Generate();
-
- private:
- Token::Value op_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiOperationReversed::Generate() {
- Result right(generator());
- enter()->Bind(&right);
- generator()->frame()->Push(value_);
- generator()->frame()->Push(&right);
- GenericBinaryOpStub igostub(op_, overwrite_mode_, SMI_CODE_INLINED);
- Result answer = generator()->frame()->CallStub(&igostub, 2);
- exit_.Jump(&answer);
-}
-
-
-class DeferredInlineSmiAdd: public DeferredCode {
- public:
- DeferredInlineSmiAdd(CodeGenerator* generator,
- Smi* value,
- OverwriteMode overwrite_mode)
- : DeferredCode(generator),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiAdd");
- }
-
- virtual void Generate();
-
- private:
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiAdd::Generate() {
- // Undo the optimistic add operation and call the shared stub.
- Result left(generator()); // Initially left + value_.
- enter()->Bind(&left);
- left.ToRegister();
- generator()->frame()->Spill(left.reg());
- __ sub(Operand(left.reg()), Immediate(value_));
- generator()->frame()->Push(&left);
- generator()->frame()->Push(value_);
- GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, SMI_CODE_INLINED);
- Result answer = generator()->frame()->CallStub(&igostub, 2);
- exit_.Jump(&answer);
-}
-
-
-class DeferredInlineSmiAddReversed: public DeferredCode {
- public:
- DeferredInlineSmiAddReversed(CodeGenerator* generator,
- Smi* value,
- OverwriteMode overwrite_mode)
- : DeferredCode(generator),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiAddReversed");
- }
-
- virtual void Generate();
-
- private:
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiAddReversed::Generate() {
- // Undo the optimistic add operation and call the shared stub.
- Result right(generator()); // Initially value_ + right.
- enter()->Bind(&right);
- right.ToRegister();
- generator()->frame()->Spill(right.reg());
- __ sub(Operand(right.reg()), Immediate(value_));
- generator()->frame()->Push(value_);
- generator()->frame()->Push(&right);
- GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, SMI_CODE_INLINED);
- Result answer = generator()->frame()->CallStub(&igostub, 2);
- exit_.Jump(&answer);
-}
-
-
-class DeferredInlineSmiSub: public DeferredCode {
- public:
- DeferredInlineSmiSub(CodeGenerator* generator,
- Smi* value,
- OverwriteMode overwrite_mode)
- : DeferredCode(generator),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiSub");
- }
-
- virtual void Generate();
-
- private:
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiSub::Generate() {
- // Undo the optimistic sub operation and call the shared stub.
- Result left(generator()); // Initially left - value_.
- enter()->Bind(&left);
- left.ToRegister();
- generator()->frame()->Spill(left.reg());
- __ add(Operand(left.reg()), Immediate(value_));
- generator()->frame()->Push(&left);
- generator()->frame()->Push(value_);
- GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, SMI_CODE_INLINED);
- Result answer = generator()->frame()->CallStub(&igostub, 2);
- exit_.Jump(&answer);
-}
-
-
-class DeferredInlineSmiSubReversed: public DeferredCode {
- public:
- DeferredInlineSmiSubReversed(CodeGenerator* generator,
- Smi* value,
- OverwriteMode overwrite_mode)
- : DeferredCode(generator),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiSubReversed");
- }
-
- virtual void Generate();
-
- private:
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiSubReversed::Generate() {
- // Call the shared stub.
- Result right(generator());
- enter()->Bind(&right);
- generator()->frame()->Push(value_);
- generator()->frame()->Push(&right);
- GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, SMI_CODE_INLINED);
- Result answer = generator()->frame()->CallStub(&igostub, 2);
- exit_.Jump(&answer);
-}
-
-
-void CodeGenerator::ConstantSmiBinaryOperation(Token::Value op,
- Result* operand,
- Handle<Object> value,
- SmiAnalysis* type,
- bool reversed,
- OverwriteMode overwrite_mode) {
- // NOTE: This is an attempt to inline (a bit) more of the code for
- // some possible smi operations (like + and -) when (at least) one
- // of the operands is a constant smi.
- // Consumes the argument "operand".
-
- // TODO(199): Optimize some special cases of operations involving a
- // smi literal (multiply by 2, shift by 0, etc.).
- if (IsUnsafeSmi(value)) {
- Result unsafe_operand(value, this);
- if (reversed) {
- LikelySmiBinaryOperation(op, &unsafe_operand, operand,
- overwrite_mode);
- } else {
- LikelySmiBinaryOperation(op, operand, &unsafe_operand,
- overwrite_mode);
- }
- ASSERT(!operand->is_valid());
- return;
- }
-
- // Get the literal value.
- Smi* smi_value = Smi::cast(*value);
- int int_value = smi_value->value();
-
- switch (op) {
- case Token::ADD: {
- DeferredCode* deferred = NULL;
- if (reversed) {
- deferred = new DeferredInlineSmiAddReversed(this, smi_value,
- overwrite_mode);
- } else {
- deferred = new DeferredInlineSmiAdd(this, smi_value, overwrite_mode);
- }
- operand->ToRegister();
- frame_->Spill(operand->reg());
- __ add(Operand(operand->reg()), Immediate(value));
- deferred->enter()->Branch(overflow, operand, not_taken);
- __ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->enter()->Branch(not_zero, operand, not_taken);
- deferred->BindExit(operand);
- frame_->Push(operand);
- break;
- }
-
- case Token::SUB: {
- DeferredCode* deferred = NULL;
- Result answer(this); // Only allocate a new register if reversed.
- if (reversed) {
- answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- deferred = new DeferredInlineSmiSubReversed(this,
- smi_value,
- overwrite_mode);
- __ Set(answer.reg(), Immediate(value));
- // We are in the reversed case so they can't both be Smi constants.
- ASSERT(operand->is_register());
- __ sub(answer.reg(), Operand(operand->reg()));
- } else {
- operand->ToRegister();
- frame_->Spill(operand->reg());
- deferred = new DeferredInlineSmiSub(this,
- smi_value,
- overwrite_mode);
- __ sub(Operand(operand->reg()), Immediate(value));
- answer = *operand;
- }
- deferred->enter()->Branch(overflow, operand, not_taken);
- __ test(answer.reg(), Immediate(kSmiTagMask));
- deferred->enter()->Branch(not_zero, operand, not_taken);
- operand->Unuse();
- deferred->BindExit(&answer);
- frame_->Push(&answer);
- break;
- }
-
- case Token::SAR: {
- if (reversed) {
- Result constant_operand(value, this);
- LikelySmiBinaryOperation(op, &constant_operand, operand,
- overwrite_mode);
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- DeferredCode* deferred =
- new DeferredInlineSmiOperation(this, Token::SAR, smi_value,
- overwrite_mode);
- operand->ToRegister();
- __ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->enter()->Branch(not_zero, operand, not_taken);
- if (shift_value > 0) {
- frame_->Spill(operand->reg());
- __ sar(operand->reg(), shift_value);
- __ and_(operand->reg(), ~kSmiTagMask);
- }
- deferred->BindExit(operand);
- frame_->Push(operand);
- }
- break;
- }
-
- case Token::SHR: {
- if (reversed) {
- Result constant_operand(value, this);
- LikelySmiBinaryOperation(op, &constant_operand, operand,
- overwrite_mode);
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- DeferredCode* deferred =
- new DeferredInlineSmiOperation(this, Token::SHR, smi_value,
- overwrite_mode);
- operand->ToRegister();
- __ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->enter()->Branch(not_zero, operand, not_taken);
- Result answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- __ mov(answer.reg(), operand->reg());
- __ sar(answer.reg(), kSmiTagSize);
- __ shr(answer.reg(), shift_value);
- // A negative Smi shifted right two is in the positive Smi range.
- if (shift_value < 2) {
- __ test(answer.reg(), Immediate(0xc0000000));
- deferred->enter()->Branch(not_zero, operand, not_taken);
- }
- operand->Unuse();
- ASSERT(kSmiTagSize == times_2); // Adjust the code if not true.
- __ lea(answer.reg(),
- Operand(answer.reg(), answer.reg(), times_1, kSmiTag));
- deferred->BindExit(&answer);
- frame_->Push(&answer);
- }
- break;
- }
-
- case Token::SHL: {
- if (reversed) {
- Result constant_operand(value, this);
- LikelySmiBinaryOperation(op, &constant_operand, operand,
- overwrite_mode);
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- DeferredCode* deferred =
- new DeferredInlineSmiOperation(this, Token::SHL, smi_value,
- overwrite_mode);
- operand->ToRegister();
- __ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->enter()->Branch(not_zero, operand, not_taken);
- if (shift_value != 0) {
- Result answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- __ mov(answer.reg(), operand->reg());
- ASSERT(kSmiTag == 0); // adjust code if not the case
- // We do no shifts, only the Smi conversion, if shift_value is 1.
- if (shift_value > 1) {
- __ shl(answer.reg(), shift_value - 1);
- }
- // Convert int result to Smi, checking that it is in int range.
- ASSERT(kSmiTagSize == times_2); // adjust code if not the case
- __ add(answer.reg(), Operand(answer.reg()));
- deferred->enter()->Branch(overflow, operand, not_taken);
- operand->Unuse();
- deferred->BindExit(&answer);
- frame_->Push(&answer);
- } else {
- deferred->BindExit(operand);
- frame_->Push(operand);
- }
- }
- break;
- }
-
- case Token::BIT_OR:
- case Token::BIT_XOR:
- case Token::BIT_AND: {
- DeferredCode* deferred = NULL;
- if (reversed) {
- deferred = new DeferredInlineSmiOperationReversed(this, op, smi_value,
- overwrite_mode);
- } else {
- deferred = new DeferredInlineSmiOperation(this, op, smi_value,
- overwrite_mode);
- }
- operand->ToRegister();
- __ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->enter()->Branch(not_zero, operand, not_taken);
- frame_->Spill(operand->reg());
- if (op == Token::BIT_AND) {
- __ and_(Operand(operand->reg()), Immediate(value));
- } else if (op == Token::BIT_XOR) {
- if (int_value != 0) {
- __ xor_(Operand(operand->reg()), Immediate(value));
- }
- } else {
- ASSERT(op == Token::BIT_OR);
- if (int_value != 0) {
- __ or_(Operand(operand->reg()), Immediate(value));
- }
- }
- deferred->BindExit(operand);
- frame_->Push(operand);
- break;
- }
-
- default: {
- Result constant_operand(value, this);
- if (reversed) {
- LikelySmiBinaryOperation(op, &constant_operand, operand,
- overwrite_mode);
- } else {
- LikelySmiBinaryOperation(op, operand, &constant_operand,
- overwrite_mode);
- }
- break;
- }
- }
- ASSERT(!operand->is_valid());
-}
-
-
-class CompareStub: public CodeStub {
- public:
- CompareStub(Condition cc, bool strict) : cc_(cc), strict_(strict) { }
-
- void Generate(MacroAssembler* masm);
-
- private:
- Condition cc_;
- bool strict_;
-
- Major MajorKey() { return Compare; }
-
- int MinorKey() {
- // Encode the three parameters in a unique 16 bit value.
- ASSERT(static_cast<int>(cc_) < (1 << 15));
- return (static_cast<int>(cc_) << 1) | (strict_ ? 1 : 0);
- }
-
-#ifdef DEBUG
- void Print() {
- PrintF("CompareStub (cc %d), (strict %s)\n",
- static_cast<int>(cc_),
- strict_ ? "true" : "false");
- }
-#endif
-};
-
-
-void CodeGenerator::Comparison(Condition cc,
- bool strict,
- ControlDestination* dest) {
- // Strict only makes sense for equality comparisons.
- ASSERT(!strict || cc == equal);
-
- Result left_side(this);
- Result right_side(this);
- // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
- if (cc == greater || cc == less_equal) {
- cc = ReverseCondition(cc);
- left_side = frame_->Pop();
- right_side = frame_->Pop();
- } else {
- right_side = frame_->Pop();
- left_side = frame_->Pop();
- }
- ASSERT(cc == less || cc == equal || cc == greater_equal);
-
- // If either side is a constant smi, optimize the comparison.
- bool left_side_constant_smi =
- left_side.is_constant() && left_side.handle()->IsSmi();
- bool right_side_constant_smi =
- right_side.is_constant() && right_side.handle()->IsSmi();
- bool left_side_constant_null =
- left_side.is_constant() && left_side.handle()->IsNull();
- bool right_side_constant_null =
- right_side.is_constant() && right_side.handle()->IsNull();
-
- if (left_side_constant_smi || right_side_constant_smi) {
- if (left_side_constant_smi && right_side_constant_smi) {
- // Trivial case, comparing two constants.
- int left_value = Smi::cast(*left_side.handle())->value();
- int right_value = Smi::cast(*right_side.handle())->value();
- switch (cc) {
- case less:
- dest->Goto(left_value < right_value);
- break;
- case equal:
- dest->Goto(left_value == right_value);
- break;
- case greater_equal:
- dest->Goto(left_value >= right_value);
- break;
- default:
- UNREACHABLE();
- }
- } else { // Only one side is a constant Smi.
- // If left side is a constant Smi, reverse the operands.
- // Since one side is a constant Smi, conversion order does not matter.
- if (left_side_constant_smi) {
- Result temp = left_side;
- left_side = right_side;
- right_side = temp;
- cc = ReverseCondition(cc);
- // This may reintroduce greater or less_equal as the value of cc.
- // CompareStub and the inline code both support all values of cc.
- }
- // Implement comparison against a constant Smi, inlining the case
- // where both sides are Smis.
- left_side.ToRegister();
- ASSERT(left_side.is_valid());
- JumpTarget is_smi(this);
- __ test(left_side.reg(), Immediate(kSmiTagMask));
- is_smi.Branch(zero, &left_side, &right_side, taken);
-
- // Setup and call the compare stub, which expects its arguments
- // in registers.
- CompareStub stub(cc, strict);
- Result result = frame_->CallStub(&stub, &left_side, &right_side);
- result.ToRegister();
- __ cmp(result.reg(), 0);
- result.Unuse();
- dest->true_target()->Branch(cc);
- dest->false_target()->Jump();
-
- is_smi.Bind(&left_side, &right_side);
- left_side.ToRegister();
- // Test smi equality and comparison by signed int comparison.
- if (IsUnsafeSmi(right_side.handle())) {
- right_side.ToRegister();
- ASSERT(right_side.is_valid());
- __ cmp(left_side.reg(), Operand(right_side.reg()));
- } else {
- __ cmp(Operand(left_side.reg()), Immediate(right_side.handle()));
- }
- left_side.Unuse();
- right_side.Unuse();
- dest->Split(cc);
- }
- } else if (cc == equal &&
- (left_side_constant_null || right_side_constant_null)) {
- // To make null checks efficient, we check if either the left side or
- // the right side is the constant 'null'.
- // If so, we optimize the code by inlining a null check instead of
- // calling the (very) general runtime routine for checking equality.
- Result operand = left_side_constant_null ? right_side : left_side;
- right_side.Unuse();
- left_side.Unuse();
- operand.ToRegister();
- __ cmp(operand.reg(), Factory::null_value());
- if (strict) {
- operand.Unuse();
- dest->Split(equal);
- } else {
- // The 'null' value is only equal to 'undefined' if using non-strict
- // comparisons.
- dest->true_target()->Branch(equal);
- __ cmp(operand.reg(), Factory::undefined_value());
- dest->true_target()->Branch(equal);
- __ test(operand.reg(), Immediate(kSmiTagMask));
- dest->false_target()->Branch(equal);
-
- // It can be an undetectable object.
- // Use a scratch register in preference to spilling operand.reg().
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(),
- FieldOperand(operand.reg(), HeapObject::kMapOffset));
- __ movzx_b(temp.reg(),
- FieldOperand(temp.reg(), Map::kBitFieldOffset));
- __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable));
- temp.Unuse();
- operand.Unuse();
- dest->Split(not_zero);
- }
- } else { // Neither side is a constant Smi or null.
- // If either side is a non-smi constant, skip the smi check.
- bool known_non_smi =
- (left_side.is_constant() && !left_side.handle()->IsSmi()) ||
- (right_side.is_constant() && !right_side.handle()->IsSmi());
- left_side.ToRegister();
- right_side.ToRegister();
- JumpTarget is_smi(this);
- if (!known_non_smi) {
- // Check for the smi case.
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(), left_side.reg());
- __ or_(temp.reg(), Operand(right_side.reg()));
- __ test(temp.reg(), Immediate(kSmiTagMask));
- temp.Unuse();
- is_smi.Branch(zero, &left_side, &right_side, taken);
- }
- // When non-smi, call out to the compare stub, which expects its
- // arguments in registers.
- CompareStub stub(cc, strict);
- Result answer = frame_->CallStub(&stub, &left_side, &right_side);
- if (cc == equal) {
- __ test(answer.reg(), Operand(answer.reg()));
- } else {
- __ cmp(answer.reg(), 0);
- }
- answer.Unuse();
- if (known_non_smi) {
- dest->Split(cc);
- } else {
- dest->true_target()->Branch(cc);
- dest->false_target()->Jump();
- is_smi.Bind(&left_side, &right_side);
- left_side.ToRegister();
- right_side.ToRegister();
- __ cmp(left_side.reg(), Operand(right_side.reg()));
- right_side.Unuse();
- left_side.Unuse();
- dest->Split(cc);
- }
- }
-}
-
-
-class CallFunctionStub: public CodeStub {
- public:
- explicit CallFunctionStub(int argc) : argc_(argc) { }
-
- void Generate(MacroAssembler* masm);
-
- private:
- int argc_;
-
-#ifdef DEBUG
- void Print() { PrintF("CallFunctionStub (args %d)\n", argc_); }
-#endif
-
- Major MajorKey() { return CallFunction; }
- int MinorKey() { return argc_; }
-};
-
-
-// Call the function just below TOS on the stack with the given
-// arguments. The receiver is the TOS.
-void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
- int position) {
- // Push the arguments ("left-to-right") on the stack.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- // Record the position for debugging purposes.
- CodeForSourcePosition(position);
-
- // Use the shared code stub to call the function.
- CallFunctionStub call_function(arg_count);
- Result answer = frame_->CallStub(&call_function, arg_count + 1);
- // Restore context and replace function on the stack with the
- // result of the stub invocation.
- frame_->RestoreContextRegister();
- frame_->SetElementAt(0, &answer);
-}
-
-
-class DeferredStackCheck: public DeferredCode {
- public:
- explicit DeferredStackCheck(CodeGenerator* generator)
- : DeferredCode(generator) {
- set_comment("[ DeferredStackCheck");
- }
-
- virtual void Generate();
-};
-
-
-void DeferredStackCheck::Generate() {
- enter()->Bind();
- StackCheckStub stub;
- Result ignored = generator()->frame()->CallStub(&stub, 0);
- ignored.Unuse();
- exit_.Jump();
-}
-
-
-void CodeGenerator::CheckStack() {
- if (FLAG_check_stack) {
- DeferredStackCheck* deferred = new DeferredStackCheck(this);
- ExternalReference stack_guard_limit =
- ExternalReference::address_of_stack_guard_limit();
- __ cmp(esp, Operand::StaticVariable(stack_guard_limit));
- deferred->enter()->Branch(below, not_taken);
- deferred->BindExit();
- }
-}
-
-
-void CodeGenerator::VisitAndSpill(Statement* statement) {
- ASSERT(in_spilled_code());
- set_in_spilled_code(false);
- Visit(statement);
- if (frame_ != NULL) {
- frame_->SpillAll();
- }
- set_in_spilled_code(true);
-}
-
-
-void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
- ASSERT(in_spilled_code());
- set_in_spilled_code(false);
- VisitStatements(statements);
- if (frame_ != NULL) {
- frame_->SpillAll();
- }
- set_in_spilled_code(true);
-}
-
-
-void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
- ASSERT(!in_spilled_code());
- for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
- Visit(statements->at(i));
- }
-}
-
-
-void CodeGenerator::VisitBlock(Block* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ Block");
- CodeForStatementPosition(node);
- node->break_target()->Initialize(this);
- VisitStatements(node->statements());
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
- frame_->Push(pairs);
-
- // Duplicate the context register.
- Result context(esi, this);
- frame_->Push(&context);
-
- frame_->Push(Smi::FromInt(is_eval() ? 1 : 0));
- Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
- // Return value is ignored.
-}
-
-
-void CodeGenerator::VisitDeclaration(Declaration* node) {
- Comment cmnt(masm_, "[ Declaration");
- CodeForStatementPosition(node);
- Variable* var = node->proxy()->var();
- ASSERT(var != NULL); // must have been resolved
- Slot* slot = var->slot();
-
- // If it was not possible to allocate the variable at compile time,
- // we need to "declare" it at runtime to make sure it actually
- // exists in the local context.
- if (slot != NULL && slot->type() == Slot::LOOKUP) {
- // Variables with a "LOOKUP" slot were introduced as non-locals
- // during variable resolution and must have mode DYNAMIC.
- ASSERT(var->is_dynamic());
- // For now, just do a runtime call. Duplicate the context register.
- Result context(esi, this);
- frame_->Push(&context);
- frame_->Push(var->name());
- // Declaration nodes are always introduced in one of two modes.
- ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
- PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
- frame_->Push(Smi::FromInt(attr));
- // Push initial value, if any.
- // Note: For variables we must not push an initial value (such as
- // 'undefined') because we may have a (legal) redeclaration and we
- // must not destroy the current value.
- if (node->mode() == Variable::CONST) {
- frame_->Push(Factory::the_hole_value());
- } else if (node->fun() != NULL) {
- Load(node->fun());
- } else {
- frame_->Push(Smi::FromInt(0)); // no initial value!
- }
- Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
- // Ignore the return value (declarations are statements).
- return;
- }
-
- ASSERT(!var->is_global());
-
- // If we have a function or a constant, we need to initialize the variable.
- Expression* val = NULL;
- if (node->mode() == Variable::CONST) {
- val = new Literal(Factory::the_hole_value());
- } else {
- val = node->fun(); // NULL if we don't have a function
- }
-
- if (val != NULL) {
- {
- // Set the initial value.
- Reference target(this, node->proxy());
- Load(val);
- target.SetValue(NOT_CONST_INIT);
- // The reference is removed from the stack (preserving TOS) when
- // it goes out of scope.
- }
- // Get rid of the assigned value (declarations are statements).
- frame_->Drop();
- }
-}
-
-
-void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ ExpressionStatement");
- CodeForStatementPosition(node);
- Expression* expression = node->expression();
- expression->MarkAsStatement();
- Load(expression);
- // Remove the lingering expression result from the top of stack.
- frame_->Drop();
-}
-
-
-void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "// EmptyStatement");
- CodeForStatementPosition(node);
- // nothing to do
-}
-
-
-void CodeGenerator::VisitIfStatement(IfStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ IfStatement");
- // Generate different code depending on which parts of the if statement
- // are present or not.
- bool has_then_stm = node->HasThenStatement();
- bool has_else_stm = node->HasElseStatement();
-
- CodeForStatementPosition(node);
- JumpTarget exit(this);
- if (has_then_stm && has_else_stm) {
- JumpTarget then(this);
- JumpTarget else_(this);
- ControlDestination dest(&then, &else_, true);
- LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.false_was_fall_through()) {
- // The else target was bound, so we compile the else part first.
- Visit(node->else_statement());
-
- // We may have dangling jumps to the then part.
- if (then.is_linked()) {
- if (has_valid_frame()) exit.Jump();
- then.Bind();
- Visit(node->then_statement());
- }
- } else {
- // The then target was bound, so we compile the then part first.
