Index: src/ia32/assembler-ia32.h |
diff --git a/src/ia32/assembler-ia32.h b/src/ia32/assembler-ia32.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..a6640937e3aa6a99166d92a26cbe2f2c64bf3565 |
--- /dev/null |
+++ b/src/ia32/assembler-ia32.h |
@@ -0,0 +1,863 @@ |
+// Copyright (c) 1994-2006 Sun Microsystems Inc. |
+// All Rights Reserved. |
+// |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// - Redistributions of source code must retain the above copyright notice, |
+// this list of conditions and the following disclaimer. |
+// |
+// - Redistribution in binary form must reproduce the above copyright |
+// notice, this list of conditions and the following disclaimer in the |
+// documentation and/or other materials provided with the distribution. |
+// |
+// - Neither the name of Sun Microsystems or the names of contributors may |
+// be used to endorse or promote products derived from this software without |
+// specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
+// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
+// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
+// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+// The original source code covered by the above license above has been |
+// modified significantly by Google Inc. |
+// Copyright 2006-2008 the V8 project authors. All rights reserved. |
+ |
+// A light-weight IA32 Assembler. |
+ |
+#ifndef V8_ASSEMBLER_IA32_H_ |
+#define V8_ASSEMBLER_IA32_H_ |
+ |
+namespace v8 { namespace internal { |
+ |
+// CPU Registers. |
+// |
+// 1) We would prefer to use an enum, but enum values are assignment- |
+// compatible with int, which has caused code-generation bugs. |
+// |
+// 2) We would prefer to use a class instead of a struct but we don't like |
+// the register initialization to depend on the particular initialization |
+// order (which appears to be different on OS X, Linux, and Windows for the |
+// installed versions of C++ we tried). Using a struct permits C-style |
+// "initialization". Also, the Register objects cannot be const as this |
+// forces initialization stubs in MSVC, making us dependent on initialization |
+// order. |
+// |
+// 3) By not using an enum, we are possibly preventing the compiler from |
+// doing certain constant folds, which may significantly reduce the |
+// code generated for some assembly instructions (because they boil down |
+// to a few constants). If this is a problem, we could change the code |
+// such that we use an enum in optimized mode, and the struct in debug |
+// mode. This way we get the compile-time error checking in debug mode |
+// and best performance in optimized code. |
+// |
+struct Register { |
+ bool is_valid() const { return 0 <= code_ && code_ < 8; } |
+ bool is(Register reg) const { return code_ == reg.code_; } |
+ // eax, ebx, ecx and edx are byte registers, the rest are not. |
+ bool is_byte_register() const { return code_ <= 3; } |
+ int code() const { |
+ ASSERT(is_valid()); |
+ return code_; |
+ } |
+ int bit() const { |
+ ASSERT(is_valid()); |
+ return 1 << code_; |
+ } |
+ |
+ // (unfortunately we can't make this private in a struct) |
+ int code_; |
+}; |
+ |
+const int kNumRegisters = 8; |
+ |
+extern Register eax; |
+extern Register ecx; |
+extern Register edx; |
+extern Register ebx; |
+extern Register esp; |
+extern Register ebp; |
+extern Register esi; |
+extern Register edi; |
+extern Register no_reg; |
+ |
+ |
+struct XMMRegister { |