- Visit(node->then_statement());
-
- if (else_.is_linked()) {
- if (has_valid_frame()) exit.Jump();
- else_.Bind();
- Visit(node->else_statement());
- }
- }
-
- } else if (has_then_stm) {
- ASSERT(!has_else_stm);
- JumpTarget then(this);
- ControlDestination dest(&then, &exit, true);
- LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.false_was_fall_through()) {
- // The exit label was bound. We may have dangling jumps to the
- // then part.
- if (then.is_linked()) {
- exit.Unuse();
- exit.Jump();
- then.Bind();
- Visit(node->then_statement());
- }
- } else {
- // The then label was bound.
- Visit(node->then_statement());
- }
-
- } else if (has_else_stm) {
- ASSERT(!has_then_stm);
- JumpTarget else_(this);
- ControlDestination dest(&exit, &else_, false);
- LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.true_was_fall_through()) {
- // The exit label was bound. We may have dangling jumps to the
- // else part.
- if (else_.is_linked()) {
- exit.Unuse();
- exit.Jump();
- else_.Bind();
- Visit(node->else_statement());
- }
- } else {
- // The else label was bound.
- Visit(node->else_statement());
- }
-
- } else {
- ASSERT(!has_then_stm && !has_else_stm);
- // We only care about the condition's side effects (not its value
- // or control flow effect). LoadCondition is called without
- // forcing control flow.
- ControlDestination dest(&exit, &exit, true);
- LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, false);
- if (!dest.is_used()) {
- // We got a value on the frame rather than (or in addition to)
- // control flow.
- frame_->Drop();
- }
- }
-
- if (exit.is_linked()) {
- exit.Bind();
- }
-}
-
-
-void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ ContinueStatement");
- CodeForStatementPosition(node);
- node->target()->continue_target()->Jump();
-}
-
-
-void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ BreakStatement");
- CodeForStatementPosition(node);
- node->target()->break_target()->Jump();
-}
-
-
-void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ ReturnStatement");
-
- CodeForStatementPosition(node);
- Load(node->expression());
- Result return_value = frame_->Pop();
- if (function_return_is_shadowed_) {
- function_return_.Jump(&return_value);
- } else {
- frame_->PrepareForReturn();
- if (function_return_.is_bound()) {
- // If the function return label is already bound we reuse the
- // code by jumping to the return site.
- function_return_.Jump(&return_value);
- } else {
- // Though this is a (possibly) backward block, the frames can
- // only differ on their top element.
- function_return_.Bind(&return_value, 1);
- GenerateReturnSequence(&return_value);
- }
- }
-}
-
-
-void CodeGenerator::GenerateReturnSequence(Result* return_value) {
- // The return value is a live (but not currently reference counted)
- // reference to eax. This is safe because the current frame does not
- // contain a reference to eax (it is prepared for the return by spilling
- // all registers).
- if (FLAG_trace) {
- frame_->Push(return_value);
- *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
- }
- return_value->ToRegister(eax);
-
- // Add a label for checking the size of the code used for returning.
- Label check_exit_codesize;
- masm_->bind(&check_exit_codesize);
-
- // Leave the frame and return popping the arguments and the
- // receiver.
- frame_->Exit();
- masm_->ret((scope_->num_parameters() + 1) * kPointerSize);
- DeleteFrame();
-
- // Check that the size of the code used for returning matches what is
- // expected by the debugger.
- ASSERT_EQ(Debug::kIa32JSReturnSequenceLength,
- masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
-}
-
-
-void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ WithEnterStatement");
- CodeForStatementPosition(node);
- Load(node->expression());
- Result context(this);
- if (node->is_catch_block()) {
- context = frame_->CallRuntime(Runtime::kPushCatchContext, 1);
- } else {
- context = frame_->CallRuntime(Runtime::kPushContext, 1);
- }
-
- // Update context local.
- frame_->SaveContextRegister();
-
- // Verify that the runtime call result and esi agree.
- if (FLAG_debug_code) {
- __ cmp(context.reg(), Operand(esi));
- __ Assert(equal, "Runtime::NewContext should end up in esi");
- }
-}
-
-
-void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ WithExitStatement");
- CodeForStatementPosition(node);
- // Pop context.
- __ mov(esi, ContextOperand(esi, Context::PREVIOUS_INDEX));
- // Update context local.
- frame_->SaveContextRegister();
-}
-
-
-int CodeGenerator::FastCaseSwitchMaxOverheadFactor() {
- return kFastSwitchMaxOverheadFactor;
-}
-
-
-int CodeGenerator::FastCaseSwitchMinCaseCount() {
- return kFastSwitchMinCaseCount;
-}
-
-
-// Generate a computed jump to a switch case.
-void CodeGenerator::GenerateFastCaseSwitchJumpTable(
- SwitchStatement* node,
- int min_index,
- int range,
- Label* default_label,
- Vector<Label*> case_targets,
- Vector<Label> case_labels) {
- // Notice: Internal references, used by both the jmp instruction and
- // the table entries, need to be relocated if the buffer grows. This
- // prevents the forward use of Labels, since a displacement cannot
- // survive relocation, and it also cannot safely be distinguished
- // from a real address. Instead we put in zero-values as
- // placeholders, and fill in the addresses after the labels have been
- // bound.
-
- JumpTarget setup_default(this);
- JumpTarget is_smi(this);
-
- // A non-null default label pointer indicates a default case among
- // the case labels. Otherwise we use the break target as a
- // "default".
- JumpTarget* default_target =
- (default_label == NULL) ? node->break_target() : &setup_default;
-
- // Test whether input is a smi.
- ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
- Result switch_value = frame_->Pop();
- switch_value.ToRegister();
- __ test(switch_value.reg(), Immediate(kSmiTagMask));
- is_smi.Branch(equal, &switch_value, taken);
-
- // It's a heap object, not a smi or a failure. Check if it is a
- // heap number.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ CmpObjectType(switch_value.reg(), HEAP_NUMBER_TYPE, temp.reg());
- temp.Unuse();
- default_target->Branch(not_equal);
-
- // The switch value is a heap number. Convert it to a smi.
- frame_->Push(&switch_value);
- Result smi_value = frame_->CallRuntime(Runtime::kNumberToSmi, 1);
-
- is_smi.Bind(&smi_value);
- smi_value.ToRegister();
- // Convert the switch value to a 0-based table index.
- if (min_index != 0) {
- frame_->Spill(smi_value.reg());
- __ sub(Operand(smi_value.reg()), Immediate(min_index << kSmiTagSize));
- }
- // Go to the default case if the table index is negative or not a smi.
- __ test(smi_value.reg(), Immediate(0x80000000 | kSmiTagMask));
- default_target->Branch(not_equal, not_taken);
- __ cmp(smi_value.reg(), range << kSmiTagSize);
- default_target->Branch(greater_equal, not_taken);
-
- // The expected frame at all the case labels is a version of the
- // current one (the bidirectional entry frame, which an arbitrary
- // frame of the correct height can be merged to). Keep a copy to
- // restore at the start of every label. Create a jump target and
- // bind it to set its entry frame properly.
- JumpTarget entry_target(this, JumpTarget::BIDIRECTIONAL);
- entry_target.Bind(&smi_value);
- VirtualFrame* start_frame = new VirtualFrame(frame_);
-
- // 0 is placeholder.
- // Jump to the address at table_address + 2 * smi_value.reg().
- // The target of the jump is read from table_address + 4 * switch_value.
- // The Smi encoding of smi_value.reg() is 2 * switch_value.
- smi_value.ToRegister();
- __ jmp(Operand(smi_value.reg(), smi_value.reg(),
- times_1, 0x0, RelocInfo::INTERNAL_REFERENCE));
- smi_value.Unuse();
- // Calculate address to overwrite later with actual address of table.
- int32_t jump_table_ref = masm_->pc_offset() - sizeof(int32_t);
- __ Align(4);
- Label table_start;
- __ bind(&table_start);
- __ WriteInternalReference(jump_table_ref, table_start);
-
- for (int i = 0; i < range; i++) {
- // These are the table entries. 0x0 is the placeholder for case address.
- __ dd(0x0, RelocInfo::INTERNAL_REFERENCE);
- }
-
- GenerateFastCaseSwitchCases(node, case_labels, start_frame);
-
- // If there was a default case, we need to emit the code to match it.
- if (default_label != NULL) {
- if (has_valid_frame()) {
- node->break_target()->Jump();
- }
- setup_default.Bind();
- frame_->MergeTo(start_frame);
- __ jmp(default_label);
- DeleteFrame();
- }
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
-
- for (int i = 0, entry_pos = table_start.pos();
- i < range;
- i++, entry_pos += sizeof(uint32_t)) {
- if (case_targets[i] == NULL) {
- __ WriteInternalReference(entry_pos,
- *node->break_target()->entry_label());
- } else {
- __ WriteInternalReference(entry_pos, *case_targets[i]);
- }
- }
-
- delete start_frame;
-}
-
-
-void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ SwitchStatement");
- CodeForStatementPosition(node);
- node->break_target()->Initialize(this);
-
- // Compile the switch value.
- Load(node->tag());
-
- if (TryGenerateFastCaseSwitchStatement(node)) {
- return;
- }
-
- ZoneList<CaseClause*>* cases = node->cases();
- int length = cases->length();
- CaseClause* default_clause = NULL;
-
- JumpTarget next_test(this);
- // Compile the case label expressions and comparisons. Exit early
- // if a comparison is unconditionally true. The target next_test is
- // bound before the loop in order to indicate control flow to the
- // first comparison.
- next_test.Bind();
- for (int i = 0; i < length && !next_test.is_unused(); i++) {
- CaseClause* clause = cases->at(i);
- clause->body_target()->Initialize(this);
- // The default is not a test, but remember it for later.
- if (clause->is_default()) {
- default_clause = clause;
- continue;
- }
-
- Comment cmnt(masm_, "[ Case comparison");
- // We recycle the same target next_test for each test. Bind it if
- // the previous test has not done so and then unuse it for the
- // loop.
- if (next_test.is_linked()) {
- next_test.Bind();
- }
- next_test.Unuse();
-
- // Duplicate the switch value.
- frame_->Dup();
-
- // Compile the label expression.
- Load(clause->label());
-
- // Compare and branch to the body if true or the next test if
- // false. Prefer the next test as a fall through.
- ControlDestination dest(clause->body_target(), &next_test, false);
- Comparison(equal, true, &dest);
-
- // If the comparison fell through to the true target, jump to the
- // actual body.
- if (dest.true_was_fall_through()) {
- clause->body_target()->Unuse();
- clause->body_target()->Jump();
- }
- }
-
- // If there was control flow to a next test from the last one
- // compiled, compile a jump to the default or break target.
- if (!next_test.is_unused()) {
- if (next_test.is_linked()) {
- next_test.Bind();
- }
- // Drop the switch value.
- frame_->Drop();
- if (default_clause != NULL) {
- default_clause->body_target()->Jump();
- } else {
- node->break_target()->Jump();
- }
- }
-
-
- // The last instruction emitted was a jump, either to the default
- // clause or the break target, or else to a case body from the loop
- // that compiles the tests.
- ASSERT(!has_valid_frame());
- // Compile case bodies as needed.
- for (int i = 0; i < length; i++) {
- CaseClause* clause = cases->at(i);
-
- // There are two ways to reach the body: from the corresponding
- // test or as the fall through of the previous body.
- if (clause->body_target()->is_linked() || has_valid_frame()) {
- if (clause->body_target()->is_linked()) {
- if (has_valid_frame()) {
- // If we have both a jump to the test and a fall through, put
- // a jump on the fall through path to avoid the dropping of
- // the switch value on the test path. The exception is the
- // default which has already had the switch value dropped.
- if (clause->is_default()) {
- clause->body_target()->Bind();
- } else {
- JumpTarget body(this);
- body.Jump();
- clause->body_target()->Bind();
- frame_->Drop();
- body.Bind();
- }
- } else {
- // No fall through to worry about.
- clause->body_target()->Bind();
- if (!clause->is_default()) {
- frame_->Drop();
- }
- }
- } else {
- // Otherwise, we have only fall through.
- ASSERT(has_valid_frame());
- }
-
- // We are now prepared to compile the body.
- Comment cmnt(masm_, "[ Case body");
- VisitStatements(clause->statements());
- }
- clause->body_target()->Unuse();
- }
-
- // We may not have a valid frame here so bind the break target only
- // if needed.
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitLoopStatement(LoopStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ LoopStatement");
- CodeForStatementPosition(node);
- node->break_target()->Initialize(this);
-
- // Simple condition analysis. ALWAYS_TRUE and ALWAYS_FALSE represent a
- // known result for the test expression, with no side effects.
- enum { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW } info = DONT_KNOW;
- if (node->cond() == NULL) {
- ASSERT(node->type() == LoopStatement::FOR_LOOP);
- info = ALWAYS_TRUE;
- } else {
- Literal* lit = node->cond()->AsLiteral();
- if (lit != NULL) {
- if (lit->IsTrue()) {
- info = ALWAYS_TRUE;
- } else if (lit->IsFalse()) {
- info = ALWAYS_FALSE;
- }
- }
- }
-
- switch (node->type()) {
- case LoopStatement::DO_LOOP: {
- JumpTarget body(this, JumpTarget::BIDIRECTIONAL);
- IncrementLoopNesting();
-
- // Label the top of the loop for the backward jump if necessary.
- if (info == ALWAYS_TRUE) {
- // Use the continue target.
- node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- } else if (info == ALWAYS_FALSE) {
- // No need to label it.
- node->continue_target()->Initialize(this);
- } else {
- // Continue is the test, so use the backward body target.
- ASSERT(info == DONT_KNOW);
- node->continue_target()->Initialize(this);
- body.Bind();
- }
-
- CheckStack(); // TODO(1222600): ignore if body contains calls.
- Visit(node->body());
-
- // Compile the test.
- if (info == ALWAYS_TRUE) {
- // If control flow can fall off the end of the body, jump back
- // to the top and bind the break target at the exit.
- if (has_valid_frame()) {
- node->continue_target()->Jump();
- }
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
-
- } else if (info == ALWAYS_FALSE) {
- // We may have had continues or breaks in the body.
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
-
- } else {
- ASSERT(info == DONT_KNOW);
- // We have to compile the test expression if it can be reached by
- // control flow falling out of the body or via continue.
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
- if (has_valid_frame()) {
- ControlDestination dest(&body, node->break_target(), false);
- LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
- }
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- }
- break;
- }
-
- case LoopStatement::WHILE_LOOP: {
- // Do not duplicate conditions that may have function literal
- // subexpressions. This can cause us to compile the function
- // literal twice.
- bool test_at_bottom = !node->may_have_function_literal();
-
- IncrementLoopNesting();
-
- // If the condition is always false and has no side effects, we
- // do not need to compile anything.
- if (info == ALWAYS_FALSE) break;
-
- JumpTarget body;
- if (test_at_bottom) {
- body.Initialize(this, JumpTarget::BIDIRECTIONAL);
- } else {
- body.Initialize(this);
- }
-
- // Based on the condition analysis, compile the test as necessary.
- if (info == ALWAYS_TRUE) {
- // We will not compile the test expression. Label the top of
- // the loop with the continue target.
- node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- } else {
- ASSERT(info == DONT_KNOW); // ALWAYS_FALSE cannot reach here.
- if (test_at_bottom) {
- // Continue is the test at the bottom, no need to label the
- // test at the top. The body is a backward target.
- node->continue_target()->Initialize(this);
- } else {
- // Label the test at the top as the continue target. The
- // body is a forward-only target.
- node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- }
- // Compile the test with the body as the true target and
- // preferred fall-through and with the break target as the
- // false target.
- ControlDestination dest(&body, node->break_target(), true);
- LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.false_was_fall_through()) {
- // If we got the break target as fall-through, the test may
- // have been unconditionally false (if there are no jumps to
- // the body).
- if (!body.is_linked()) break;
-
- // Otherwise, jump around the body on the fall through and
- // then bind the body target.
- node->break_target()->Unuse();
- node->break_target()->Jump();
- body.Bind();
- }
- }
-
- CheckStack(); // TODO(1222600): ignore if body contains calls.
- Visit(node->body());
-
- // Based on the condition analysis, compile the backward jump as
- // necessary.
- if (info == ALWAYS_TRUE) {
- // The loop body has been labeled with the continue target.
- if (has_valid_frame()) {
- node->continue_target()->Jump();
- }
- } else {
- ASSERT(info == DONT_KNOW); // ALWAYS_FALSE cannot reach here.
- if (test_at_bottom) {
- // If we have chosen to recompile the test at the bottom,
- // then it is the continue target.
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
- if (has_valid_frame()) {
- // The break target is the fall-through (body is a backward
- // jump from here and thus an invalid fall-through).
- ControlDestination dest(&body, node->break_target(), false);
- LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
- }
- } else {
- // If we have chosen not to recompile the test at the
- // bottom, jump back to the one at the top.
- if (has_valid_frame()) {
- node->continue_target()->Jump();
- }
- }
- }
-
- // The break target may be already bound (by the condition), or
- // there may not be a valid frame. Bind it only if needed.
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- break;
- }
-
- case LoopStatement::FOR_LOOP: {
- // Do not duplicate conditions that may have function literal
- // subexpressions. This can cause us to compile the function
- // literal twice.
- bool test_at_bottom = !node->may_have_function_literal();
-
- // Compile the init expression if present.
- if (node->init() != NULL) {
- Visit(node->init());
- }
-
- IncrementLoopNesting();
-
- // If the condition is always false and has no side effects, we
- // do not need to compile anything else.
- if (info == ALWAYS_FALSE) break;
-
- // Target for backward edge if no test at the bottom, otherwise
- // unused.
- JumpTarget loop(this, JumpTarget::BIDIRECTIONAL);
-
- // Target for backward edge if there is a test at the bottom,
- // otherwise used as target for test at the top.
- JumpTarget body;
- if (test_at_bottom) {
- body.Initialize(this, JumpTarget::BIDIRECTIONAL);
- } else {
- body.Initialize(this);
- }
-
- // Based on the condition analysis, compile the test as necessary.
- if (info == ALWAYS_TRUE) {
- // We will not compile the test expression. Label the top of
- // the loop.
- if (node->next() == NULL) {
- // Use the continue target if there is no update expression.
- node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- } else {
- // Otherwise use the backward loop target.
- node->continue_target()->Initialize(this);
- loop.Bind();
- }
- } else {
- ASSERT(info == DONT_KNOW);
- if (test_at_bottom) {
- // Continue is either the update expression or the test at
- // the bottom, no need to label the test at the top.
- node->continue_target()->Initialize(this);
- } else if (node->next() == NULL) {
- // We are not recompiling the test at the bottom and there
- // is no update expression.
- node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- } else {
- // We are not recompiling the test at the bottom and there
- // is an update expression.
- node->continue_target()->Initialize(this);
- loop.Bind();
- }
-
- // Compile the test with the body as the true target and
- // preferred fall-through and with the break target as the
- // false target.
- ControlDestination dest(&body, node->break_target(), true);
- LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.false_was_fall_through()) {
- // If we got the break target as fall-through, the test may
- // have been unconditionally false (if there are no jumps to
- // the body).
- if (!body.is_linked()) break;
-
- // Otherwise, jump around the body on the fall through and
- // then bind the body target.
- node->break_target()->Unuse();
- node->break_target()->Jump();
- body.Bind();
- }
- }
-
- CheckStack(); // TODO(1222600): ignore if body contains calls.
- Visit(node->body());
-
- // If there is an update expression, compile it if necessary.
- if (node->next() != NULL) {
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
-
- // Control can reach the update by falling out of the body or
- // by a continue.
- if (has_valid_frame()) {
- // Record the source position of the statement as this code
- // which is after the code for the body actually belongs to
- // the loop statement and not the body.
- CodeForStatementPosition(node);
- Visit(node->next());
- }
- }
-
- // Based on the condition analysis, compile the backward jump as
- // necessary.
- if (info == ALWAYS_TRUE) {
- if (has_valid_frame()) {
- if (node->next() == NULL) {
- node->continue_target()->Jump();
- } else {
- loop.Jump();
- }
- }
- } else {
- ASSERT(info == DONT_KNOW); // ALWAYS_FALSE cannot reach here.
- if (test_at_bottom) {
- if (node->continue_target()->is_linked()) {
- // We can have dangling jumps to the continue target if
- // there was no update expression.
- node->continue_target()->Bind();
- }
- // Control can reach the test at the bottom by falling out
- // of the body, by a continue in the body, or from the
- // update expression.
- if (has_valid_frame()) {
- // The break target is the fall-through (body is a
- // backward jump from here).
- ControlDestination dest(&body, node->break_target(), false);
- LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
- }
- } else {
- // Otherwise, jump back to the test at the top.
- if (has_valid_frame()) {
- if (node->next() == NULL) {
- node->continue_target()->Jump();
- } else {
- loop.Jump();
- }
- }
- }
- }
-
- // The break target may be already bound (by the condition), or
- // there may not be a valid frame. Bind it only if needed.
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- break;
- }
- }
-
- DecrementLoopNesting();
- node->continue_target()->Unuse();
- node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitForInStatement(ForInStatement* node) {
- ASSERT(!in_spilled_code());
- VirtualFrame::SpilledScope spilled_scope(this);
- Comment cmnt(masm_, "[ ForInStatement");
- CodeForStatementPosition(node);
-
- JumpTarget primitive(this);
- JumpTarget jsobject(this);
- JumpTarget fixed_array(this);
- JumpTarget entry(this, JumpTarget::BIDIRECTIONAL);
- JumpTarget end_del_check(this);
- JumpTarget exit(this);
-
- // Get the object to enumerate over (converted to JSObject).
- LoadAndSpill(node->enumerable());
-
- // Both SpiderMonkey and kjs ignore null and undefined in contrast
- // to the specification. 12.6.4 mandates a call to ToObject.
- frame_->EmitPop(eax);
-
- // eax: value to be iterated over
- __ cmp(eax, Factory::undefined_value());
- exit.Branch(equal);
- __ cmp(eax, Factory::null_value());
- exit.Branch(equal);
-
- // Stack layout in body:
- // [iteration counter (smi)] <- slot 0
- // [length of array] <- slot 1
- // [FixedArray] <- slot 2
- // [Map or 0] <- slot 3
- // [Object] <- slot 4
-
- // Check if enumerable is already a JSObject
- // eax: value to be iterated over
- __ test(eax, Immediate(kSmiTagMask));
- primitive.Branch(zero);
- __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
- __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
- __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
- jsobject.Branch(above_equal);
-
- primitive.Bind();
- frame_->EmitPush(eax);
- frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1);
- // function call returns the value in eax, which is where we want it below
-
- jsobject.Bind();
- // Get the set of properties (as a FixedArray or Map).
- // eax: value to be iterated over
- frame_->EmitPush(eax); // push the object being iterated over (slot 4)
-
- frame_->EmitPush(eax); // push the Object (slot 4) for the runtime call
- frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
-
- // If we got a Map, we can do a fast modification check.
- // Otherwise, we got a FixedArray, and we have to do a slow check.
- // eax: map or fixed array (result from call to
- // Runtime::kGetPropertyNamesFast)
- __ mov(edx, Operand(eax));
- __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
- __ cmp(ecx, Factory::meta_map());
- fixed_array.Branch(not_equal);
-
- // Get enum cache
- // eax: map (result from call to Runtime::kGetPropertyNamesFast)
- __ mov(ecx, Operand(eax));
- __ mov(ecx, FieldOperand(ecx, Map::kInstanceDescriptorsOffset));
- // Get the bridge array held in the enumeration index field.
- __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset));
- // Get the cache from the bridge array.
- __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset));
-
- frame_->EmitPush(eax); // <- slot 3
- frame_->EmitPush(edx); // <- slot 2
- __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset));
- __ shl(eax, kSmiTagSize);
- frame_->EmitPush(eax); // <- slot 1
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0
- entry.Jump();
-
- fixed_array.Bind();
- // eax: fixed array (result from call to Runtime::kGetPropertyNamesFast)
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 3
- frame_->EmitPush(eax); // <- slot 2
-
- // Push the length of the array and the initial index onto the stack.
- __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset));
- __ shl(eax, kSmiTagSize);
- frame_->EmitPush(eax); // <- slot 1
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0
-
- // Condition.
- entry.Bind();
- // Grab the current frame's height for the break and continue
- // targets only after all the state is pushed on the frame.
- node->break_target()->Initialize(this);
- node->continue_target()->Initialize(this);
-
- __ mov(eax, frame_->ElementAt(0)); // load the current count
- __ cmp(eax, frame_->ElementAt(1)); // compare to the array length
- node->break_target()->Branch(above_equal);
-
- // Get the i'th entry of the array.
- __ mov(edx, frame_->ElementAt(2));
- __ mov(ebx, Operand(edx, eax, times_2,
- FixedArray::kHeaderSize - kHeapObjectTag));
-
- // Get the expected map from the stack or a zero map in the
- // permanent slow case eax: current iteration count ebx: i'th entry
- // of the enum cache
- __ mov(edx, frame_->ElementAt(3));
- // Check if the expected map still matches that of the enumerable.
- // If not, we have to filter the key.
- // eax: current iteration count
- // ebx: i'th entry of the enum cache
- // edx: expected map value
- __ mov(ecx, frame_->ElementAt(4));
- __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
- __ cmp(ecx, Operand(edx));
- end_del_check.Branch(equal);
-
- // Convert the entry to a string (or null if it isn't a property anymore).
- frame_->EmitPush(frame_->ElementAt(4)); // push enumerable
- frame_->EmitPush(ebx); // push entry
- frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2);
- __ mov(ebx, Operand(eax));
-
- // If the property has been removed while iterating, we just skip it.
- __ cmp(ebx, Factory::null_value());
- node->continue_target()->Branch(equal);
-
- end_del_check.Bind();
- // Store the entry in the 'each' expression and take another spin in the
- // loop. edx: i'th entry of the enum cache (or string there of)
- frame_->EmitPush(ebx);
- { Reference each(this, node->each());
- // Loading a reference may leave the frame in an unspilled state.
- frame_->SpillAll();
- if (!each.is_illegal()) {
- if (each.size() > 0) {
- frame_->EmitPush(frame_->ElementAt(each.size()));
- }
- // If the reference was to a slot we rely on the convenient property
- // that it doesn't matter whether a value (eg, ebx pushed above) is
- // right on top of or right underneath a zero-sized reference.
- each.SetValue(NOT_CONST_INIT);
- if (each.size() > 0) {
- // It's safe to pop the value lying on top of the reference before
- // unloading the reference itself (which preserves the top of stack,
- // ie, now the topmost value of the non-zero sized reference), since
- // we will discard the top of stack after unloading the reference
- // anyway.
- frame_->Drop();
- }
- }
- }
- // Unloading a reference may leave the frame in an unspilled state.
- frame_->SpillAll();
-
- // Discard the i'th entry pushed above or else the remainder of the
- // reference, whichever is currently on top of the stack.
- frame_->Drop();
-
- // Body.
- CheckStack(); // TODO(1222600): ignore if body contains calls.
- VisitAndSpill(node->body());
-
- // Next. Reestablish a spilled frame in case we are coming here via
- // a continue in the body.
- node->continue_target()->Bind();
- frame_->SpillAll();
- frame_->EmitPop(eax);
- __ add(Operand(eax), Immediate(Smi::FromInt(1)));
- frame_->EmitPush(eax);
- entry.Jump();
-
- // Cleanup. No need to spill because VirtualFrame::Drop is safe for
- // any frame.
- node->break_target()->Bind();
- frame_->Drop(5);
-
- // Exit.
- exit.Bind();
-
- node->continue_target()->Unuse();
- node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitTryCatch(TryCatch* node) {
- ASSERT(!in_spilled_code());
- VirtualFrame::SpilledScope spilled_scope(this);
- Comment cmnt(masm_, "[ TryCatch");
- CodeForStatementPosition(node);
-
- JumpTarget try_block(this);
- JumpTarget exit(this);
-
- try_block.Call();
- // --- Catch block ---
- frame_->EmitPush(eax);
-
- // Store the caught exception in the catch variable.
- { Reference ref(this, node->catch_var());
- ASSERT(ref.is_slot());
- // Load the exception to the top of the stack. Here we make use of the
- // convenient property that it doesn't matter whether a value is
- // immediately on top of or underneath a zero-sized reference.
- ref.SetValue(NOT_CONST_INIT);
- }
-
- // Remove the exception from the stack.
- frame_->Drop();
-
- VisitStatementsAndSpill(node->catch_block()->statements());
- if (has_valid_frame()) {
- exit.Jump();
- }
-
-
- // --- Try block ---
- try_block.Bind();
-
- frame_->PushTryHandler(TRY_CATCH_HANDLER);
- int handler_height = frame_->height();
-
- // Shadow the jump targets for all escapes from the try block, including
- // returns. During shadowing, the original target is hidden as the
- // ShadowTarget and operations on the original actually affect the
- // shadowing target.
- //
- // We should probably try to unify the escaping targets and the return
- // target.
- int nof_escapes = node->escaping_targets()->length();
- List<ShadowTarget*> shadows(1 + nof_escapes);
-
- // Add the shadow target for the function return.
- static const int kReturnShadowIndex = 0;
- shadows.Add(new ShadowTarget(&function_return_));
- bool function_return_was_shadowed = function_return_is_shadowed_;
- function_return_is_shadowed_ = true;
- ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
-
- // Add the remaining shadow targets.
- for (int i = 0; i < nof_escapes; i++) {
- shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
- }
-
- // Generate code for the statements in the try block.
- VisitStatementsAndSpill(node->try_block()->statements());
-
- // Stop the introduced shadowing and count the number of required unlinks.
- // After shadowing stops, the original targets are unshadowed and the
- // ShadowTargets represent the formerly shadowing targets.
- bool has_unlinks = false;
- for (int i = 0; i < shadows.length(); i++) {
- shadows[i]->StopShadowing();
- has_unlinks = has_unlinks || shadows[i]->is_linked();
- }
- function_return_is_shadowed_ = function_return_was_shadowed;
-
- // Get an external reference to the handler address.
- ExternalReference handler_address(Top::k_handler_address);
-
- // Make sure that there's nothing left on the stack above the
- // handler structure.
- if (FLAG_debug_code) {
- __ mov(eax, Operand::StaticVariable(handler_address));
- __ lea(eax, Operand(eax, StackHandlerConstants::kAddressDisplacement));
- __ cmp(esp, Operand(eax));
- __ Assert(equal, "stack pointer should point to top handler");
- }
-
- // If we can fall off the end of the try block, unlink from try chain.
- if (has_valid_frame()) {
- // The next handler address is on top of the frame. Unlink from
- // the handler list and drop the rest of this handler from the
- // frame.
- frame_->EmitPop(Operand::StaticVariable(handler_address));
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
- if (has_unlinks) {
- exit.Jump();
- }
- }
-
- // Generate unlink code for the (formerly) shadowing targets that
- // have been jumped to. Deallocate each shadow target.
- Result return_value(this);
- for (int i = 0; i < shadows.length(); i++) {
- if (shadows[i]->is_linked()) {
- // Unlink from try chain; be careful not to destroy the TOS if
- // there is one.
- if (i == kReturnShadowIndex) {
- shadows[i]->Bind(&return_value);
- return_value.ToRegister(eax);
- } else {
- shadows[i]->Bind();
- }
- // Because we can be jumping here (to spilled code) from
- // unspilled code, we need to reestablish a spilled frame at
- // this block.
- frame_->SpillAll();
-
- // Reload sp from the top handler, because some statements that we
- // break from (eg, for...in) may have left stuff on the stack.
- __ mov(edx, Operand::StaticVariable(handler_address));
- const int kNextOffset = StackHandlerConstants::kNextOffset +
- StackHandlerConstants::kAddressDisplacement;
- __ lea(esp, Operand(edx, kNextOffset));
- frame_->Forget(frame_->height() - handler_height);
-
- frame_->EmitPop(Operand::StaticVariable(handler_address));
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
- // next_sp popped.
-
- if (i == kReturnShadowIndex) {
- if (!function_return_is_shadowed_) frame_->PrepareForReturn();
- shadows[i]->other_target()->Jump(&return_value);
- } else {
- shadows[i]->other_target()->Jump();
- }
- }
- delete shadows[i];
- }
-
- exit.Bind();
-}
-
-
-void CodeGenerator::VisitTryFinally(TryFinally* node) {
- ASSERT(!in_spilled_code());
- VirtualFrame::SpilledScope spilled_scope(this);
- Comment cmnt(masm_, "[ TryFinally");
- CodeForStatementPosition(node);
-
- // State: Used to keep track of reason for entering the finally
- // block. Should probably be extended to hold information for
- // break/continue from within the try block.
- enum { FALLING, THROWING, JUMPING };
-
- JumpTarget try_block(this);
- JumpTarget finally_block(this);
-
- try_block.Call();
-
- frame_->EmitPush(eax);
- // In case of thrown exceptions, this is where we continue.
- __ Set(ecx, Immediate(Smi::FromInt(THROWING)));
- finally_block.Jump();
-
- // --- Try block ---
- try_block.Bind();
-
- frame_->PushTryHandler(TRY_FINALLY_HANDLER);
- int handler_height = frame_->height();
-
- // Shadow the jump targets for all escapes from the try block, including
- // returns. During shadowing, the original target is hidden as the
- // ShadowTarget and operations on the original actually affect the
- // shadowing target.
- //
- // We should probably try to unify the escaping targets and the return
- // target.
- int nof_escapes = node->escaping_targets()->length();
- List<ShadowTarget*> shadows(1 + nof_escapes);
-
- // Add the shadow target for the function return.
- static const int kReturnShadowIndex = 0;
- shadows.Add(new ShadowTarget(&function_return_));
- bool function_return_was_shadowed = function_return_is_shadowed_;
- function_return_is_shadowed_ = true;
- ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
-
- // Add the remaining shadow targets.
- for (int i = 0; i < nof_escapes; i++) {
- shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
- }
-
- // Generate code for the statements in the try block.
- VisitStatementsAndSpill(node->try_block()->statements());
-
- // Stop the introduced shadowing and count the number of required unlinks.
- // After shadowing stops, the original targets are unshadowed and the
- // ShadowTargets represent the formerly shadowing targets.
- int nof_unlinks = 0;
- for (int i = 0; i < shadows.length(); i++) {
- shadows[i]->StopShadowing();
- if (shadows[i]->is_linked()) nof_unlinks++;
- }
- function_return_is_shadowed_ = function_return_was_shadowed;
-
- // Get an external reference to the handler address.
- ExternalReference handler_address(Top::k_handler_address);
-
- // If we can fall off the end of the try block, unlink from the try
- // chain and set the state on the frame to FALLING.
- if (has_valid_frame()) {
- // The next handler address is on top of the frame.
- ASSERT(StackHandlerConstants::kNextOffset == 0);
- frame_->EmitPop(eax);
- __ mov(Operand::StaticVariable(handler_address), eax);
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-
- // Fake a top of stack value (unneeded when FALLING) and set the
- // state in ecx, then jump around the unlink blocks if any.
- frame_->EmitPush(Immediate(Factory::undefined_value()));
- __ Set(ecx, Immediate(Smi::FromInt(FALLING)));
- if (nof_unlinks > 0) {
- finally_block.Jump();
- }
- }
-
- // Generate code to unlink and set the state for the (formerly)
- // shadowing targets that have been jumped to.
- for (int i = 0; i < shadows.length(); i++) {
- if (shadows[i]->is_linked()) {
- // If we have come from the shadowed return, the return value is
- // on the virtual frame. We must preserve it until it is
- // pushed.
- if (i == kReturnShadowIndex) {
- Result return_value(this);
- shadows[i]->Bind(&return_value);
- return_value.ToRegister(eax);
- } else {
- shadows[i]->Bind();
- }
- // Because we can be jumping here (to spilled code) from
- // unspilled code, we need to reestablish a spilled frame at
- // this block.
- frame_->SpillAll();
-
- // Reload sp from the top handler, because some statements that
- // we break from (eg, for...in) may have left stuff on the
- // stack.
- __ mov(edx, Operand::StaticVariable(handler_address));
- const int kNextOffset = StackHandlerConstants::kNextOffset +
- StackHandlerConstants::kAddressDisplacement;
- __ lea(esp, Operand(edx, kNextOffset));
- frame_->Forget(frame_->height() - handler_height);
-
- // Unlink this handler and drop it from the frame.
- frame_->EmitPop(Operand::StaticVariable(handler_address));
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-
- if (i == kReturnShadowIndex) {
- // If this target shadowed the function return, materialize
- // the return value on the stack.
- frame_->EmitPush(eax);
- } else {
- // Fake TOS for targets that shadowed breaks and continues.
- frame_->EmitPush(Immediate(Factory::undefined_value()));
- }
- __ Set(ecx, Immediate(Smi::FromInt(JUMPING + i)));
- if (--nof_unlinks > 0) {
- // If this is not the last unlink block, jump around the next.
- finally_block.Jump();
- }
- }
- }
-
- // --- Finally block ---
- finally_block.Bind();
-
- // Push the state on the stack.
- frame_->EmitPush(ecx);
-
- // We keep two elements on the stack - the (possibly faked) result
- // and the state - while evaluating the finally block.
- //
- // Generate code for the statements in the finally block.
- VisitStatementsAndSpill(node->finally_block()->statements());
-
- if (has_valid_frame()) {
- // Restore state and return value or faked TOS.
- frame_->EmitPop(ecx);
- frame_->EmitPop(eax);
- }
-
- // Generate code to jump to the right destination for all used
- // formerly shadowing targets. Deallocate each shadow target.
- for (int i = 0; i < shadows.length(); i++) {
- if (has_valid_frame() && shadows[i]->is_bound()) {
- BreakTarget* original = shadows[i]->other_target();
- __ cmp(Operand(ecx), Immediate(Smi::FromInt(JUMPING + i)));
- if (i == kReturnShadowIndex) {
- // The return value is (already) in eax.
- Result return_value = allocator_->Allocate(eax);
- ASSERT(return_value.is_valid());
- if (function_return_is_shadowed_) {
- original->Branch(equal, &return_value);
- } else {
- // Branch around the preparation for return which may emit
- // code.
- JumpTarget skip(this);
- skip.Branch(not_equal);
- frame_->PrepareForReturn();
- original->Jump(&return_value);
- skip.Bind();
- }
- } else {
- original->Branch(equal);
- }
- }
- delete shadows[i];
- }
-
- if (has_valid_frame()) {
- // Check if we need to rethrow the exception.
- JumpTarget exit(this);
- __ cmp(Operand(ecx), Immediate(Smi::FromInt(THROWING)));
- exit.Branch(not_equal);
-
- // Rethrow exception.
- frame_->EmitPush(eax); // undo pop from above
- frame_->CallRuntime(Runtime::kReThrow, 1);
-
- // Done.
- exit.Bind();
- }
-}
-
-
-void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ DebuggerStatement");
- CodeForStatementPosition(node);
-#ifdef ENABLE_DEBUGGER_SUPPORT
- // Spill everything, even constants, to the frame.
- frame_->SpillAll();
- frame_->CallRuntime(Runtime::kDebugBreak, 0);
- // Ignore the return value.
-#endif
-}
-
-
-void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
- ASSERT(boilerplate->IsBoilerplate());
-
- // Push the boilerplate on the stack.
- frame_->Push(boilerplate);
-
- // Create a new closure.
- frame_->Push(esi);
- Result result = frame_->CallRuntime(Runtime::kNewClosure, 2);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
- Comment cmnt(masm_, "[ FunctionLiteral");
-
- // Build the function boilerplate and instantiate it.
- Handle<JSFunction> boilerplate = BuildBoilerplate(node);
- // Check for stack-overflow exception.
- if (HasStackOverflow()) return;
- InstantiateBoilerplate(boilerplate);
-}
-
-
-void CodeGenerator::VisitFunctionBoilerplateLiteral(
- FunctionBoilerplateLiteral* node) {
- Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
- InstantiateBoilerplate(node->boilerplate());
-}
-
-
-void CodeGenerator::VisitConditional(Conditional* node) {
- Comment cmnt(masm_, "[ Conditional");
- JumpTarget then(this);
- JumpTarget else_(this);
- JumpTarget exit(this);
- ControlDestination dest(&then, &else_, true);
- LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
-
- if (dest.false_was_fall_through()) {
- // The else target was bound, so we compile the else part first.
- Load(node->else_expression(), typeof_state());
-
- if (then.is_linked()) {
- exit.Jump();
- then.Bind();
- Load(node->then_expression(), typeof_state());
- }
- } else {
- // The then target was bound, so we compile the then part first.
- Load(node->then_expression(), typeof_state());
-
- if (else_.is_linked()) {
- exit.Jump();
- else_.Bind();
- Load(node->else_expression(), typeof_state());
- }
- }
-
- exit.Bind();
-}
-
-
-void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
- if (slot->type() == Slot::LOOKUP) {
- ASSERT(slot->var()->is_dynamic());
-
- JumpTarget slow(this);
- JumpTarget done(this);
- Result value(this);
-
- // Generate fast-case code for variables that might be shadowed by
- // eval-introduced variables. Eval is used a lot without
- // introducing variables. In those cases, we do not want to
- // perform a runtime call for all variables in the scope
- // containing the eval.
- if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
- value = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, &slow);
- // If there was no control flow to slow, we can exit early.
- if (!slow.is_linked()) {
- frame_->Push(&value);
- return;
- }
-
- done.Jump(&value);
-
- } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
- Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
- // Only generate the fast case for locals that rewrite to slots.
- // This rules out argument loads.
- if (potential_slot != NULL) {
- // Allocate a fresh register to use as a temp in
- // ContextSlotOperandCheckExtensions and to hold the result
- // value.
- value = allocator_->Allocate();
- ASSERT(value.is_valid());
- __ mov(value.reg(),
- ContextSlotOperandCheckExtensions(potential_slot,
- value,
- &slow));
- if (potential_slot->var()->mode() == Variable::CONST) {
- __ cmp(value.reg(), Factory::the_hole_value());
- done.Branch(not_equal, &value);
- __ mov(value.reg(), Factory::undefined_value());
- }
- // There is always control flow to slow from
- // ContextSlotOperandCheckExtensions so we have to jump around
- // it.
- done.Jump(&value);
- }
- }
-
- slow.Bind();
- frame_->Push(esi);
- frame_->Push(slot->var()->name());
- if (typeof_state == INSIDE_TYPEOF) {
- value =
- frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
- } else {
- value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
- }
-
- done.Bind(&value);
- frame_->Push(&value);
-
- } else if (slot->var()->mode() == Variable::CONST) {
- // Const slots may contain 'the hole' value (the constant hasn't been
- // initialized yet) which needs to be converted into the 'undefined'
- // value.
- //
- // We currently spill the virtual frame because constants use the
- // potentially unsafe direct-frame access of SlotOperand.
- VirtualFrame::SpilledScope spilled_scope(this);
- Comment cmnt(masm_, "[ Load const");
- JumpTarget exit(this);
- __ mov(ecx, SlotOperand(slot, ecx));
- __ cmp(ecx, Factory::the_hole_value());
- exit.Branch(not_equal);
- __ mov(ecx, Factory::undefined_value());
- exit.Bind();
- frame_->EmitPush(ecx);
-
- } else if (slot->type() == Slot::PARAMETER) {
- frame_->PushParameterAt(slot->index());
-
- } else if (slot->type() == Slot::LOCAL) {
- frame_->PushLocalAt(slot->index());
-
- } else {
- // The other remaining slot types (LOOKUP and GLOBAL) cannot reach
- // here.
- //
- // The use of SlotOperand below is safe for an unspilled frame
- // because it will always be a context slot.
- ASSERT(slot->type() == Slot::CONTEXT);
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(), SlotOperand(slot, temp.reg()));
- frame_->Push(&temp);
- }
-}
-
-
-Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
- Slot* slot,
- TypeofState typeof_state,
- JumpTarget* slow) {
- // Check that no extension objects have been created by calls to
- // eval from the current scope to the global scope.
- Result context(esi, this);
- Result tmp = allocator_->Allocate();
- ASSERT(tmp.is_valid()); // All non-reserved registers were available.
-
- Scope* s = scope();
- while (s != NULL) {
- if (s->num_heap_slots() > 0) {
- if (s->calls_eval()) {
- // Check that extension is NULL.
- __ cmp(ContextOperand(context.reg(), Context::EXTENSION_INDEX),
- Immediate(0));
- slow->Branch(not_equal, not_taken);
- }
- // Load next context in chain.
- __ mov(tmp.reg(), ContextOperand(context.reg(), Context::CLOSURE_INDEX));
- __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- context = tmp;
- }
- // If no outer scope calls eval, we do not need to check more
- // context extensions. If we have reached an eval scope, we check
- // all extensions from this point.
- if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
- s = s->outer_scope();
- }
-
- if (s->is_eval_scope()) {
- // Loop up the context chain. There is no frame effect so it is
- // safe to use raw labels here.
- Label next, fast;
- if (!context.reg().is(tmp.reg())) {
- __ mov(tmp.reg(), context.reg());
- }
- __ bind(&next);
- // Terminate at global context.
- __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
- Immediate(Factory::global_context_map()));
- __ j(equal, &fast);
- // Check that extension is NULL.
- __ cmp(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
- slow->Branch(not_equal, not_taken);
- // Load next context in chain.
- __ mov(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
- __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- __ jmp(&next);
- __ bind(&fast);
- }
- context.Unuse();
- tmp.Unuse();
-
- // All extension objects were empty and it is safe to use a global
- // load IC call.
- LoadGlobal();
- frame_->Push(slot->var()->name());
- RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
- ? RelocInfo::CODE_TARGET
- : RelocInfo::CODE_TARGET_CONTEXT;
- Result answer = frame_->CallLoadIC(mode);
-
- // Discard the global object. The result is in answer.
- frame_->Drop();
- return answer;
-}
-
-
-void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
- if (slot->type() == Slot::LOOKUP) {
- ASSERT(slot->var()->is_dynamic());
-
- // For now, just do a runtime call.
- frame_->Push(esi);
- frame_->Push(slot->var()->name());
-
- Result value(this);
- if (init_state == CONST_INIT) {
- // Same as the case for a normal store, but ignores attribute
- // (e.g. READ_ONLY) of context slot so that we can initialize const
- // properties (introduced via eval("const foo = (some expr);")). Also,
- // uses the current function context instead of the top context.
- //
- // Note that we must declare the foo upon entry of eval(), via a
- // context slot declaration, but we cannot initialize it at the same
- // time, because the const declaration may be at the end of the eval
- // code (sigh...) and the const variable may have been used before
- // (where its value is 'undefined'). Thus, we can only do the
- // initialization when we actually encounter the expression and when
- // the expression operands are defined and valid, and thus we need the
- // split into 2 operations: declaration of the context slot followed
- // by initialization.
- value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
- } else {
- value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
- }
- // Storing a variable must keep the (new) value on the expression
- // stack. This is necessary for compiling chained assignment
- // expressions.
- frame_->Push(&value);
-
- } else {
- ASSERT(!slot->var()->is_dynamic());
-
- JumpTarget exit(this);
- if (init_state == CONST_INIT) {
- ASSERT(slot->var()->mode() == Variable::CONST);
- // Only the first const initialization must be executed (the slot
- // still contains 'the hole' value). When the assignment is executed,
- // the code is identical to a normal store (see below).
- //
- // We spill the frame in the code below because the direct-frame
- // access of SlotOperand is potentially unsafe with an unspilled
- // frame.
- VirtualFrame::SpilledScope spilled_scope(this);
- Comment cmnt(masm_, "[ Init const");
- __ mov(ecx, SlotOperand(slot, ecx));
- __ cmp(ecx, Factory::the_hole_value());
- exit.Branch(not_equal);
- }
-
- // We must execute the store. Storing a variable must keep the (new)
- // value on the stack. This is necessary for compiling assignment
- // expressions.
- //
- // Note: We will reach here even with slot->var()->mode() ==
- // Variable::CONST because of const declarations which will initialize
- // consts to 'the hole' value and by doing so, end up calling this code.
- if (slot->type() == Slot::PARAMETER) {
- frame_->StoreToParameterAt(slot->index());
- } else if (slot->type() == Slot::LOCAL) {
- frame_->StoreToLocalAt(slot->index());
- } else {
- // The other slot types (LOOKUP and GLOBAL) cannot reach here.
- //
- // The use of SlotOperand below is safe for an unspilled frame
- // because the slot is a context slot.
- ASSERT(slot->type() == Slot::CONTEXT);
- frame_->Dup();
- Result value = frame_->Pop();
- value.ToRegister();
- Result start = allocator_->Allocate();
- ASSERT(start.is_valid());
- __ mov(SlotOperand(slot, start.reg()), value.reg());
- // RecordWrite may destroy the value registers.
- //
- // TODO(204): Avoid actually spilling when the value is not
- // needed (probably the common case).
- frame_->Spill(value.reg());
- int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- __ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
- // The results start, value, and temp are unused by going out of
- // scope.
- }
-
- exit.Bind();
- }
-}
-
-
-void CodeGenerator::VisitSlot(Slot* node) {
- Comment cmnt(masm_, "[ Slot");
- LoadFromSlot(node, typeof_state());
-}
-
-
-void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
- Comment cmnt(masm_, "[ VariableProxy");
- Variable* var = node->var();
- Expression* expr = var->rewrite();
- if (expr != NULL) {
- Visit(expr);
- } else {
- ASSERT(var->is_global());
- Reference ref(this, node);
- ref.GetValue(typeof_state());
- }
-}
-
-
-void CodeGenerator::VisitLiteral(Literal* node) {
- Comment cmnt(masm_, "[ Literal");
- frame_->Push(node->handle());
-}
-
-
-void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
- ASSERT(target.is_valid());
- ASSERT(value->IsSmi());
- int bits = reinterpret_cast<int>(*value);
- __ Set(target, Immediate(bits & 0x0000FFFF));
- __ xor_(target, bits & 0xFFFF0000);
-}
-
-
-bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
- if (!value->IsSmi()) return false;
- int int_value = Smi::cast(*value)->value();
- return !is_intn(int_value, kMaxSmiInlinedBits);
-}
-
-
-class DeferredRegExpLiteral: public DeferredCode {
- public:
- DeferredRegExpLiteral(CodeGenerator* generator, RegExpLiteral* node)
- : DeferredCode(generator), node_(node) {
- set_comment("[ DeferredRegExpLiteral");
- }
-
- virtual void Generate();
-
- private:
- RegExpLiteral* node_;
-};
-
-
-void DeferredRegExpLiteral::Generate() {
- Result literals(generator());
- enter()->Bind(&literals);
- // Since the entry is undefined we call the runtime system to
- // compute the literal.
-
- VirtualFrame* frame = generator()->frame();
- // Literal array (0).
- frame->Push(&literals);
- // Literal index (1).
- frame->Push(Smi::FromInt(node_->literal_index()));
- // RegExp pattern (2).
- frame->Push(node_->pattern());
- // RegExp flags (3).
- frame->Push(node_->flags());
- Result boilerplate =
- frame->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
- exit_.Jump(&boilerplate);
-}
-
-
-void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
- Comment cmnt(masm_, "[ RegExp Literal");
- DeferredRegExpLiteral* deferred = new DeferredRegExpLiteral(this, node);
-
- // Retrieve the literals array and check the allocated entry. Begin
- // with a writable copy of the function of this activation in a
- // register.
- frame_->PushFunction();
- Result literals = frame_->Pop();
- literals.ToRegister();
- frame_->Spill(literals.reg());
-
- // Load the literals array of the function.
- __ mov(literals.reg(),
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
-
- // Load the literal at the ast saved index.
- int literal_offset =
- FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
- Result boilerplate = allocator_->Allocate();
- ASSERT(boilerplate.is_valid());
- __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
-
- // Check whether we need to materialize the RegExp object. If so,
- // jump to the deferred code passing the literals array.
- __ cmp(boilerplate.reg(), Factory::undefined_value());
- deferred->enter()->Branch(equal, &literals, not_taken);
-
- literals.Unuse();
- // The deferred code returns the boilerplate object.
- deferred->BindExit(&boilerplate);
-
- // Push the boilerplate object.
- frame_->Push(&boilerplate);
-}
-
-
-// This deferred code stub will be used for creating the boilerplate
-// by calling Runtime_CreateObjectLiteral.
-// Each created boilerplate is stored in the JSFunction and they are
-// therefore context dependent.
-class DeferredObjectLiteral: public DeferredCode {
- public:
- DeferredObjectLiteral(CodeGenerator* generator,
- ObjectLiteral* node)
- : DeferredCode(generator), node_(node) {
- set_comment("[ DeferredObjectLiteral");
- }
-
- virtual void Generate();
-
- private:
- ObjectLiteral* node_;
-};
-
-
-void DeferredObjectLiteral::Generate() {
- Result literals(generator());
- enter()->Bind(&literals);
- // Since the entry is undefined we call the runtime system to
- // compute the literal.
-
- VirtualFrame* frame = generator()->frame();
- // Literal array (0).
- frame->Push(&literals);
- // Literal index (1).
- frame->Push(Smi::FromInt(node_->literal_index()));
- // Constant properties (2).
- frame->Push(node_->constant_properties());
- Result boilerplate =
- frame->CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
- exit_.Jump(&boilerplate);
-}
-
-
-void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
- Comment cmnt(masm_, "[ ObjectLiteral");
- DeferredObjectLiteral* deferred = new DeferredObjectLiteral(this, node);
-
- // Retrieve the literals array and check the allocated entry. Begin
- // with a writable copy of the function of this activation in a
- // register.
- frame_->PushFunction();
- Result literals = frame_->Pop();
- literals.ToRegister();
- frame_->Spill(literals.reg());
-
- // Load the literals array of the function.
- __ mov(literals.reg(),
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
-
- // Load the literal at the ast saved index.
- int literal_offset =
- FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
- Result boilerplate = allocator_->Allocate();
- ASSERT(boilerplate.is_valid());
- __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
-
- // Check whether we need to materialize the object literal boilerplate.
- // If so, jump to the deferred code passing the literals array.
- __ cmp(boilerplate.reg(), Factory::undefined_value());
- deferred->enter()->Branch(equal, &literals, not_taken);
-
- literals.Unuse();
- // The deferred code returns the boilerplate object.
- deferred->BindExit(&boilerplate);
-
- // Push the boilerplate object.
- frame_->Push(&boilerplate);
- // Clone the boilerplate object.
- Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
- if (node->depth() == 1) {
- clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
- }
- Result clone = frame_->CallRuntime(clone_function_id, 1);
- // Push the newly cloned literal object as the result.
- frame_->Push(&clone);
-
- for (int i = 0; i < node->properties()->length(); i++) {
- ObjectLiteral::Property* property = node->properties()->at(i);
- switch (property->kind()) {
- case ObjectLiteral::Property::CONSTANT:
- break;
- case ObjectLiteral::Property::MATERIALIZED_LITERAL:
- if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
- // else fall through.
- case ObjectLiteral::Property::COMPUTED: {
- Handle<Object> key(property->key()->handle());
- if (key->IsSymbol()) {
- // Duplicate the object as the IC receiver.
- frame_->Dup();
- Load(property->value());
- frame_->Push(key);
- Result ignored = frame_->CallStoreIC();
- // Drop the duplicated receiver and ignore the result.
- frame_->Drop();
- break;
- }
- // Fall through
- }
- case ObjectLiteral::Property::PROTOTYPE: {
- // Duplicate the object as an argument to the runtime call.
- frame_->Dup();
- Load(property->key());
- Load(property->value());
- Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3);
- // Ignore the result.
- break;
- }
- case ObjectLiteral::Property::SETTER: {
- // Duplicate the object as an argument to the runtime call.
- frame_->Dup();
- Load(property->key());
- frame_->Push(Smi::FromInt(1));
- Load(property->value());
- Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
- // Ignore the result.
- break;
- }
- case ObjectLiteral::Property::GETTER: {
- // Duplicate the object as an argument to the runtime call.
- frame_->Dup();
- Load(property->key());
- frame_->Push(Smi::FromInt(0));
- Load(property->value());
- Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
- // Ignore the result.
- break;
- }
- default: UNREACHABLE();
- }
- }
-}
-
-
-// This deferred code stub will be used for creating the boilerplate
-// by calling Runtime_CreateArrayLiteralBoilerplate.
-// Each created boilerplate is stored in the JSFunction and they are
-// therefore context dependent.
-class DeferredArrayLiteral: public DeferredCode {
- public:
- DeferredArrayLiteral(CodeGenerator* generator,
- ArrayLiteral* node)
- : DeferredCode(generator), node_(node) {
- set_comment("[ DeferredArrayLiteral");
- }
-
- virtual void Generate();
-
- private:
- ArrayLiteral* node_;
-};
-
-
-void DeferredArrayLiteral::Generate() {
- Result literals(generator());
- enter()->Bind(&literals);
- // Since the entry is undefined we call the runtime system to
- // compute the literal.
-
- VirtualFrame* frame = generator()->frame();
- // Literal array (0).
- frame->Push(&literals);
- // Literal index (1).
- frame->Push(Smi::FromInt(node_->literal_index()));
- // Constant properties (2).
- frame->Push(node_->literals());
- Result boilerplate =
- frame->CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3);
- exit_.Jump(&boilerplate);
-}
-
-
-void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
- Comment cmnt(masm_, "[ ArrayLiteral");
- DeferredArrayLiteral* deferred = new DeferredArrayLiteral(this, node);
-
- // Retrieve the literals array and check the allocated entry. Begin
- // with a writable copy of the function of this activation in a
- // register.
- frame_->PushFunction();
- Result literals = frame_->Pop();
- literals.ToRegister();
- frame_->Spill(literals.reg());
-
- // Load the literals array of the function.
- __ mov(literals.reg(),
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
-
- // Load the literal at the ast saved index.
- int literal_offset =
- FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
- Result boilerplate = allocator_->Allocate();
- ASSERT(boilerplate.is_valid());
- __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
-
- // Check whether we need to materialize the object literal boilerplate.
- // If so, jump to the deferred code passing the literals array.
- __ cmp(boilerplate.reg(), Factory::undefined_value());
- deferred->enter()->Branch(equal, &literals, not_taken);
-
- literals.Unuse();
- // The deferred code returns the boilerplate object.
- deferred->BindExit(&boilerplate);
-
- // Push the resulting array literal on the stack.
- frame_->Push(&boilerplate);
-
- // Clone the boilerplate object.
- Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
- if (node->depth() == 1) {
- clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
- }
- Result clone = frame_->CallRuntime(clone_function_id, 1);
- // Push the newly cloned literal object as the result.
- frame_->Push(&clone);
-
- // Generate code to set the elements in the array that are not
- // literals.
- for (int i = 0; i < node->values()->length(); i++) {
- Expression* value = node->values()->at(i);
-
- // If value is a literal the property value is already set in the
- // boilerplate object.
- if (value->AsLiteral() != NULL) continue;
- // If value is a materialized literal the property value is already set
- // in the boilerplate object if it is simple.
- if (CompileTimeValue::IsCompileTimeValue(value)) continue;
-
- // The property must be set by generated code.
- Load(value);
-
- // Get the property value off the stack.
- Result prop_value = frame_->Pop();
- prop_value.ToRegister();
-
- // Fetch the array literal while leaving a copy on the stack and
- // use it to get the elements array.
- frame_->Dup();
- Result elements = frame_->Pop();
- elements.ToRegister();
- frame_->Spill(elements.reg());
- // Get the elements array.
- __ mov(elements.reg(),
- FieldOperand(elements.reg(), JSObject::kElementsOffset));
-
- // Write to the indexed properties array.
- int offset = i * kPointerSize + Array::kHeaderSize;
- __ mov(FieldOperand(elements.reg(), offset), prop_value.reg());
-
- // Update the write barrier for the array address.
- frame_->Spill(prop_value.reg()); // Overwritten by the write barrier.
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg());
- }
-}
-
-
-void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
- ASSERT(!in_spilled_code());
- // Call runtime routine to allocate the catch extension object and
- // assign the exception value to the catch variable.
- Comment cmnt(masm_, "[ CatchExtensionObject");
- Load(node->key());
- Load(node->value());
- Result result =
- frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::VisitAssignment(Assignment* node) {
- Comment cmnt(masm_, "[ Assignment");
- CodeForStatementPosition(node);
-
- { Reference target(this, node->target());
- if (target.is_illegal()) {
- // Fool the virtual frame into thinking that we left the assignment's
- // value on the frame.
- frame_->Push(Smi::FromInt(0));
- return;
- }
- Variable* var = node->target()->AsVariableProxy()->AsVariable();
-
- if (node->starts_initialization_block()) {
- ASSERT(target.type() == Reference::NAMED ||
- target.type() == Reference::KEYED);
- // Change to slow case in the beginning of an initialization
- // block to avoid the quadratic behavior of repeatedly adding
- // fast properties.
-
- // The receiver is the argument to the runtime call. It is the
- // first value pushed when the reference was loaded to the
- // frame.
- frame_->PushElementAt(target.size() - 1);
- Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
- }
- if (node->op() == Token::ASSIGN ||
- node->op() == Token::INIT_VAR ||
- node->op() == Token::INIT_CONST) {
- Load(node->value());
-
- } else {
- Literal* literal = node->value()->AsLiteral();
- bool overwrite_value =
- (node->value()->AsBinaryOperation() != NULL &&
- node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
- Variable* right_var = node->value()->AsVariableProxy()->AsVariable();
- // There are two cases where the target is not read in the right hand
- // side, that are easy to test for: the right hand side is a literal,
- // or the right hand side is a different variable. TakeValue invalidates
- // the target, with an implicit promise that it will be written to again
- // before it is read.
- if (literal != NULL || (right_var != NULL && right_var != var)) {
- target.TakeValue(NOT_INSIDE_TYPEOF);
- } else {
- target.GetValue(NOT_INSIDE_TYPEOF);
- }
- Load(node->value());
- GenericBinaryOperation(node->binary_op(),
- node->type(),
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
- }
-
- if (var != NULL &&
- var->mode() == Variable::CONST &&
- node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
- // Assignment ignored - leave the value on the stack.
- } else {
- CodeForSourcePosition(node->position());
- if (node->op() == Token::INIT_CONST) {
- // Dynamic constant initializations must use the function context
- // and initialize the actual constant declared. Dynamic variable
- // initializations are simply assignments and use SetValue.
- target.SetValue(CONST_INIT);
- } else {
- target.SetValue(NOT_CONST_INIT);
- }
- if (node->ends_initialization_block()) {
- ASSERT(target.type() == Reference::NAMED ||
- target.type() == Reference::KEYED);
- // End of initialization block. Revert to fast case. The
- // argument to the runtime call is the receiver, which is the
- // first value pushed as part of the reference, which is below
- // the lhs value.
- frame_->PushElementAt(target.size());
- Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
- }
- }
- }
-}
-
-
-void CodeGenerator::VisitThrow(Throw* node) {
- Comment cmnt(masm_, "[ Throw");
- CodeForStatementPosition(node);
-
- Load(node->exception());
- Result result = frame_->CallRuntime(Runtime::kThrow, 1);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::VisitProperty(Property* node) {
- Comment cmnt(masm_, "[ Property");
- Reference property(this, node);
- property.GetValue(typeof_state());
-}
-
-
-void CodeGenerator::VisitCall(Call* node) {
- Comment cmnt(masm_, "[ Call");
-
- ZoneList<Expression*>* args = node->arguments();
-
- CodeForStatementPosition(node);
-
- // Check if the function is a variable or a property.
- Expression* function = node->expression();
- Variable* var = function->AsVariableProxy()->AsVariable();
- Property* property = function->AsProperty();
-
- // ------------------------------------------------------------------------
- // Fast-case: Use inline caching.
- // ---
- // According to ECMA-262, section 11.2.3, page 44, the function to call
- // must be resolved after the arguments have been evaluated. The IC code
- // automatically handles this by loading the arguments before the function
- // is resolved in cache misses (this also holds for megamorphic calls).
- // ------------------------------------------------------------------------
-
- if (var != NULL && !var->is_this() && var->is_global()) {
- // ----------------------------------
- // JavaScript example: 'foo(1, 2, 3)' // foo is global
- // ----------------------------------
-
- // Push the name of the function and the receiver onto the stack.
- frame_->Push(var->name());
-
- // Pass the global object as the receiver and let the IC stub
- // patch the stack to use the global proxy as 'this' in the
- // invoked function.
- LoadGlobal();
-
- // Load the arguments.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- // Call the IC initialization code.
- CodeForSourcePosition(node->position());
- Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
- arg_count,
- loop_nesting());
- frame_->RestoreContextRegister();
- // Replace the function on the stack with the result.
- frame_->SetElementAt(0, &result);
-
- } else if (var != NULL && var->slot() != NULL &&
- var->slot()->type() == Slot::LOOKUP) {
- // ----------------------------------
- // JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj
- // ----------------------------------
-
- // Load the function
- frame_->Push(esi);
- frame_->Push(var->name());
- frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
- // eax: slot value; edx: receiver
-
- // Load the receiver.
- frame_->Push(eax);
- frame_->Push(edx);
-
- // Call the function.
- CallWithArguments(args, node->position());
-
- } else if (property != NULL) {
- // Check if the key is a literal string.
- Literal* literal = property->key()->AsLiteral();
-
- if (literal != NULL && literal->handle()->IsSymbol()) {
- // ------------------------------------------------------------------
- // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
- // ------------------------------------------------------------------
-
- // Push the name of the function and the receiver onto the stack.
- frame_->Push(literal->handle());
- Load(property->obj());
-
- // Load the arguments.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- // Call the IC initialization code.
- CodeForSourcePosition(node->position());
- Result result =
- frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting());
- frame_->RestoreContextRegister();
- // Replace the function on the stack with the result.
- frame_->SetElementAt(0, &result);
-
- } else {
- // -------------------------------------------
- // JavaScript example: 'array[index](1, 2, 3)'
- // -------------------------------------------
-
- // Load the function to call from the property through a reference.
- Reference ref(this, property);
- ref.GetValue(NOT_INSIDE_TYPEOF);
-
- // Pass receiver to called function.
- if (property->is_synthetic()) {
- // Use global object as receiver.
- LoadGlobalReceiver();
- } else {
- // The reference's size is non-negative.
- frame_->PushElementAt(ref.size());
- }
-
- // Call the function.
- CallWithArguments(args, node->position());
- }
-
- } else {
- // ----------------------------------
- // JavaScript example: 'foo(1, 2, 3)' // foo is not global
- // ----------------------------------
-
- // Load the function.
- Load(function);
-
- // Pass the global proxy as the receiver.
- LoadGlobalReceiver();
-
- // Call the function.
- CallWithArguments(args, node->position());
- }
-}
-
-
-void CodeGenerator::VisitCallNew(CallNew* node) {
- Comment cmnt(masm_, "[ CallNew");
- CodeForStatementPosition(node);
-
- // According to ECMA-262, section 11.2.2, page 44, the function
- // expression in new calls must be evaluated before the
- // arguments. This is different from ordinary calls, where the
- // actual function to call is resolved after the arguments have been
- // evaluated.
-
- // Compute function to call and use the global object as the
- // receiver. There is no need to use the global proxy here because
- // it will always be replaced with a newly allocated object.
- Load(node->expression());
- LoadGlobal();
-
- // Push the arguments ("left-to-right") on the stack.
- ZoneList<Expression*>* args = node->arguments();
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- // Call the construct call builtin that handles allocation and
- // constructor invocation.
- CodeForSourcePosition(node->position());
- Result result = frame_->CallConstructor(arg_count);
- // Replace the function on the stack with the result.
- frame_->SetElementAt(0, &result);
-}
-
-
-void CodeGenerator::VisitCallEval(CallEval* node) {
- Comment cmnt(masm_, "[ CallEval");
-
- // In a call to eval, we first call %ResolvePossiblyDirectEval to resolve
- // the function we need to call and the receiver of the call.
- // Then we call the resolved function using the given arguments.
-
- ZoneList<Expression*>* args = node->arguments();
- Expression* function = node->expression();
-
- CodeForStatementPosition(node);
-
- // Prepare the stack for the call to the resolved function.
- Load(function);
-
- // Allocate a frame slot for the receiver.
- frame_->Push(Factory::undefined_value());
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- // Prepare the stack for the call to ResolvePossiblyDirectEval.
- frame_->PushElementAt(arg_count + 1);
- if (arg_count > 0) {
- frame_->PushElementAt(arg_count);
- } else {
- frame_->Push(Factory::undefined_value());
- }
-
- // Resolve the call.
- Result result =
- frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 2);
-
- // Touch up the stack with the right values for the function and the
- // receiver. Use a scratch register to avoid destroying the result.
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- __ mov(scratch.reg(), FieldOperand(result.reg(), FixedArray::kHeaderSize));
- frame_->SetElementAt(arg_count + 1, &scratch);
-
- // We can reuse the result register now.
- frame_->Spill(result.reg());
- __ mov(result.reg(),
- FieldOperand(result.reg(), FixedArray::kHeaderSize + kPointerSize));
- frame_->SetElementAt(arg_count, &result);
-
- // Call the function.
- CodeForSourcePosition(node->position());
- CallFunctionStub call_function(arg_count);
- result = frame_->CallStub(&call_function, arg_count + 1);
-
- // Restore the context and overwrite the function on the stack with
- // the result.
- frame_->RestoreContextRegister();
- frame_->SetElementAt(0, &result);
-}
-
-
-void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- __ test(value.reg(), Immediate(kSmiTagMask));
- value.Unuse();
- destination()->Split(zero);
-}
-
-
-void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
- // Conditionally generate a log call.
- // Args:
- // 0 (literal string): The type of logging (corresponds to the flags).
- // This is used to determine whether or not to generate the log call.
- // 1 (string): Format string. Access the string at argument index 2
- // with '%2s' (see Logger::LogRuntime for all the formats).
- // 2 (array): Arguments to the format string.
- ASSERT_EQ(args->length(), 3);
-#ifdef ENABLE_LOGGING_AND_PROFILING
- if (ShouldGenerateLog(args->at(0))) {
- Load(args->at(1));
- Load(args->at(2));
- frame_->CallRuntime(Runtime::kLog, 2);
- }
-#endif
- // Finally, we're expected to leave a value on the top of the stack.
- frame_->Push(Factory::undefined_value());
-}
-
-
-void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- __ test(value.reg(), Immediate(kSmiTagMask | 0x80000000));
- value.Unuse();
- destination()->Split(zero);
-}
-
-
-// This generates code that performs a charCodeAt() call or returns
-// undefined in order to trigger the slow case, Runtime_StringCharCodeAt.
-// It can handle flat and sliced strings, 8 and 16 bit characters and
-// cons strings where the answer is found in the left hand branch of the
-// cons. The slow case will flatten the string, which will ensure that
-// the answer is in the left hand side the next time around.
-void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 2);
-
- JumpTarget slow_case(this);
- JumpTarget end(this);
- JumpTarget not_a_flat_string(this);
- JumpTarget a_cons_string(this);
- JumpTarget try_again_with_new_string(this, JumpTarget::BIDIRECTIONAL);
- JumpTarget ascii_string(this);
- JumpTarget got_char_code(this);
-
- Load(args->at(0));
- Load(args->at(1));
- // Reserve register ecx, to use as shift amount later
- Result shift_amount = allocator()->Allocate(ecx);
- ASSERT(shift_amount.is_valid());
- Result index = frame_->Pop();
- index.ToRegister();
- Result object = frame_->Pop();
- object.ToRegister();
- // If the receiver is a smi return undefined.
- ASSERT(kSmiTag == 0);
- __ test(object.reg(), Immediate(kSmiTagMask));
- slow_case.Branch(zero, not_taken);
-
- // Check for negative or non-smi index.
- ASSERT(kSmiTag == 0);
- __ test(index.reg(), Immediate(kSmiTagMask | 0x80000000));
- slow_case.Branch(not_zero, not_taken);
- // Get rid of the smi tag on the index.
- frame_->Spill(index.reg());
- __ sar(index.reg(), kSmiTagSize);
-
- try_again_with_new_string.Bind(&object, &index, &shift_amount);
- // Get the type of the heap object.
- Result object_type = allocator()->Allocate();
- ASSERT(object_type.is_valid());
- __ mov(object_type.reg(), FieldOperand(object.reg(), HeapObject::kMapOffset));
- __ movzx_b(object_type.reg(),
- FieldOperand(object_type.reg(), Map::kInstanceTypeOffset));
- // We don't handle non-strings.
- __ test(object_type.reg(), Immediate(kIsNotStringMask));
- slow_case.Branch(not_zero, not_taken);
-
- // Here we make assumptions about the tag values and the shifts needed.
- // See the comment in objects.h.
- ASSERT(kLongStringTag == 0);
- ASSERT(kMediumStringTag + String::kLongLengthShift ==
- String::kMediumLengthShift);
- ASSERT(kShortStringTag + String::kLongLengthShift ==
- String::kShortLengthShift);
- __ mov(shift_amount.reg(), Operand(object_type.reg()));
- __ and_(shift_amount.reg(), kStringSizeMask);
- __ add(Operand(shift_amount.reg()), Immediate(String::kLongLengthShift));
- // Get the length field. Temporary register now used for length.
- Result length = object_type;
- __ mov(length.reg(), FieldOperand(object.reg(), String::kLengthOffset));
- __ shr(length.reg()); // shift_amount, in ecx, is implicit operand.
- // Check for index out of range.
- __ cmp(index.reg(), Operand(length.reg()));
- slow_case.Branch(greater_equal, not_taken);
- length.Unuse();
- // Load the object type into object_type again.
- // These two instructions are duplicated from above, to save a register.
- __ mov(object_type.reg(), FieldOperand(object.reg(), HeapObject::kMapOffset));
- __ movzx_b(object_type.reg(),
- FieldOperand(object_type.reg(), Map::kInstanceTypeOffset));
-
- // We need special handling for non-flat strings.
- ASSERT(kSeqStringTag == 0);
- __ test(object_type.reg(), Immediate(kStringRepresentationMask));
- not_a_flat_string.Branch(not_zero, &object, &index, &object_type,
- &shift_amount, not_taken);
- shift_amount.Unuse();
- // Check for 1-byte or 2-byte string.
- __ test(object_type.reg(), Immediate(kStringEncodingMask));
- ascii_string.Branch(not_zero, &object, &index, &object_type, taken);
-
- // 2-byte string.
- // Load the 2-byte character code.
- __ movzx_w(object_type.reg(), FieldOperand(object.reg(),
- index.reg(),
- times_2,
- SeqTwoByteString::kHeaderSize));
- object.Unuse();
- index.Unuse();
- got_char_code.Jump(&object_type);
-
- // ASCII string.
- ascii_string.Bind(&object, &index, &object_type);
- // Load the byte.
- __ movzx_b(object_type.reg(), FieldOperand(object.reg(),
- index.reg(),
- times_1,
- SeqAsciiString::kHeaderSize));
- object.Unuse();
- index.Unuse();
- got_char_code.Bind(&object_type);
- ASSERT(kSmiTag == 0);
- __ shl(object_type.reg(), kSmiTagSize);
- frame_->Push(&object_type);
- end.Jump();
-
- // Handle non-flat strings.
- not_a_flat_string.Bind(&object, &index, &object_type, &shift_amount);
- __ and_(object_type.reg(), kStringRepresentationMask);
- __ cmp(object_type.reg(), kConsStringTag);
- a_cons_string.Branch(equal, &object, &index, &shift_amount, taken);
- __ cmp(object_type.reg(), kSlicedStringTag);
- slow_case.Branch(not_equal, not_taken);
- object_type.Unuse();
-
- // SlicedString.
- // Add the offset to the index.
- __ add(index.reg(), FieldOperand(object.reg(), SlicedString::kStartOffset));
- slow_case.Branch(overflow);
- // Getting the underlying string is done by running the cons string code.
-
- // ConsString.
- a_cons_string.Bind(&object, &index, &shift_amount);
- // Get the first of the two strings.
- frame_->Spill(object.reg());
- // Both sliced and cons strings store their source string at the same place.
- ASSERT(SlicedString::kBufferOffset == ConsString::kFirstOffset);
- __ mov(object.reg(), FieldOperand(object.reg(), ConsString::kFirstOffset));
- try_again_with_new_string.Jump(&object, &index, &shift_amount);
-
- // No results live at this point.
- slow_case.Bind();
- frame_->Push(Factory::undefined_value());
- end.Bind();
-}
-
-
-void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- __ test(value.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(equal);
- // It is a heap object - get map.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- // Check if the object is a JS array or not.
- __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, temp.reg());
- value.Unuse();
- temp.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 0);
- // ArgumentsAccessStub takes the parameter count as an input argument
- // in register eax. Create a constant result for it.
- Result count(Handle<Smi>(Smi::FromInt(scope_->num_parameters())), this);
- // Call the shared stub to get to the arguments.length.
- ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH);
- Result result = frame_->CallStub(&stub, &count);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- JumpTarget leave(this);
- Load(args->at(0)); // Load the object.
- frame_->Dup();
- Result object = frame_->Pop();
- object.ToRegister();
- ASSERT(object.is_valid());
- // if (object->IsSmi()) return object.
- __ test(object.reg(), Immediate(kSmiTagMask));
- leave.Branch(zero, taken);
- // It is a heap object - get map.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- // if (!object->IsJSValue()) return object.
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
- leave.Branch(not_equal, not_taken);
- __ mov(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
- object.Unuse();
- frame_->SetElementAt(0, &temp);
- leave.Bind();
-}
-
-
-void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 2);
- JumpTarget leave(this);
- Load(args->at(0)); // Load the object.
- Load(args->at(1)); // Load the value.
- Result value = frame_->Pop();
- Result object = frame_->Pop();
- value.ToRegister();
- object.ToRegister();
-
- // if (object->IsSmi()) return value.
- __ test(object.reg(), Immediate(kSmiTagMask));
- leave.Branch(zero, &value, taken);
-
- // It is a heap object - get its map.
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- // if (!object->IsJSValue()) return value.
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
- leave.Branch(not_equal, &value, not_taken);
-
- // Store the value.
- __ mov(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
- // Update the write barrier. Save the value as it will be
- // overwritten by the write barrier code and is needed afterward.
- Result duplicate_value = allocator_->Allocate();
- ASSERT(duplicate_value.is_valid());
- __ mov(duplicate_value.reg(), value.reg());
- // The object register is also overwritten by the write barrier and
- // possibly aliased in the frame.
- frame_->Spill(object.reg());
- __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
- scratch.reg());
- object.Unuse();
- scratch.Unuse();
- duplicate_value.Unuse();
-
- // Leave.
- leave.Bind(&value);
- frame_->Push(&value);
-}
-
-
-void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
-
- // ArgumentsAccessStub expects the key in edx and the formal
- // parameter count in eax.
- Load(args->at(0));
- Result key = frame_->Pop();
- // Explicitly create a constant result.
- Result count(Handle<Smi>(Smi::FromInt(scope_->num_parameters())), this);
- // Call the shared stub to get to arguments[key].
- ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
- Result result = frame_->CallStub(&stub, &key, &count);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 2);
-
- // Load the two objects into registers and perform the comparison.
- Load(args->at(0));
- Load(args->at(1));
- Result right = frame_->Pop();
- Result left = frame_->Pop();
- right.ToRegister();
- left.ToRegister();
- __ cmp(right.reg(), Operand(left.reg()));
- right.Unuse();
- left.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
- if (CheckForInlineRuntimeCall(node)) {
- return;
- }
-
- ZoneList<Expression*>* args = node->arguments();
- Comment cmnt(masm_, "[ CallRuntime");
- Runtime::Function* function = node->function();
-
- if (function == NULL) {
- // Prepare stack for calling JS runtime function.
- frame_->Push(node->name());
- // Push the builtins object found in the current global object.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(), GlobalObject());
- __ mov(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
- frame_->Push(&temp);
- }
-
- // Push the arguments ("left-to-right").
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- if (function == NULL) {
- // Call the JS runtime function. Pass 0 as the loop nesting depth
- // because we do not handle runtime calls specially in loops.
- Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, 0);
- frame_->RestoreContextRegister();
- frame_->SetElementAt(0, &answer);
- } else {
- // Call the C runtime function.
- Result answer = frame_->CallRuntime(function, arg_count);
- frame_->Push(&answer);
- }
-}
-
-
-void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
- // Note that because of NOT and an optimization in comparison of a typeof
- // expression to a literal string, this function can fail to leave a value
- // on top of the frame or in the cc register.
- Comment cmnt(masm_, "[ UnaryOperation");
-
- Token::Value op = node->op();
-
- if (op == Token::NOT) {
- // Swap the true and false targets but keep the same actual label
- // as the fall through.
- destination()->Invert();
- LoadCondition(node->expression(), NOT_INSIDE_TYPEOF, destination(), true);
- // Swap the labels back.
- destination()->Invert();
-
- } else if (op == Token::DELETE) {
- Property* property = node->expression()->AsProperty();
- if (property != NULL) {
- Load(property->obj());
- Load(property->key());
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2);
- frame_->Push(&answer);
- return;
- }
-
- Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
- if (variable != NULL) {
- Slot* slot = variable->slot();
- if (variable->is_global()) {
- LoadGlobal();
- frame_->Push(variable->name());
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
- CALL_FUNCTION, 2);
- frame_->Push(&answer);
- return;
-
- } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
- // lookup the context holding the named variable
- frame_->Push(esi);
- frame_->Push(variable->name());
- Result context = frame_->CallRuntime(Runtime::kLookupContext, 2);
- frame_->Push(&context);
- frame_->Push(variable->name());
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
- CALL_FUNCTION, 2);
- frame_->Push(&answer);
- return;
- }
-
- // Default: Result of deleting non-global, not dynamically
- // introduced variables is false.
- frame_->Push(Factory::false_value());
-
- } else {
- // Default: Result of deleting expressions is true.
- Load(node->expression()); // may have side-effects
- frame_->SetElementAt(0, Factory::true_value());
- }
-
- } else if (op == Token::TYPEOF) {
- // Special case for loading the typeof expression; see comment on
- // LoadTypeofExpression().
- LoadTypeofExpression(node->expression());
- Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
- frame_->Push(&answer);
-
- } else if (op == Token::VOID) {
- Expression* expression = node->expression();
- if (expression && expression->AsLiteral() && (
- expression->AsLiteral()->IsTrue() ||
- expression->AsLiteral()->IsFalse() ||
- expression->AsLiteral()->handle()->IsNumber() ||
- expression->AsLiteral()->handle()->IsString() ||
- expression->AsLiteral()->handle()->IsJSRegExp() ||
- expression->AsLiteral()->IsNull())) {
- // Omit evaluating the value of the primitive literal.
- // It will be discarded anyway, and can have no side effect.
- frame_->Push(Factory::undefined_value());
- } else {
- Load(node->expression());
- frame_->SetElementAt(0, Factory::undefined_value());
- }
-
- } else {
- Load(node->expression());
- switch (op) {
- case Token::NOT:
- case Token::DELETE:
- case Token::TYPEOF:
- UNREACHABLE(); // handled above
- break;
-
- case Token::SUB: {
- UnarySubStub stub;
- // TODO(1222589): remove dependency of TOS being cached inside stub
- Result operand = frame_->Pop();
- Result answer = frame_->CallStub(&stub, &operand);
- frame_->Push(&answer);
- break;
- }
-
- case Token::BIT_NOT: {
- // Smi check.
- JumpTarget smi_label(this);
- JumpTarget continue_label(this);
- Result operand = frame_->Pop();
- operand.ToRegister();
- __ test(operand.reg(), Immediate(kSmiTagMask));
- smi_label.Branch(zero, &operand, taken);
-
- frame_->Push(&operand); // undo popping of TOS
- Result answer = frame_->InvokeBuiltin(Builtins::BIT_NOT,
- CALL_FUNCTION, 1);
-
- continue_label.Jump(&answer);
- smi_label.Bind(&answer);
- answer.ToRegister();
- frame_->Spill(answer.reg());
- __ not_(answer.reg());
- __ and_(answer.reg(), ~kSmiTagMask); // Remove inverted smi-tag.
- continue_label.Bind(&answer);
- frame_->Push(&answer);
- break;
- }
-
- case Token::ADD: {
- // Smi check.
- JumpTarget continue_label(this);
- Result operand = frame_->Pop();
- operand.ToRegister();
- __ test(operand.reg(), Immediate(kSmiTagMask));
- continue_label.Branch(zero, &operand, taken);
-
- frame_->Push(&operand);
- Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
- CALL_FUNCTION, 1);
-
- continue_label.Bind(&answer);
- frame_->Push(&answer);
- break;
- }
-
- default:
- UNREACHABLE();
- }
- }
-}
-
-
-class DeferredCountOperation: public DeferredCode {
- public:
- DeferredCountOperation(CodeGenerator* generator,
- bool is_postfix,
- bool is_increment,
- int target_size)
- : DeferredCode(generator),
- is_postfix_(is_postfix),
- is_increment_(is_increment),
- target_size_(target_size) {
- set_comment("[ DeferredCountOperation");
- }
-
- virtual void Generate();
-
- private:
- bool is_postfix_;
- bool is_increment_;
- int target_size_;
-};
-
-
-void DeferredCountOperation::Generate() {
- CodeGenerator* cgen = generator();
- Result value(cgen);
- enter()->Bind(&value);
- VirtualFrame* frame = cgen->frame();
- // Undo the optimistic smi operation.
- value.ToRegister();
- frame->Spill(value.reg());
- if (is_increment_) {
- __ sub(Operand(value.reg()), Immediate(Smi::FromInt(1)));
- } else {
- __ add(Operand(value.reg()), Immediate(Smi::FromInt(1)));
- }
- frame->Push(&value);
- value = frame->InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION, 1);
- frame->Push(&value);
- if (is_postfix_) { // Fix up copy of old value with ToNumber(value).
- // This is only safe because VisitCountOperation makes this frame slot
- // beneath the reference a register, which is spilled at the above call.
- // We cannot safely write to constants or copies below the water line.
- frame->StoreToElementAt(target_size_ + 1);
- }
- frame->Push(Smi::FromInt(1));
- if (is_increment_) {
- value = frame->CallRuntime(Runtime::kNumberAdd, 2);
- } else {
- value = frame->CallRuntime(Runtime::kNumberSub, 2);
- }
- exit_.Jump(&value);
-}
-
-
-void CodeGenerator::VisitCountOperation(CountOperation* node) {
- Comment cmnt(masm_, "[ CountOperation");
-
- bool is_postfix = node->is_postfix();
- bool is_increment = node->op() == Token::INC;
-
- Variable* var = node->expression()->AsVariableProxy()->AsVariable();
- bool is_const = (var != NULL && var->mode() == Variable::CONST);
-
- // Postfix operators need a stack slot under the reference to hold
- // the old value while the new one is being stored.
- if (is_postfix) {
- frame_->Push(Smi::FromInt(0));
- }
-
- { Reference target(this, node->expression());
- if (target.is_illegal()) {
- // Spoof the virtual frame to have the expected height (one higher
- // than on entry).
- if (!is_postfix) {
- frame_->Push(Smi::FromInt(0));
- }
- return;
- }
- target.TakeValue(NOT_INSIDE_TYPEOF);
-
- DeferredCountOperation* deferred =
- new DeferredCountOperation(this, is_postfix,
- is_increment, target.size());
-
- Result value = frame_->Pop();
- value.ToRegister();
-
- // Postfix: Store the old value as the result.
- if (is_postfix) {
- // Explicitly back the slot for the old value with a new register.
- // This improves performance in some cases.
- Result old_value = allocator_->Allocate();
- ASSERT(old_value.is_valid());
- __ mov(old_value.reg(), value.reg());
- // SetElement must not create a constant element or a copy in this slot,
- // since we will write to it, below the waterline, in deferred code.
- frame_->SetElementAt(target.size(), &old_value);
- }
-
- // Perform optimistic increment/decrement. Ensure the value is
- // writable.
- frame_->Spill(value.reg());
- ASSERT(allocator_->count(value.reg()) == 1);
-
- // In order to combine the overflow and the smi check, we need to
- // be able to allocate a byte register. We attempt to do so
- // without spilling. If we fail, we will generate separate
- // overflow and smi checks.
- //
- // We need to allocate and clear the temporary byte register
- // before performing the count operation since clearing the
- // register using xor will clear the overflow flag.
- Result tmp = allocator_->AllocateByteRegisterWithoutSpilling();
- if (tmp.is_valid()) {
- __ Set(tmp.reg(), Immediate(0));
- }
-
- if (is_increment) {
- __ add(Operand(value.reg()), Immediate(Smi::FromInt(1)));
- } else {
- __ sub(Operand(value.reg()), Immediate(Smi::FromInt(1)));
- }
-
- // If the count operation didn't overflow and the result is a
- // valid smi, we're done. Otherwise, we jump to the deferred
- // slow-case code.
- //
- // We combine the overflow and the smi check if we could
- // successfully allocate a temporary byte register.
- if (tmp.is_valid()) {
- __ setcc(overflow, tmp.reg());
- __ or_(Operand(value.reg()), tmp.reg());
- tmp.Unuse();
- __ test(value.reg(), Immediate(kSmiTagMask));
- deferred->enter()->Branch(not_zero, &value, not_taken);
- } else { // Otherwise we test separately for overflow and smi check.
- deferred->enter()->Branch(overflow, &value, not_taken);
- __ test(value.reg(), Immediate(kSmiTagMask));
- deferred->enter()->Branch(not_zero, &value, not_taken);
- }
-
- // Store the new value in the target if not const.
- deferred->BindExit(&value);
- frame_->Push(&value);
- if (!is_const) {
- target.SetValue(NOT_CONST_INIT);
- }
- }
-
- // Postfix: Discard the new value and use the old.
- if (is_postfix) {
- frame_->Drop();
- }
-}
-
-
-void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
- // Note that due to an optimization in comparison operations (typeof
- // compared to a string literal), we can evaluate a binary expression such
- // as AND or OR and not leave a value on the frame or in the cc register.
- Comment cmnt(masm_, "[ BinaryOperation");
- Token::Value op = node->op();
-
- // According to ECMA-262 section 11.11, page 58, the binary logical
- // operators must yield the result of one of the two expressions
- // before any ToBoolean() conversions. This means that the value
- // produced by a && or || operator is not necessarily a boolean.
-
- // NOTE: If the left hand side produces a materialized value (not
- // control flow), we force the right hand side to do the same. This
- // is necessary because we assume that if we get control flow on the
- // last path out of an expression we got it on all paths.
- if (op == Token::AND) {
- JumpTarget is_true(this);
- ControlDestination dest(&is_true, destination()->false_target(), true);
- LoadCondition(node->left(), NOT_INSIDE_TYPEOF, &dest, false);
-
- if (dest.false_was_fall_through()) {
- // The current false target was used as the fall-through. If
- // there are no dangling jumps to is_true then the left
- // subexpression was unconditionally false. Otherwise we have
- // paths where we do have to evaluate the right subexpression.
- if (is_true.is_linked()) {
- // We need to compile the right subexpression. If the jump to
- // the current false target was a forward jump then we have a
- // valid frame, we have just bound the false target, and we
- // have to jump around the code for the right subexpression.
- if (has_valid_frame()) {
- destination()->false_target()->Unuse();
- destination()->false_target()->Jump();
- }
- is_true.Bind();
- // The left subexpression compiled to control flow, so the
- // right one is free to do so as well.
- LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
- } else {
- // We have actually just jumped to or bound the current false
- // target but the current control destination is not marked as
- // used.
- destination()->Use(false);
- }
-
- } else if (dest.is_used()) {
- // The left subexpression compiled to control flow (and is_true
- // was just bound), so the right is free to do so as well.
- LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
-
- } else {
- // We have a materialized value on the frame, so we exit with
- // one on all paths. There are possibly also jumps to is_true
- // from nested subexpressions.
- JumpTarget pop_and_continue(this);
- JumpTarget exit(this);
-
- // Avoid popping the result if it converts to 'false' using the
- // standard ToBoolean() conversion as described in ECMA-262,
- // section 9.2, page 30.
- //
- // Duplicate the TOS value. The duplicate will be popped by
- // ToBoolean.
- frame_->Dup();
- ControlDestination dest(&pop_and_continue, &exit, true);
- ToBoolean(&dest);
-
- // Pop the result of evaluating the first part.
- frame_->Drop();
-
- // Compile right side expression.
- is_true.Bind();
- Load(node->right());
-
- // Exit (always with a materialized value).
- exit.Bind();
- }
-
- } else if (op == Token::OR) {
- JumpTarget is_false(this);
- ControlDestination dest(destination()->true_target(), &is_false, false);
- LoadCondition(node->left(), NOT_INSIDE_TYPEOF, &dest, false);
-
- if (dest.true_was_fall_through()) {
- // The current true target was used as the fall-through. If
- // there are no dangling jumps to is_false then the left
- // subexpression was unconditionally true. Otherwise we have
- // paths where we do have to evaluate the right subexpression.
- if (is_false.is_linked()) {
- // We need to compile the right subexpression. If the jump to
- // the current true target was a forward jump then we have a
- // valid frame, we have just bound the true target, and we
- // have to jump around the code for the right subexpression.
- if (has_valid_frame()) {
- destination()->true_target()->Unuse();
- destination()->true_target()->Jump();
- }
- is_false.Bind();
- // The left subexpression compiled to control flow, so the
- // right one is free to do so as well.
- LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
- } else {
- // We have just jumped to or bound the current true target but
- // the current control destination is not marked as used.
- destination()->Use(true);
- }
-
- } else if (dest.is_used()) {
- // The left subexpression compiled to control flow (and is_false
- // was just bound), so the right is free to do so as well.
- LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
-
- } else {
- // We have a materialized value on the frame, so we exit with
- // one on all paths. There are possibly also jumps to is_false
- // from nested subexpressions.
- JumpTarget pop_and_continue(this);
- JumpTarget exit(this);
-
- // Avoid popping the result if it converts to 'true' using the
- // standard ToBoolean() conversion as described in ECMA-262,
- // section 9.2, page 30.
- //
- // Duplicate the TOS value. The duplicate will be popped by
- // ToBoolean.
- frame_->Dup();
- ControlDestination dest(&exit, &pop_and_continue, false);
- ToBoolean(&dest);
-
- // Pop the result of evaluating the first part.
- frame_->Drop();
-
- // Compile right side expression.
- is_false.Bind();
- Load(node->right());
-
- // Exit (always with a materialized value).
- exit.Bind();
- }
-
- } else {
- // NOTE: The code below assumes that the slow cases (calls to runtime)
- // never return a constant/immutable object.
- OverwriteMode overwrite_mode = NO_OVERWRITE;
- if (node->left()->AsBinaryOperation() != NULL &&
- node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) {
- overwrite_mode = OVERWRITE_LEFT;
- } else if (node->right()->AsBinaryOperation() != NULL &&
- node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) {
- overwrite_mode = OVERWRITE_RIGHT;
- }
-
- Load(node->left());
- Load(node->right());
- GenericBinaryOperation(node->op(), node->type(), overwrite_mode);
- }
-}
-
-
-void CodeGenerator::VisitThisFunction(ThisFunction* node) {
- frame_->PushFunction();
-}
-
-
-class InstanceofStub: public CodeStub {
- public:
- InstanceofStub() { }
-
- void Generate(MacroAssembler* masm);
-
- private:
- Major MajorKey() { return Instanceof; }
- int MinorKey() { return 0; }
-};
-
-
-void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
- Comment cmnt(masm_, "[ CompareOperation");
-
- // Get the expressions from the node.
- Expression* left = node->left();
- Expression* right = node->right();
- Token::Value op = node->op();
- // To make typeof testing for natives implemented in JavaScript really
- // efficient, we generate special code for expressions of the form:
- // 'typeof <expression> == <string>'.
- UnaryOperation* operation = left->AsUnaryOperation();
- if ((op == Token::EQ || op == Token::EQ_STRICT) &&
- (operation != NULL && operation->op() == Token::TYPEOF) &&
- (right->AsLiteral() != NULL &&
- right->AsLiteral()->handle()->IsString())) {
- Handle<String> check(String::cast(*right->AsLiteral()->handle()));
-
- // Load the operand and move it to a register.
- LoadTypeofExpression(operation->expression());
- Result answer = frame_->Pop();
- answer.ToRegister();
-
- if (check->Equals(Heap::number_symbol())) {
- __ test(answer.reg(), Immediate(kSmiTagMask));
- destination()->true_target()->Branch(zero);
- frame_->Spill(answer.reg());
- __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ cmp(answer.reg(), Factory::heap_number_map());
- answer.Unuse();
- destination()->Split(equal);
-
- } else if (check->Equals(Heap::string_symbol())) {
- __ test(answer.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(zero);
-
- // It can be an undetectable string object.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kBitFieldOffset));
- __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable));
- destination()->false_target()->Branch(not_zero);
- __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ movzx_b(temp.reg(),
- FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
- __ cmp(temp.reg(), FIRST_NONSTRING_TYPE);
- temp.Unuse();
- answer.Unuse();
- destination()->Split(less);
-
- } else if (check->Equals(Heap::boolean_symbol())) {
- __ cmp(answer.reg(), Factory::true_value());
- destination()->true_target()->Branch(equal);
- __ cmp(answer.reg(), Factory::false_value());
- answer.Unuse();
- destination()->Split(equal);
-
- } else if (check->Equals(Heap::undefined_symbol())) {
- __ cmp(answer.reg(), Factory::undefined_value());
- destination()->true_target()->Branch(equal);
-
- __ test(answer.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(zero);
-
- // It can be an undetectable object.
- frame_->Spill(answer.reg());
- __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ movzx_b(answer.reg(),
- FieldOperand(answer.reg(), Map::kBitFieldOffset));
- __ test(answer.reg(), Immediate(1 << Map::kIsUndetectable));
- answer.Unuse();
- destination()->Split(not_zero);
-
- } else if (check->Equals(Heap::function_symbol())) {
- __ test(answer.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(zero);
- frame_->Spill(answer.reg());
- __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
- answer.Unuse();
- destination()->Split(equal);
-
- } else if (check->Equals(Heap::object_symbol())) {
- __ test(answer.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(zero);
- __ cmp(answer.reg(), Factory::null_value());
- destination()->true_target()->Branch(equal);
-
- // It can be an undetectable object.
- Result map = allocator()->Allocate();
- ASSERT(map.is_valid());
- __ mov(map.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kBitFieldOffset));
- __ test(map.reg(), Immediate(1 << Map::kIsUndetectable));
- destination()->false_target()->Branch(not_zero);
- __ mov(map.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset));
- __ cmp(map.reg(), FIRST_JS_OBJECT_TYPE);
- destination()->false_target()->Branch(less);
- __ cmp(map.reg(), LAST_JS_OBJECT_TYPE);
- answer.Unuse();
- map.Unuse();
- destination()->Split(less_equal);
- } else {
- // Uncommon case: typeof testing against a string literal that is
- // never returned from the typeof operator.
- answer.Unuse();
- destination()->Goto(false);
- }
- return;
- }
-
- Condition cc = no_condition;
- bool strict = false;
- switch (op) {
- case Token::EQ_STRICT:
- strict = true;
- // Fall through
- case Token::EQ:
- cc = equal;
- break;
- case Token::LT:
- cc = less;
- break;
- case Token::GT:
- cc = greater;
- break;
- case Token::LTE:
- cc = less_equal;
- break;
- case Token::GTE:
- cc = greater_equal;
- break;
- case Token::IN: {
- Load(left);
- Load(right);
- Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
- frame_->Push(&answer); // push the result
- return;
- }
- case Token::INSTANCEOF: {
- Load(left);
- Load(right);
- InstanceofStub stub;
- Result answer = frame_->CallStub(&stub, 2);
- answer.ToRegister();
- __ test(answer.reg(), Operand(answer.reg()));
- answer.Unuse();
- destination()->Split(zero);
- return;
- }
- default:
- UNREACHABLE();
- }
- Load(left);
- Load(right);
- Comparison(cc, strict, destination());
-}
-
-
-#ifdef DEBUG
-bool CodeGenerator::HasValidEntryRegisters() {
- return (allocator()->count(eax) == (frame()->is_used(eax) ? 1 : 0))
- && (allocator()->count(ebx) == (frame()->is_used(ebx) ? 1 : 0))
- && (allocator()->count(ecx) == (frame()->is_used(ecx) ? 1 : 0))
- && (allocator()->count(edx) == (frame()->is_used(edx) ? 1 : 0))
- && (allocator()->count(edi) == (frame()->is_used(edi) ? 1 : 0));
-}
-#endif
-
-
-class DeferredReferenceGetKeyedValue: public DeferredCode {
- public:
- DeferredReferenceGetKeyedValue(CodeGenerator* generator, bool is_global)
- : DeferredCode(generator), is_global_(is_global) {
- set_comment("[ DeferredReferenceGetKeyedValue");
- }
-
- virtual void Generate();
-
- Label* patch_site() { return &patch_site_; }
-
- private:
- Label patch_site_;
- bool is_global_;
-};
-
-
-void DeferredReferenceGetKeyedValue::Generate() {
- CodeGenerator* cgen = generator();
- Result receiver(cgen);
- Result key(cgen);
- enter()->Bind(&receiver, &key);
- cgen->frame()->Push(&receiver); // First IC argument.
- cgen->frame()->Push(&key); // Second IC argument.
-
- // Calculate the delta from the IC call instruction to the map check
- // cmp instruction in the inlined version. This delta is stored in
- // a test(eax, delta) instruction after the call so that we can find
- // it in the IC initialization code and patch the cmp instruction.
- // This means that we cannot allow test instructions after calls to
- // KeyedLoadIC stubs in other places.
- RelocInfo::Mode mode = is_global_
- ? RelocInfo::CODE_TARGET_CONTEXT
- : RelocInfo::CODE_TARGET;
- Result value = cgen->frame()->CallKeyedLoadIC(mode);
- // The result needs to be specifically the eax register because the
- // offset to the patch site will be expected in a test eax
- // instruction.
- ASSERT(value.is_register() && value.reg().is(eax));
- // The delta from the start of the map-compare instruction to the
- // test eax instruction. We use masm_ directly here instead of the
- // double underscore macro because the macro sometimes uses macro
- // expansion to turn into something that can't return a value. This
- // is encountered when doing generated code coverage tests.
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
- __ test(value.reg(), Immediate(-delta_to_patch_site));
- __ IncrementCounter(&Counters::keyed_load_inline_miss, 1);
-
- // The receiver and key were spilled by the call, so their state as
- // constants or copies has been changed. Thus, they need to be
- // "mergable" in the block at the exit label and are therefore
- // passed as return results here.
- key = cgen->frame()->Pop();
- receiver = cgen->frame()->Pop();
- exit_.Jump(&receiver, &key, &value);
-}
-
-
-#undef __
-#define __ ACCESS_MASM(masm)
-
-Handle<String> Reference::GetName() {
- ASSERT(type_ == NAMED);
- Property* property = expression_->AsProperty();
- if (property == NULL) {
- // Global variable reference treated as a named property reference.
- VariableProxy* proxy = expression_->AsVariableProxy();
- ASSERT(proxy->AsVariable() != NULL);
- ASSERT(proxy->AsVariable()->is_global());
- return proxy->name();
- } else {
- Literal* raw_name = property->key()->AsLiteral();
- ASSERT(raw_name != NULL);
- return Handle<String>(String::cast(*raw_name->handle()));
- }
-}
-
-
-void Reference::GetValue(TypeofState typeof_state) {
- ASSERT(!cgen_->in_spilled_code());
- ASSERT(cgen_->HasValidEntryRegisters());
- ASSERT(!is_illegal());
- MacroAssembler* masm = cgen_->masm();
- switch (type_) {
- case SLOT: {
- Comment cmnt(masm, "[ Load from Slot");
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
- ASSERT(slot != NULL);
- cgen_->LoadFromSlot(slot, typeof_state);
- break;
- }
-
- case NAMED: {
- // TODO(1241834): Make sure that it is safe to ignore the
- // distinction between expressions in a typeof and not in a
- // typeof. If there is a chance that reference errors can be
- // thrown below, we must distinguish between the two kinds of
- // loads (typeof expression loads must not throw a reference
- // error).
- Comment cmnt(masm, "[ Load from named Property");
- cgen_->frame()->Push(GetName());
-
- Variable* var = expression_->AsVariableProxy()->AsVariable();
- ASSERT(var == NULL || var->is_global());
- RelocInfo::Mode mode = (var == NULL)
- ? RelocInfo::CODE_TARGET
- : RelocInfo::CODE_TARGET_CONTEXT;
- Result answer = cgen_->frame()->CallLoadIC(mode);
- cgen_->frame()->Push(&answer);
- break;
- }
-
- case KEYED: {
- // TODO(1241834): Make sure that this it is safe to ignore the
- // distinction between expressions in a typeof and not in a typeof.
- Comment cmnt(masm, "[ Load from keyed Property");
- Variable* var = expression_->AsVariableProxy()->AsVariable();
- bool is_global = var != NULL;
- ASSERT(!is_global || var->is_global());
- // Inline array load code if inside of a loop. We do not know
- // the receiver map yet, so we initially generate the code with
- // a check against an invalid map. In the inline cache code, we
- // patch the map check if appropriate.
- if (cgen_->loop_nesting() > 0) {
- Comment cmnt(masm, "[ Inlined array index load");
- DeferredReferenceGetKeyedValue* deferred =
- new DeferredReferenceGetKeyedValue(cgen_, is_global);
-
- Result key = cgen_->frame()->Pop();
- Result receiver = cgen_->frame()->Pop();
- key.ToRegister();
- receiver.ToRegister();
-
- // Check that the receiver is not a smi (only needed if this
- // is not a load from the global context) and that it has the
- // expected map.
- if (!is_global) {
- __ test(receiver.reg(), Immediate(kSmiTagMask));
- deferred->enter()->Branch(zero, &receiver, &key, not_taken);
- }
-
- // Initially, use an invalid map. The map is patched in the IC
- // initialization code.
- __ bind(deferred->patch_site());
- // Use masm-> here instead of the double underscore macro since extra
- // coverage code can interfere with the patching.
- masm->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
- Immediate(Factory::null_value()));
- deferred->enter()->Branch(not_equal, &receiver, &key, not_taken);
-
- // Check that the key is a smi.
- __ test(key.reg(), Immediate(kSmiTagMask));
- deferred->enter()->Branch(not_zero, &receiver, &key, not_taken);
-
- // Get the elements array from the receiver and check that it
- // is not a dictionary.
- Result elements = cgen_->allocator()->Allocate();
- ASSERT(elements.is_valid());
- __ mov(elements.reg(),
- FieldOperand(receiver.reg(), JSObject::kElementsOffset));
- __ cmp(FieldOperand(elements.reg(), HeapObject::kMapOffset),
- Immediate(Factory::hash_table_map()));
- deferred->enter()->Branch(equal, &receiver, &key, not_taken);
-
- // Shift the key to get the actual index value and check that
- // it is within bounds.
- Result index = cgen_->allocator()->Allocate();
- ASSERT(index.is_valid());
- __ mov(index.reg(), key.reg());
- __ sar(index.reg(), kSmiTagSize);
- __ cmp(index.reg(),
- FieldOperand(elements.reg(), Array::kLengthOffset));
- deferred->enter()->Branch(above_equal, &receiver, &key, not_taken);
-
- // Load and check that the result is not the hole. We could
- // reuse the index or elements register for the value.
- //
- // TODO(206): Consider whether it makes sense to try some
- // heuristic about which register to reuse. For example, if
- // one is eax, the we can reuse that one because the value
- // coming from the deferred code will be in eax.
- Result value = index;
- __ mov(value.reg(), Operand(elements.reg(),
- index.reg(),
- times_4,
- Array::kHeaderSize - kHeapObjectTag));
- elements.Unuse();
- index.Unuse();
- __ cmp(Operand(value.reg()), Immediate(Factory::the_hole_value()));
- deferred->enter()->Branch(equal, &receiver, &key, not_taken);
- __ IncrementCounter(&Counters::keyed_load_inline, 1);
-
- // Restore the receiver and key to the frame and push the
- // result on top of it.
- deferred->BindExit(&receiver, &key, &value);
- cgen_->frame()->Push(&receiver);
- cgen_->frame()->Push(&key);
- cgen_->frame()->Push(&value);
-
- } else {
- Comment cmnt(masm, "[ Load from keyed Property");
- RelocInfo::Mode mode = is_global
- ? RelocInfo::CODE_TARGET_CONTEXT
- : RelocInfo::CODE_TARGET;
- Result answer = cgen_->frame()->CallKeyedLoadIC(mode);
- // Make sure that we do not have a test instruction after the
- // call. A test instruction after the call is used to
- // indicate that we have generated an inline version of the
- // keyed load. The explicit nop instruction is here because
- // the push that follows might be peep-hole optimized away.
- __ nop();
- cgen_->frame()->Push(&answer);
- }
- break;
- }
-
- default:
- UNREACHABLE();
- }
-}
-
-
-void Reference::TakeValue(TypeofState typeof_state) {
- // For non-constant frame-allocated slots, we invalidate the value in the
- // slot. For all others, we fall back on GetValue.
- ASSERT(!cgen_->in_spilled_code());
- ASSERT(!is_illegal());
- if (type_ != SLOT) {
- GetValue(typeof_state);
- return;
- }
-
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
- ASSERT(slot != NULL);
- if (slot->type() == Slot::LOOKUP ||
- slot->type() == Slot::CONTEXT ||
- slot->var()->mode() == Variable::CONST) {
- GetValue(typeof_state);
- return;
- }
-
- // Only non-constant, frame-allocated parameters and locals can reach
- // here.
- if (slot->type() == Slot::PARAMETER) {
- cgen_->frame()->TakeParameterAt(slot->index());
- } else {
- ASSERT(slot->type() == Slot::LOCAL);
- cgen_->frame()->TakeLocalAt(slot->index());
- }
-}
-
-
-void Reference::SetValue(InitState init_state) {
- ASSERT(cgen_->HasValidEntryRegisters());
- ASSERT(!is_illegal());
- switch (type_) {
- case SLOT: {
- Comment cmnt(cgen_->masm(), "[ Store to Slot");
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
- ASSERT(slot != NULL);
- cgen_->StoreToSlot(slot, init_state);
- break;
- }
-
- case NAMED: {
- Comment cmnt(cgen_->masm(), "[ Store to named Property");
- cgen_->frame()->Push(GetName());
- Result answer = cgen_->frame()->CallStoreIC();
- cgen_->frame()->Push(&answer);
- break;
- }
-
- case KEYED: {
- Comment cmnt(cgen_->masm(), "[ Store to keyed Property");
- Result answer = cgen_->frame()->CallKeyedStoreIC();
- cgen_->frame()->Push(&answer);
- break;
- }
-
- default:
- UNREACHABLE();
- }
-}
-
-
-// NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined).
-void ToBooleanStub::Generate(MacroAssembler* masm) {
- Label false_result, true_result, not_string;
- __ mov(eax, Operand(esp, 1 * kPointerSize));
-
- // 'null' => false.
- __ cmp(eax, Factory::null_value());
- __ j(equal, &false_result);
-
- // Get the map and type of the heap object.
- __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
- __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset));
-
- // Undetectable => false.
- __ movzx_b(ebx, FieldOperand(edx, Map::kBitFieldOffset));
- __ and_(ebx, 1 << Map::kIsUndetectable);
- __ j(not_zero, &false_result);
-
- // JavaScript object => true.
- __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
- __ j(above_equal, &true_result);
-
- // String value => false iff empty.
- __ cmp(ecx, FIRST_NONSTRING_TYPE);
- __ j(above_equal, &not_string);
- __ and_(ecx, kStringSizeMask);
- __ cmp(ecx, kShortStringTag);
- __ j(not_equal, &true_result); // Empty string is always short.
- __ mov(edx, FieldOperand(eax, String::kLengthOffset));
- __ shr(edx, String::kShortLengthShift);
- __ j(zero, &false_result);
- __ jmp(&true_result);
-
- __ bind(&not_string);
- // HeapNumber => false iff +0, -0, or NaN.
- __ cmp(edx, Factory::heap_number_map());
- __ j(not_equal, &true_result);
- __ fldz();
- __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
- __ fucompp();
- __ push(eax);
- __ fnstsw_ax();
- __ sahf();
- __ pop(eax);
- __ j(zero, &false_result);
- // Fall through to |true_result|.
-
- // Return 1/0 for true/false in eax.
- __ bind(&true_result);
- __ mov(eax, 1);
- __ ret(1 * kPointerSize);
- __ bind(&false_result);
- __ mov(eax, 0);
- __ ret(1 * kPointerSize);
-}
-
-
-#undef __
-#define __ ACCESS_MASM(masm_)
-
-Result DeferredInlineBinaryOperation::GenerateInlineCode(Result* left,
- Result* right) {
- // Perform fast-case smi code for the operation (left <op> right) and
- // returns the result in a Result.
- // If any fast-case tests fail, it jumps to the slow-case deferred code,
- // which calls the binary operation stub, with the arguments (in registers)
- // on top of the frame.
- // Consumes its arguments (sets left and right to invalid and frees their
- // registers).
-
- left->ToRegister();
- right->ToRegister();
- // A newly allocated register answer is used to hold the answer.
- // The registers containing left and right are not modified in
- // most cases, so they usually don't need to be spilled in the fast case.
- Result answer = generator()->allocator()->Allocate();
-
- ASSERT(answer.is_valid());
- // Perform the smi check.
- if (left->reg().is(right->reg())) {
- __ test(left->reg(), Immediate(kSmiTagMask));
- } else {
- __ mov(answer.reg(), left->reg());
- __ or_(answer.reg(), Operand(right->reg()));
- ASSERT(kSmiTag == 0); // adjust zero check if not the case
- __ test(answer.reg(), Immediate(kSmiTagMask));
- }
- enter()->Branch(not_zero, left, right, not_taken);
-
- // All operations start by copying the left argument into answer.
- __ mov(answer.reg(), left->reg());
- switch (op_) {
- case Token::ADD:
- __ add(answer.reg(), Operand(right->reg())); // add optimistically
- enter()->Branch(overflow, left, right, not_taken);
- break;
-
- case Token::SUB:
- __ sub(answer.reg(), Operand(right->reg())); // subtract optimistically
- enter()->Branch(overflow, left, right, not_taken);
- break;
-
- case Token::MUL: {
- // If the smi tag is 0 we can just leave the tag on one operand.
- ASSERT(kSmiTag == 0); // adjust code below if not the case
- // Remove tag from the left operand (but keep sign).
- // Left hand operand has been copied into answer.
- __ sar(answer.reg(), kSmiTagSize);
- // Do multiplication of smis, leaving result in answer.
- __ imul(answer.reg(), Operand(right->reg()));
- // Go slow on overflows.
- enter()->Branch(overflow, left, right, not_taken);
- // Check for negative zero result. If product is zero,
- // and one argument is negative, go to slow case.
- // The frame is unchanged in this block, so local control flow can
- // use a Label rather than a JumpTarget.
- Label non_zero_result;
- __ test(answer.reg(), Operand(answer.reg()));
- __ j(not_zero, &non_zero_result, taken);
- __ mov(answer.reg(), left->reg());
- __ or_(answer.reg(), Operand(right->reg()));
- enter()->Branch(negative, left, right, not_taken);
- __ xor_(answer.reg(), Operand(answer.reg())); // Positive 0 is correct.
- __ bind(&non_zero_result);
- break;
- }
-
- case Token::DIV: // Fall through.
- case Token::MOD: {
- // Div and mod use the registers eax and edx. Left and right must
- // be preserved, because the original operands are needed if we switch
- // to the slow case. Move them if either is in eax or edx.
- // The Result answer should be changed into an alias for eax.
- // Precondition:
- // The Results left and right are valid. They may be the same register,
- // and may be unspilled. The Result answer is valid and is distinct
- // from left and right, and is spilled.
- // The value in left is copied to answer.
-
- Result reg_eax = generator()->allocator()->Allocate(eax);
- Result reg_edx = generator()->allocator()->Allocate(edx);
- // These allocations may have failed, if one of left, right, or answer
- // is in register eax or edx.
- bool left_copied_to_eax = false; // We will make sure this becomes true.
-
- // Part 1: Get eax
- if (answer.reg().is(eax)) {
- reg_eax = answer;
- left_copied_to_eax = true;
- } else if (right->reg().is(eax) || left->reg().is(eax)) {
- // We need a non-edx register to move one or both of left and right to.
- // We use answer if it is not edx, otherwise we allocate one.
- if (answer.reg().is(edx)) {
- reg_edx = answer;
- answer = generator()->allocator()->Allocate();
- ASSERT(answer.is_valid());
- }
-
- if (left->reg().is(eax)) {
- reg_eax = *left;
- left_copied_to_eax = true;
- *left = answer;
- }
- if (right->reg().is(eax)) {
- reg_eax = *right;
- *right = answer;
- }
- __ mov(answer.reg(), eax);
- }
- // End of Part 1.
- // reg_eax is valid, and neither left nor right is in eax.
- ASSERT(reg_eax.is_valid());
- ASSERT(!left->reg().is(eax));
- ASSERT(!right->reg().is(eax));
-
- // Part 2: Get edx
- // reg_edx is invalid if and only if either left, right,
- // or answer is in edx. If edx is valid, then either edx
- // was free, or it was answer, but answer was reallocated.
- if (answer.reg().is(edx)) {
- reg_edx = answer;
- } else if (right->reg().is(edx) || left->reg().is(edx)) {
- // Is answer used?
- if (answer.reg().is(eax) || answer.reg().is(left->reg()) ||
- answer.reg().is(right->reg())) {
- answer = generator()->allocator()->Allocate();
- ASSERT(answer.is_valid()); // We cannot hit both Allocate() calls.
- }
- if (left->reg().is(edx)) {
- reg_edx = *left;
- *left = answer;
- }
- if (right->reg().is(edx)) {
- reg_edx = *right;
- *right = answer;
- }
- __ mov(answer.reg(), edx);
- }
- // End of Part 2
- ASSERT(reg_edx.is_valid());
- ASSERT(!left->reg().is(eax));
- ASSERT(!right->reg().is(eax));
-
- answer = reg_eax; // May free answer, if it was never used.
- generator()->frame()->Spill(eax);
- if (!left_copied_to_eax) {
- __ mov(eax, left->reg());
- left_copied_to_eax = true;
- }
- generator()->frame()->Spill(edx);
-
- // Postcondition:
- // reg_eax, reg_edx are valid, correct, and spilled.
- // reg_eax contains the value originally in left
- // left and right are not eax or edx. They may or may not be
- // spilled or distinct.
- // answer is an alias for reg_eax.
-
- // Sign extend eax into edx:eax.
- __ cdq();
- // Check for 0 divisor.
- __ test(right->reg(), Operand(right->reg()));
- enter()->Branch(zero, left, right, not_taken);
- // Divide edx:eax by the right operand.
- __ idiv(right->reg());
- if (op_ == Token::DIV) {
- // Check for negative zero result. If result is zero, and divisor
- // is negative, return a floating point negative zero.
- // The frame is unchanged in this block, so local control flow can
- // use a Label rather than a JumpTarget.
- Label non_zero_result;
- __ test(left->reg(), Operand(left->reg()));
- __ j(not_zero, &non_zero_result, taken);
- __ test(right->reg(), Operand(right->reg()));
- enter()->Branch(negative, left, right, not_taken);
- __ bind(&non_zero_result);
- // Check for the corner case of dividing the most negative smi
- // by -1. We cannot use the overflow flag, since it is not set
- // by idiv instruction.
- ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
- __ cmp(eax, 0x40000000);
- enter()->Branch(equal, left, right, not_taken);
- // Check that the remainder is zero.
- __ test(edx, Operand(edx));
- enter()->Branch(not_zero, left, right, not_taken);
- // Tag the result and store it in register temp.
- ASSERT(kSmiTagSize == times_2); // adjust code if not the case
- __ lea(answer.reg(), Operand(eax, eax, times_1, kSmiTag));
- } else {
- ASSERT(op_ == Token::MOD);
- // Check for a negative zero result. If the result is zero, and the
- // dividend is negative, return a floating point negative zero.
- // The frame is unchanged in this block, so local control flow can
- // use a Label rather than a JumpTarget.
- Label non_zero_result;
- __ test(edx, Operand(edx));
- __ j(not_zero, &non_zero_result, taken);
- __ test(left->reg(), Operand(left->reg()));
- enter()->Branch(negative, left, right, not_taken);
- __ bind(&non_zero_result);
- // The answer is in edx.
- answer = reg_edx;
- }
- break;
- }
- case Token::BIT_OR:
- __ or_(answer.reg(), Operand(right->reg()));
- break;
-
- case Token::BIT_AND:
- __ and_(answer.reg(), Operand(right->reg()));
- break;
-
- case Token::BIT_XOR:
- __ xor_(answer.reg(), Operand(right->reg()));
- break;
-
- case Token::SHL:
- case Token::SHR:
- case Token::SAR:
- // Move right into ecx.
- // Left is in two registers already, so even if left or answer is ecx,
- // we can move right to it, and use the other one.
- // Right operand must be in register cl because x86 likes it that way.
- if (right->reg().is(ecx)) {
- // Right is already in the right place. Left may be in the
- // same register, which causes problems. Use answer instead.
- if (left->reg().is(ecx)) {
- *left = answer;
- }
- } else if (left->reg().is(ecx)) {
- generator()->frame()->Spill(left->reg());
- __ mov(left->reg(), right->reg());
- *right = *left;
- *left = answer; // Use copy of left in answer as left.
- } else if (answer.reg().is(ecx)) {
- __ mov(answer.reg(), right->reg());
- *right = answer;
- } else {
- Result reg_ecx = generator()->allocator()->Allocate(ecx);
- ASSERT(reg_ecx.is_valid());
- __ mov(ecx, right->reg());
- *right = reg_ecx;
- }
- ASSERT(left->reg().is_valid());
- ASSERT(!left->reg().is(ecx));
- ASSERT(right->reg().is(ecx));
- answer.Unuse(); // Answer may now be being used for left or right.
- // We will modify left and right, which we do not do in any other
- // binary operation. The exits to slow code need to restore the
- // original values of left and right, or at least values that give
- // the same answer.
-
- // We are modifying left and right. They must be spilled!
- generator()->frame()->Spill(left->reg());
- generator()->frame()->Spill(right->reg());
-
- // Remove tags from operands (but keep sign).
- __ sar(left->reg(), kSmiTagSize);
- __ sar(ecx, kSmiTagSize);
- // Perform the operation.
- switch (op_) {
- case Token::SAR:
- __ sar(left->reg());
- // No checks of result necessary
- break;
- case Token::SHR: {
- __ shr(left->reg());
- // Check that the *unsigned* result fits in a smi.
- // Neither of the two high-order bits can be set:
- // - 0x80000000: high bit would be lost when smi tagging.
- // - 0x40000000: this number would convert to negative when
- // Smi tagging these two cases can only happen with shifts
- // by 0 or 1 when handed a valid smi.
- // If the answer cannot be represented by a SMI, restore
- // the left and right arguments, and jump to slow case.
- // The low bit of the left argument may be lost, but only
- // in a case where it is dropped anyway.
- JumpTarget result_ok(generator());
- __ test(left->reg(), Immediate(0xc0000000));
- result_ok.Branch(zero, left, taken);
- __ shl(left->reg());
- ASSERT(kSmiTag == 0);
- __ shl(left->reg(), kSmiTagSize);
- __ shl(right->reg(), kSmiTagSize);
- enter()->Jump(left, right);
- result_ok.Bind(left);
- break;
- }
- case Token::SHL: {
- __ shl(left->reg());
- // Check that the *signed* result fits in a smi.
- //
- // TODO(207): Can reduce registers from 4 to 3 by
- // preallocating ecx.
- JumpTarget result_ok(generator());
- Result smi_test_reg = generator()->allocator()->Allocate();
- ASSERT(smi_test_reg.is_valid());
- __ lea(smi_test_reg.reg(), Operand(left->reg(), 0x40000000));
- __ test(smi_test_reg.reg(), Immediate(0x80000000));
- smi_test_reg.Unuse();
- result_ok.Branch(zero, left, taken);
- __ shr(left->reg());
- ASSERT(kSmiTag == 0);
- __ shl(left->reg(), kSmiTagSize);
- __ shl(right->reg(), kSmiTagSize);
- enter()->Jump(left, right);
- result_ok.Bind(left);
- break;
- }
- default:
- UNREACHABLE();
- }
- // Smi-tag the result, in left, and make answer an alias for left->
- answer = *left;
- answer.ToRegister();
- ASSERT(kSmiTagSize == times_2); // adjust code if not the case
- __ lea(answer.reg(),
- Operand(answer.reg(), answer.reg(), times_1, kSmiTag));
- break;
-
- default:
- UNREACHABLE();
- break;
- }
- left->Unuse();
- right->Unuse();
- return answer;
-}
-
-
-#undef __
-#define __ ACCESS_MASM(masm)
-
-void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
- // Perform fast-case smi code for the operation (eax <op> ebx) and
- // leave result in register eax.
-
- // Prepare the smi check of both operands by or'ing them together
- // before checking against the smi mask.
- __ mov(ecx, Operand(ebx));
- __ or_(ecx, Operand(eax));
-
- switch (op_) {
- case Token::ADD:
- __ add(eax, Operand(ebx)); // add optimistically
- __ j(overflow, slow, not_taken);
- break;
-
- case Token::SUB:
- __ sub(eax, Operand(ebx)); // subtract optimistically
- __ j(overflow, slow, not_taken);
- break;
-
- case Token::DIV:
- case Token::MOD:
- // Sign extend eax into edx:eax.
- __ cdq();
- // Check for 0 divisor.
- __ test(ebx, Operand(ebx));
- __ j(zero, slow, not_taken);
- break;
-
- default:
- // Fall-through to smi check.
- break;
- }
-
- // Perform the actual smi check.
- ASSERT(kSmiTag == 0); // adjust zero check if not the case
- __ test(ecx, Immediate(kSmiTagMask));
- __ j(not_zero, slow, not_taken);
-
- switch (op_) {
- case Token::ADD:
- case Token::SUB:
- // Do nothing here.
- break;
-
- case Token::MUL:
- // If the smi tag is 0 we can just leave the tag on one operand.
- ASSERT(kSmiTag == 0); // adjust code below if not the case
- // Remove tag from one of the operands (but keep sign).
- __ sar(eax, kSmiTagSize);
- // Do multiplication.
- __ imul(eax, Operand(ebx)); // multiplication of smis; result in eax
- // Go slow on overflows.
- __ j(overflow, slow, not_taken);
- // Check for negative zero result.
- __ NegativeZeroTest(eax, ecx, slow); // use ecx = x | y
- break;
-
- case Token::DIV:
- // Divide edx:eax by ebx.
- __ idiv(ebx);
- // Check for the corner case of dividing the most negative smi
- // by -1. We cannot use the overflow flag, since it is not set
- // by idiv instruction.
- ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
- __ cmp(eax, 0x40000000);
- __ j(equal, slow);
- // Check for negative zero result.
- __ NegativeZeroTest(eax, ecx, slow); // use ecx = x | y
- // Check that the remainder is zero.
- __ test(edx, Operand(edx));
- __ j(not_zero, slow);
- // Tag the result and store it in register eax.
- ASSERT(kSmiTagSize == times_2); // adjust code if not the case
- __ lea(eax, Operand(eax, eax, times_1, kSmiTag));
- break;
-
- case Token::MOD:
- // Divide edx:eax by ebx.
- __ idiv(ebx);
- // Check for negative zero result.
- __ NegativeZeroTest(edx, ecx, slow); // use ecx = x | y
- // Move remainder to register eax.
- __ mov(eax, Operand(edx));
- break;
-
- case Token::BIT_OR:
- __ or_(eax, Operand(ebx));
- break;
-
- case Token::BIT_AND:
- __ and_(eax, Operand(ebx));
- break;
-
- case Token::BIT_XOR:
- __ xor_(eax, Operand(ebx));
- break;
-
- case Token::SHL:
- case Token::SHR:
- case Token::SAR:
- // Move the second operand into register ecx.
- __ mov(ecx, Operand(ebx));
- // Remove tags from operands (but keep sign).
- __ sar(eax, kSmiTagSize);
- __ sar(ecx, kSmiTagSize);
- // Perform the operation.
- switch (op_) {
- case Token::SAR:
- __ sar(eax);
- // No checks of result necessary
- break;
- case Token::SHR:
- __ shr(eax);
- // Check that the *unsigned* result fits in a smi.
- // Neither of the two high-order bits can be set:
- // - 0x80000000: high bit would be lost when smi tagging.
- // - 0x40000000: this number would convert to negative when
- // Smi tagging these two cases can only happen with shifts
- // by 0 or 1 when handed a valid smi.
- __ test(eax, Immediate(0xc0000000));
- __ j(not_zero, slow, not_taken);
- break;
- case Token::SHL:
- __ shl(eax);
- // Check that the *signed* result fits in a smi.
- __ cmp(eax, 0xc0000000);
- __ j(sign, slow, not_taken);
- break;
- default:
- UNREACHABLE();
- }
- // Tag the result and store it in register eax.
- ASSERT(kSmiTagSize == times_2); // adjust code if not the case
- __ lea(eax, Operand(eax, eax, times_1, kSmiTag));
- break;
-
- default:
- UNREACHABLE();
- break;
- }
-}
-
-
-void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
- Label call_runtime;
-
- if (flags_ == SMI_CODE_IN_STUB) {
- // The fast case smi code wasn't inlined in the stub caller
- // code. Generate it here to speed up common operations.
- Label slow;
- __ mov(ebx, Operand(esp, 1 * kPointerSize)); // get y
- __ mov(eax, Operand(esp, 2 * kPointerSize)); // get x
- GenerateSmiCode(masm, &slow);
- __ ret(2 * kPointerSize); // remove both operands
-
- // Too bad. The fast case smi code didn't succeed.
- __ bind(&slow);
- }
-
- // Setup registers.
- __ mov(eax, Operand(esp, 1 * kPointerSize)); // get y
- __ mov(edx, Operand(esp, 2 * kPointerSize)); // get x
-
- // Floating point case.
- switch (op_) {
- case Token::ADD:
- case Token::SUB:
- case Token::MUL:
- case Token::DIV: {
- // eax: y
- // edx: x
- FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx);
- // Fast-case: Both operands are numbers.
- // Allocate a heap number, if needed.
- Label skip_allocation;
- switch (mode_) {
- case OVERWRITE_LEFT:
- __ mov(eax, Operand(edx));
- // Fall through!
- case OVERWRITE_RIGHT:
- // If the argument in eax is already an object, we skip the
- // allocation of a heap number.
- __ test(eax, Immediate(kSmiTagMask));
- __ j(not_zero, &skip_allocation, not_taken);
- // Fall through!
- case NO_OVERWRITE:
- FloatingPointHelper::AllocateHeapNumber(masm,
- &call_runtime,
- ecx,
- edx);
- __ bind(&skip_allocation);
- break;
- default: UNREACHABLE();
- }
- FloatingPointHelper::LoadFloatOperands(masm, ecx);
-
- switch (op_) {
- case Token::ADD: __ faddp(1); break;
- case Token::SUB: __ fsubp(1); break;
- case Token::MUL: __ fmulp(1); break;
- case Token::DIV: __ fdivp(1); break;
- default: UNREACHABLE();
- }
- __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
- __ ret(2 * kPointerSize);
- }
- case Token::MOD: {
- // For MOD we go directly to runtime in the non-smi case.
- break;
- }
- case Token::BIT_OR:
- case Token::BIT_AND:
- case Token::BIT_XOR:
- case Token::SAR:
- case Token::SHL:
- case Token::SHR: {
- FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx);
- FloatingPointHelper::LoadFloatOperands(masm, ecx);
-
- Label skip_allocation, non_smi_result, operand_conversion_failure;
-
- // Reserve space for converted numbers.
- __ sub(Operand(esp), Immediate(2 * kPointerSize));
-
- bool use_sse3 = CpuFeatures::IsSupported(CpuFeatures::SSE3);
- if (use_sse3) {
- // Truncate the operands to 32-bit integers and check for
- // exceptions in doing so.
- CpuFeatures::Scope scope(CpuFeatures::SSE3);
- __ fisttp_s(Operand(esp, 0 * kPointerSize));
- __ fisttp_s(Operand(esp, 1 * kPointerSize));
- __ fnstsw_ax();
- __ test(eax, Immediate(1));
- __ j(not_zero, &operand_conversion_failure);
- } else {
- // Check if right operand is int32.
- __ fist_s(Operand(esp, 0 * kPointerSize));
- __ fild_s(Operand(esp, 0 * kPointerSize));
- __ fucompp();
- __ fnstsw_ax();
- __ sahf();
- __ j(not_zero, &operand_conversion_failure);
- __ j(parity_even, &operand_conversion_failure);
-
- // Check if left operand is int32.
- __ fist_s(Operand(esp, 1 * kPointerSize));
- __ fild_s(Operand(esp, 1 * kPointerSize));
- __ fucompp();
- __ fnstsw_ax();
- __ sahf();
- __ j(not_zero, &operand_conversion_failure);
- __ j(parity_even, &operand_conversion_failure);
- }
-
- // Get int32 operands and perform bitop.
- __ pop(ecx);
- __ pop(eax);
- switch (op_) {
- case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
- case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
- case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
- case Token::SAR: __ sar(eax); break;
- case Token::SHL: __ shl(eax); break;
- case Token::SHR: __ shr(eax); break;
- default: UNREACHABLE();
- }
-
- // Check if result is non-negative and fits in a smi.
- __ test(eax, Immediate(0xc0000000));
- __ j(not_zero, &non_smi_result);
-
- // Tag smi result and return.
- ASSERT(kSmiTagSize == times_2); // adjust code if not the case
- __ lea(eax, Operand(eax, eax, times_1, kSmiTag));
- __ ret(2 * kPointerSize);
-
- // All ops except SHR return a signed int32 that we load in a HeapNumber.
- if (op_ != Token::SHR) {
- __ bind(&non_smi_result);
- // Allocate a heap number if needed.
- __ mov(ebx, Operand(eax)); // ebx: result
- switch (mode_) {
- case OVERWRITE_LEFT:
- case OVERWRITE_RIGHT:
- // If the operand was an object, we skip the
- // allocation of a heap number.
- __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
- 1 * kPointerSize : 2 * kPointerSize));
- __ test(eax, Immediate(kSmiTagMask));
- __ j(not_zero, &skip_allocation, not_taken);
- // Fall through!
- case NO_OVERWRITE:
- FloatingPointHelper::AllocateHeapNumber(masm, &call_runtime,
- ecx, edx);
- __ bind(&skip_allocation);
- break;
- default: UNREACHABLE();
- }
- // Store the result in the HeapNumber and return.
- __ mov(Operand(esp, 1 * kPointerSize), ebx);
- __ fild_s(Operand(esp, 1 * kPointerSize));
- __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
- __ ret(2 * kPointerSize);
- }
-
- // Clear the FPU exception flag and reset the stack before calling
- // the runtime system.
- __ bind(&operand_conversion_failure);
- __ add(Operand(esp), Immediate(2 * kPointerSize));
- if (use_sse3) {
- // If we've used the SSE3 instructions for truncating the
- // floating point values to integers and it failed, we have a
- // pending #IA exception. Clear it.
- __ fnclex();
- } else {
- // The non-SSE3 variant does early bailout if the right
- // operand isn't a 32-bit integer, so we may have a single
- // value on the FPU stack we need to get rid of.
- __ ffree(0);
- }
-
- // SHR should return uint32 - go to runtime for non-smi/negative result.
- if (op_ == Token::SHR) {
- __ bind(&non_smi_result);
- }
- __ mov(eax, Operand(esp, 1 * kPointerSize));
- __ mov(edx, Operand(esp, 2 * kPointerSize));
- break;
- }
- default: UNREACHABLE(); break;
- }
-
- // If all else fails, use the runtime system to get the correct
- // result.
- __ bind(&call_runtime);
- switch (op_) {
- case Token::ADD:
- __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
- break;
- case Token::SUB:
- __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
- break;
- case Token::MUL:
- __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
- break;
- case Token::DIV:
- __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
- break;
- case Token::MOD:
- __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
- break;
- case Token::BIT_OR:
- __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
- break;
- case Token::BIT_AND:
- __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
- break;
- case Token::BIT_XOR:
- __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
- break;
- case Token::SAR:
- __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
- break;
- case Token::SHL:
- __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
- break;
- case Token::SHR:
- __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-void FloatingPointHelper::AllocateHeapNumber(MacroAssembler* masm,
- Label* need_gc,
- Register scratch1,
- Register scratch2) {
- ExternalReference allocation_top =
- ExternalReference::new_space_allocation_top_address();
- ExternalReference allocation_limit =
- ExternalReference::new_space_allocation_limit_address();
- __ mov(Operand(scratch1), Immediate(allocation_top));
- __ mov(eax, Operand(scratch1, 0));
- __ lea(scratch2, Operand(eax, HeapNumber::kSize)); // scratch2: new top
- __ cmp(scratch2, Operand::StaticVariable(allocation_limit));
- __ j(above, need_gc, not_taken);
-
- __ mov(Operand(scratch1, 0), scratch2); // store new top
- __ mov(Operand(eax, HeapObject::kMapOffset),
- Immediate(Factory::heap_number_map()));
- // Tag old top and use as result.
- __ add(Operand(eax), Immediate(kHeapObjectTag));
-}
-
-
-void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
- Register scratch) {
- Label load_smi_1, load_smi_2, done_load_1, done;
- __ mov(scratch, Operand(esp, 2 * kPointerSize));
- __ test(scratch, Immediate(kSmiTagMask));
- __ j(zero, &load_smi_1, not_taken);
- __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
- __ bind(&done_load_1);
-
- __ mov(scratch, Operand(esp, 1 * kPointerSize));
- __ test(scratch, Immediate(kSmiTagMask));
- __ j(zero, &load_smi_2, not_taken);
- __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
- __ jmp(&done);
-
- __ bind(&load_smi_1);
- __ sar(scratch, kSmiTagSize);
- __ push(scratch);
- __ fild_s(Operand(esp, 0));
- __ pop(scratch);
- __ jmp(&done_load_1);
-
- __ bind(&load_smi_2);
- __ sar(scratch, kSmiTagSize);
- __ push(scratch);
- __ fild_s(Operand(esp, 0));
- __ pop(scratch);
-
- __ bind(&done);
-}
-
-
-void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
- Label* non_float,
- Register scratch) {
- Label test_other, done;
- // Test if both operands are floats or smi -> scratch=k_is_float;
- // Otherwise scratch = k_not_float.
- __ test(edx, Immediate(kSmiTagMask));
- __ j(zero, &test_other, not_taken); // argument in edx is OK
- __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
- __ cmp(scratch, Factory::heap_number_map());
- __ j(not_equal, non_float); // argument in edx is not a number -> NaN
-
- __ bind(&test_other);
- __ test(eax, Immediate(kSmiTagMask));
- __ j(zero, &done); // argument in eax is OK
- __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
- __ cmp(scratch, Factory::heap_number_map());
- __ j(not_equal, non_float); // argument in eax is not a number -> NaN
-
- // Fall-through: Both operands are numbers.
- __ bind(&done);
-}
-
-
-void UnarySubStub::Generate(MacroAssembler* masm) {
- Label undo;
- Label slow;
- Label done;
- Label try_float;
-
- // Check whether the value is a smi.
- __ test(eax, Immediate(kSmiTagMask));
- __ j(not_zero, &try_float, not_taken);
-
- // Enter runtime system if the value of the expression is zero
- // to make sure that we switch between 0 and -0.
- __ test(eax, Operand(eax));
- __ j(zero, &slow, not_taken);
-
- // The value of the expression is a smi that is not zero. Try
- // optimistic subtraction '0 - value'.
- __ mov(edx, Operand(eax));
- __ Set(eax, Immediate(0));
- __ sub(eax, Operand(edx));
- __ j(overflow, &undo, not_taken);
-
- // If result is a smi we are done.
- __ test(eax, Immediate(kSmiTagMask));
- __ j(zero, &done, taken);
-
- // Restore eax and enter runtime system.
- __ bind(&undo);
- __ mov(eax, Operand(edx));
-
- // Enter runtime system.
- __ bind(&slow);
- __ pop(ecx); // pop return address
- __ push(eax);
- __ push(ecx); // push return address
- __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
-
- // Try floating point case.
- __ bind(&try_float);
- __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
- __ cmp(edx, Factory::heap_number_map());
- __ j(not_equal, &slow);
- __ mov(edx, Operand(eax));
- // edx: operand
- FloatingPointHelper::AllocateHeapNumber(masm, &undo, ebx, ecx);
- // eax: allocated 'empty' number
- __ fld_d(FieldOperand(edx, HeapNumber::kValueOffset));
- __ fchs();
- __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
-
- __ bind(&done);
-
- __ StubReturn(1);
-}
-
-
-void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
- // Check if the calling frame is an arguments adaptor frame.
- Label adaptor;
- __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
- __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
- __ cmp(ecx, ArgumentsAdaptorFrame::SENTINEL);
- __ j(equal, &adaptor);
-
- // Nothing to do: The formal number of parameters has already been
- // passed in register eax by calling function. Just return it.
- __ ret(0);
-
- // Arguments adaptor case: Read the arguments length from the
- // adaptor frame and return it.
- __ bind(&adaptor);
- __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ ret(0);
-}
-
-
-void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
- // The key is in edx and the parameter count is in eax.
-
- // The displacement is used for skipping the frame pointer on the
- // stack. It is the offset of the last parameter (if any) relative
- // to the frame pointer.
- static const int kDisplacement = 1 * kPointerSize;
-
- // Check that the key is a smi.
- Label slow;
- __ test(edx, Immediate(kSmiTagMask));
- __ j(not_zero, &slow, not_taken);
-
- // Check if the calling frame is an arguments adaptor frame.
- Label adaptor;
- __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
- __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
- __ cmp(ecx, ArgumentsAdaptorFrame::SENTINEL);
- __ j(equal, &adaptor);
-
- // Check index against formal parameters count limit passed in
- // through register eax. Use unsigned comparison to get negative
- // check for free.
- __ cmp(edx, Operand(eax));
- __ j(above_equal, &slow, not_taken);
-
- // Read the argument from the stack and return it.
- ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this
- __ lea(ebx, Operand(ebp, eax, times_2, 0));
- __ neg(edx);
- __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
- __ ret(0);
-
- // Arguments adaptor case: Check index against actual arguments
- // limit found in the arguments adaptor frame. Use unsigned
- // comparison to get negative check for free.
- __ bind(&adaptor);
- __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ cmp(edx, Operand(ecx));
- __ j(above_equal, &slow, not_taken);
-
- // Read the argument from the stack and return it.
- ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this
- __ lea(ebx, Operand(ebx, ecx, times_2, 0));
- __ neg(edx);
- __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
- __ ret(0);
-
- // Slow-case: Handle non-smi or out-of-bounds access to arguments
- // by calling the runtime system.
- __ bind(&slow);
- __ pop(ebx); // Return address.
- __ push(edx);
- __ push(ebx);
- __ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1);
-}
-
-
-void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
- // The displacement is used for skipping the return address and the
- // frame pointer on the stack. It is the offset of the last
- // parameter (if any) relative to the frame pointer.
- static const int kDisplacement = 2 * kPointerSize;
-
- // Check if the calling frame is an arguments adaptor frame.
- Label runtime;
- __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
- __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
- __ cmp(ecx, ArgumentsAdaptorFrame::SENTINEL);
- __ j(not_equal, &runtime);
-
- // Patch the arguments.length and the parameters pointer.
- __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ mov(Operand(esp, 1 * kPointerSize), ecx);
- __ lea(edx, Operand(edx, ecx, times_2, kDisplacement));
- __ mov(Operand(esp, 2 * kPointerSize), edx);
-
- // Do the runtime call to allocate the arguments object.
- __ bind(&runtime);
- __ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3);
-}
-
-
-void CompareStub::Generate(MacroAssembler* masm) {
- Label call_builtin, done;
-
- // NOTICE! This code is only reached after a smi-fast-case check, so
- // it is certain that at least one operand isn't a smi.
-
- if (cc_ == equal) { // Both strict and non-strict.
- Label slow; // Fallthrough label.
- // Equality is almost reflexive (everything but NaN), so start by testing
- // for "identity and not NaN".
- {
- Label not_identical;
- __ cmp(eax, Operand(edx));
- __ j(not_equal, &not_identical);
- // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
- // so we do the second best thing - test it ourselves.
-
- Label return_equal;
- Label heap_number;
- // If it's not a heap number, then return equal.
- __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
- Immediate(Factory::heap_number_map()));
- __ j(equal, &heap_number);
- __ bind(&return_equal);
- __ Set(eax, Immediate(0));
- __ ret(0);
-
- __ bind(&heap_number);
- // It is a heap number, so return non-equal if it's NaN and equal if it's
- // not NaN.
- // The representation of NaN values has all exponent bits (52..62) set,
- // and not all mantissa bits (0..51) clear.
- // Read top bits of double representation (second word of value).
- __ mov(eax, FieldOperand(edx, HeapNumber::kValueOffset + kPointerSize));
- // Test that exponent bits are all set.
- __ not_(eax);
- __ test(eax, Immediate(0x7ff00000));
- __ j(not_zero, &return_equal);
- __ not_(eax);
-
- // Shift out flag and all exponent bits, retaining only mantissa.
- __ shl(eax, 12);
- // Or with all low-bits of mantissa.
- __ or_(eax, FieldOperand(edx, HeapNumber::kValueOffset));
- // Return zero equal if all bits in mantissa is zero (it's an Infinity)
- // and non-zero if not (it's a NaN).
- __ ret(0);
-
- __ bind(&not_identical);
- }
-
- // If we're doing a strict equality comparison, we don't have to do
- // type conversion, so we generate code to do fast comparison for objects
- // and oddballs. Non-smi numbers and strings still go through the usual
- // slow-case code.
- if (strict_) {
- // If either is a Smi (we know that not both are), then they can only
- // be equal if the other is a HeapNumber. If so, use the slow case.
- {
- Label not_smis;
- ASSERT_EQ(0, kSmiTag);
- ASSERT_EQ(0, Smi::FromInt(0));
- __ mov(ecx, Immediate(kSmiTagMask));
- __ and_(ecx, Operand(eax));
- __ test(ecx, Operand(edx));
- __ j(not_zero, &not_smis);
- // One operand is a smi.
-
- // Check whether the non-smi is a heap number.
- ASSERT_EQ(1, kSmiTagMask);
- // ecx still holds eax & kSmiTag, which is either zero or one.
- __ sub(Operand(ecx), Immediate(0x01));
- __ mov(ebx, edx);
- __ xor_(ebx, Operand(eax));
- __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx.
- __ xor_(ebx, Operand(eax));
- // if eax was smi, ebx is now edx, else eax.
-
- // Check if the non-smi operand is a heap number.
- __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
- Immediate(Factory::heap_number_map()));
- // If heap number, handle it in the slow case.
- __ j(equal, &slow);
- // Return non-equal (ebx is not zero)
- __ mov(eax, ebx);
- __ ret(0);
-
- __ bind(&not_smis);
- }
-
- // If either operand is a JSObject or an oddball value, then they are not
- // equal since their pointers are different
- // There is no test for undetectability in strict equality.
-
- // Get the type of the first operand.
- __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
- __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
-
- // If the first object is a JS object, we have done pointer comparison.
- ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
- Label first_non_object;
- __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
- __ j(less, &first_non_object);
-
- // Return non-zero (eax is not zero)
- Label return_not_equal;
- ASSERT(kHeapObjectTag != 0);
- __ bind(&return_not_equal);
- __ ret(0);
-
- __ bind(&first_non_object);
- // Check for oddballs: true, false, null, undefined.
- __ cmp(ecx, ODDBALL_TYPE);
- __ j(equal, &return_not_equal);
-
- __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
- __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
-
- __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
- __ j(greater_equal, &return_not_equal);
-
- // Check for oddballs: true, false, null, undefined.
- __ cmp(ecx, ODDBALL_TYPE);
- __ j(equal, &return_not_equal);
-
- // Fall through to the general case.
- }
- __ bind(&slow);
- }
-
- // Save the return address (and get it off the stack).
- __ pop(ecx);
-
- // Push arguments.
- __ push(eax);
- __ push(edx);
- __ push(ecx);
-
- // Inlined floating point compare.
- // Call builtin if operands are not floating point or smi.
- FloatingPointHelper::CheckFloatOperands(masm, &call_builtin, ebx);
- FloatingPointHelper::LoadFloatOperands(masm, ecx);
- __ FCmp();
-
- // Jump to builtin for NaN.
- __ j(parity_even, &call_builtin, not_taken);
-
- // TODO(1243847): Use cmov below once CpuFeatures are properly hooked up.
- Label below_lbl, above_lbl;
- // use edx, eax to convert unsigned to signed comparison
- __ j(below, &below_lbl, not_taken);
- __ j(above, &above_lbl, not_taken);
-
- __ xor_(eax, Operand(eax)); // equal
- __ ret(2 * kPointerSize);
-
- __ bind(&below_lbl);
- __ mov(eax, -1);
- __ ret(2 * kPointerSize);
-
- __ bind(&above_lbl);
- __ mov(eax, 1);
- __ ret(2 * kPointerSize); // eax, edx were pushed
-
- __ bind(&call_builtin);
- // must swap argument order
- __ pop(ecx);
- __ pop(edx);
- __ pop(eax);
- __ push(edx);
- __ push(eax);
-
- // Figure out which native to call and setup the arguments.
- Builtins::JavaScript builtin;
- if (cc_ == equal) {
- builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
- } else {
- builtin = Builtins::COMPARE;
- int ncr; // NaN compare result
- if (cc_ == less || cc_ == less_equal) {
- ncr = GREATER;
- } else {
- ASSERT(cc_ == greater || cc_ == greater_equal); // remaining cases
- ncr = LESS;
- }
- __ push(Immediate(Smi::FromInt(ncr)));
- }
-
- // Restore return address on the stack.
- __ push(ecx);
-
- // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
- // tagged as a small integer.
- __ InvokeBuiltin(builtin, JUMP_FUNCTION);
-}
-
-
-void StackCheckStub::Generate(MacroAssembler* masm) {
- // Because builtins always remove the receiver from the stack, we
- // have to fake one to avoid underflowing the stack. The receiver
- // must be inserted below the return address on the stack so we
- // temporarily store that in a register.
- __ pop(eax);
- __ push(Immediate(Smi::FromInt(0)));
- __ push(eax);
-
- // Do tail-call to runtime routine.
- __ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1);
-}
-
-
-void CallFunctionStub::Generate(MacroAssembler* masm) {
- Label slow;
-
- // Get the function to call from the stack.
- // +2 ~ receiver, return address
- __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize));
-
- // Check that the function really is a JavaScript function.
- __ test(edi, Immediate(kSmiTagMask));
- __ j(zero, &slow, not_taken);
- // Goto slow case if we do not have a function.
- __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
- __ j(not_equal, &slow, not_taken);
-
- // Fast-case: Just invoke the function.
- ParameterCount actual(argc_);
- __ InvokeFunction(edi, actual, JUMP_FUNCTION);
-
- // Slow-case: Non-function called.
- __ bind(&slow);
- __ Set(eax, Immediate(argc_));
- __ Set(ebx, Immediate(0));
- __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
- Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
- __ jmp(adaptor, RelocInfo::CODE_TARGET);
-}
-
-
-
-void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
- ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize); // adjust this code
- ExternalReference handler_address(Top::k_handler_address);
- __ mov(edx, Operand::StaticVariable(handler_address));
- __ mov(ecx, Operand(edx, -1 * kPointerSize)); // get next in chain
- __ mov(Operand::StaticVariable(handler_address), ecx);
- __ mov(esp, Operand(edx));
- __ pop(edi);
- __ pop(ebp);
- __ pop(edx); // remove code pointer
- __ pop(edx); // remove state
-
- // Before returning we restore the context from the frame pointer if not NULL.
- // The frame pointer is NULL in the exception handler of a JS entry frame.
- __ xor_(esi, Operand(esi)); // tentatively set context pointer to NULL
- Label skip;
- __ cmp(ebp, 0);
- __ j(equal, &skip, not_taken);
- __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
- __ bind(&skip);
-
- __ ret(0);
-}
-
-
-void CEntryStub::GenerateCore(MacroAssembler* masm,
- Label* throw_normal_exception,
- Label* throw_out_of_memory_exception,
- StackFrame::Type frame_type,
- bool do_gc,
- bool always_allocate_scope) {
- // eax: result parameter for PerformGC, if any
- // ebx: pointer to C function (C callee-saved)
- // ebp: frame pointer (restored after C call)
- // esp: stack pointer (restored after C call)
- // edi: number of arguments including receiver (C callee-saved)
- // esi: pointer to the first argument (C callee-saved)
-
- if (do_gc) {
- __ mov(Operand(esp, 0 * kPointerSize), eax); // Result.
- __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY);
- }
-
- ExternalReference scope_depth =
- ExternalReference::heap_always_allocate_scope_depth();
- if (always_allocate_scope) {
- __ inc(Operand::StaticVariable(scope_depth));
- }
-
- // Call C function.
- __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
- __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
- __ call(Operand(ebx));
- // Result is in eax or edx:eax - do not destroy these registers!
-
- if (always_allocate_scope) {
- __ dec(Operand::StaticVariable(scope_depth));
- }
-
- // Check for failure result.
- Label failure_returned;
- ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
- __ lea(ecx, Operand(eax, 1));
- // Lower 2 bits of ecx are 0 iff eax has failure tag.
- __ test(ecx, Immediate(kFailureTagMask));
- __ j(zero, &failure_returned, not_taken);
-
- // Exit the JavaScript to C++ exit frame.
- __ LeaveExitFrame(frame_type);
- __ ret(0);
-
- // Handling of failure.
- __ bind(&failure_returned);
-
- Label retry;
- // If the returned exception is RETRY_AFTER_GC continue at retry label
- ASSERT(Failure::RETRY_AFTER_GC == 0);
- __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
- __ j(zero, &retry, taken);
-
- Label continue_exception;
- // If the returned failure is EXCEPTION then promote Top::pending_exception().
- __ cmp(eax, reinterpret_cast<int32_t>(Failure::Exception()));
- __ j(not_equal, &continue_exception);
-
- // Retrieve the pending exception and clear the variable.
- ExternalReference pending_exception_address(Top::k_pending_exception_address);
- __ mov(eax, Operand::StaticVariable(pending_exception_address));
- __ mov(edx,
- Operand::StaticVariable(ExternalReference::the_hole_value_location()));
- __ mov(Operand::StaticVariable(pending_exception_address), edx);
-
- __ bind(&continue_exception);
- // Special handling of out of memory exception.
- __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
- __ j(equal, throw_out_of_memory_exception);
-
- // Handle normal exception.
- __ jmp(throw_normal_exception);
-
- // Retry.
- __ bind(&retry);
-}
-
-
-void CEntryStub::GenerateThrowOutOfMemory(MacroAssembler* masm) {
- // Fetch top stack handler.
- ExternalReference handler_address(Top::k_handler_address);
- __ mov(edx, Operand::StaticVariable(handler_address));
-
- // Unwind the handlers until the ENTRY handler is found.
- Label loop, done;
- __ bind(&loop);
- // Load the type of the current stack handler.
- const int kStateOffset = StackHandlerConstants::kAddressDisplacement +
- StackHandlerConstants::kStateOffset;
- __ cmp(Operand(edx, kStateOffset), Immediate(StackHandler::ENTRY));
- __ j(equal, &done);
- // Fetch the next handler in the list.
- const int kNextOffset = StackHandlerConstants::kAddressDisplacement +
- StackHandlerConstants::kNextOffset;
- __ mov(edx, Operand(edx, kNextOffset));
- __ jmp(&loop);
- __ bind(&done);
-
- // Set the top handler address to next handler past the current ENTRY handler.
- __ mov(eax, Operand(edx, kNextOffset));
- __ mov(Operand::StaticVariable(handler_address), eax);
-
- // Set external caught exception to false.
- __ mov(eax, false);
- ExternalReference external_caught(Top::k_external_caught_exception_address);
- __ mov(Operand::StaticVariable(external_caught), eax);
-
- // Set pending exception and eax to out of memory exception.
- __ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
- ExternalReference pending_exception(Top::k_pending_exception_address);
- __ mov(Operand::StaticVariable(pending_exception), eax);
-
- // Restore the stack to the address of the ENTRY handler
- __ mov(esp, Operand(edx));
-
- // Clear the context pointer;
- __ xor_(esi, Operand(esi));
-
- // Restore registers from handler.
- __ pop(edi); // PP
- __ pop(ebp); // FP
- __ pop(edx); // Code
- __ pop(edx); // State
-
- __ ret(0);
-}
-
-
-void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
- // eax: number of arguments including receiver
- // ebx: pointer to C function (C callee-saved)
- // ebp: frame pointer (restored after C call)
- // esp: stack pointer (restored after C call)
- // esi: current context (C callee-saved)
- // edi: caller's parameter pointer pp (C callee-saved)
-
- // NOTE: Invocations of builtins may return failure objects
- // instead of a proper result. The builtin entry handles
- // this by performing a garbage collection and retrying the
- // builtin once.
-
- StackFrame::Type frame_type = is_debug_break ?
- StackFrame::EXIT_DEBUG :
- StackFrame::EXIT;
-
- // Enter the exit frame that transitions from JavaScript to C++.
- __ EnterExitFrame(frame_type);
-
- // eax: result parameter for PerformGC, if any (setup below)
- // ebx: pointer to builtin function (C callee-saved)
- // ebp: frame pointer (restored after C call)
- // esp: stack pointer (restored after C call)
- // edi: number of arguments including receiver (C callee-saved)
- // esi: argv pointer (C callee-saved)
-
- Label throw_out_of_memory_exception;
- Label throw_normal_exception;
-
- // Call into the runtime system. Collect garbage before the call if
- // running with --gc-greedy set.
- if (FLAG_gc_greedy) {
- Failure* failure = Failure::RetryAfterGC(0);
- __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure)));
- }
- GenerateCore(masm, &throw_normal_exception,
- &throw_out_of_memory_exception,
- frame_type,
- FLAG_gc_greedy,
- false);
-
- // Do space-specific GC and retry runtime call.
- GenerateCore(masm,
- &throw_normal_exception,
- &throw_out_of_memory_exception,
- frame_type,
- true,
- false);
-
- // Do full GC and retry runtime call one final time.
- Failure* failure = Failure::InternalError();
- __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure)));
- GenerateCore(masm,
- &throw_normal_exception,
- &throw_out_of_memory_exception,
- frame_type,
- true,
- true);
-
- __ bind(&throw_out_of_memory_exception);
- GenerateThrowOutOfMemory(masm);
- // control flow for generated will not return.
-
- __ bind(&throw_normal_exception);
- GenerateThrowTOS(masm);
-}
-
-
-void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
- Label invoke, exit;
-
- // Setup frame.
- __ push(ebp);
- __ mov(ebp, Operand(esp));
-
- // Save callee-saved registers (C calling conventions).
- int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
- // Push something that is not an arguments adaptor.
- __ push(Immediate(~ArgumentsAdaptorFrame::SENTINEL));
- __ push(Immediate(Smi::FromInt(marker))); // @ function offset
- __ push(edi);
- __ push(esi);
- __ push(ebx);
-
- // Save copies of the top frame descriptor on the stack.
- ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
- __ push(Operand::StaticVariable(c_entry_fp));
-
- // Call a faked try-block that does the invoke.
- __ call(&invoke);
-
- // Caught exception: Store result (exception) in the pending
- // exception field in the JSEnv and return a failure sentinel.
- ExternalReference pending_exception(Top::k_pending_exception_address);
- __ mov(Operand::StaticVariable(pending_exception), eax);
- __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception()));
- __ jmp(&exit);
-
- // Invoke: Link this frame into the handler chain.
- __ bind(&invoke);
- __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
- __ push(eax); // flush TOS
-
- // Clear any pending exceptions.
- __ mov(edx,
- Operand::StaticVariable(ExternalReference::the_hole_value_location()));
- __ mov(Operand::StaticVariable(pending_exception), edx);
-
- // Fake a receiver (NULL).
- __ push(Immediate(0)); // receiver
-
- // Invoke the function by calling through JS entry trampoline
- // builtin and pop the faked function when we return. Notice that we
- // cannot store a reference to the trampoline code directly in this
- // stub, because the builtin stubs may not have been generated yet.
- if (is_construct) {
- ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
- __ mov(edx, Immediate(construct_entry));
- } else {
- ExternalReference entry(Builtins::JSEntryTrampoline);
- __ mov(edx, Immediate(entry));
- }
- __ mov(edx, Operand(edx, 0)); // deref address
- __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
- __ call(Operand(edx));
-
- // Unlink this frame from the handler chain.
- __ pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address)));
- // Pop next_sp.
- __ add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize));
-
- // Restore the top frame descriptor from the stack.
- __ bind(&exit);
- __ pop(Operand::StaticVariable(ExternalReference(Top::k_c_entry_fp_address)));
-
- // Restore callee-saved registers (C calling conventions).
- __ pop(ebx);
- __ pop(esi);
- __ pop(edi);
- __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers
-
- // Restore frame pointer and return.
- __ pop(ebp);
- __ ret(0);
-}
-
-
-void InstanceofStub::Generate(MacroAssembler* masm) {
- // Get the object - go slow case if it's a smi.
- Label slow;
- __ mov(eax, Operand(esp, 2 * kPointerSize)); // 2 ~ return address, function
- __ test(eax, Immediate(kSmiTagMask));
- __ j(zero, &slow, not_taken);
-
- // Check that the left hand is a JS object.
- __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); // ebx - object map
- __ movzx_b(ecx, FieldOperand(eax, Map::kInstanceTypeOffset)); // ecx - type
- __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
- __ j(less, &slow, not_taken);
- __ cmp(ecx, LAST_JS_OBJECT_TYPE);
- __ j(greater, &slow, not_taken);
-
- // Get the prototype of the function.
- __ mov(edx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address
- __ TryGetFunctionPrototype(edx, ebx, ecx, &slow);
-
- // Check that the function prototype is a JS object.
- __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset));
- __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
- __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
- __ j(less, &slow, not_taken);
- __ cmp(ecx, LAST_JS_OBJECT_TYPE);
- __ j(greater, &slow, not_taken);
-
- // Register mapping: eax is object map and ebx is function prototype.
- __ mov(ecx, FieldOperand(eax, Map::kPrototypeOffset));
-
- // Loop through the prototype chain looking for the function prototype.
- Label loop, is_instance, is_not_instance;
- __ bind(&loop);
- __ cmp(ecx, Operand(ebx));
- __ j(equal, &is_instance);
- __ cmp(Operand(ecx), Immediate(Factory::null_value()));
- __ j(equal, &is_not_instance);
- __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
- __ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset));
- __ jmp(&loop);
-
- __ bind(&is_instance);
- __ Set(eax, Immediate(0));
- __ ret(2 * kPointerSize);
-
- __ bind(&is_not_instance);
- __ Set(eax, Immediate(Smi::FromInt(1)));
- __ ret(2 * kPointerSize);
-
- // Slow-case: Go through the JavaScript implementation.
- __ bind(&slow);
- __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
-}
-
-
-#undef __
-
-} } // namespace v8::internal
« no previous file with comments | « src/codegen-ia32.h ('k') | src/constants-arm.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698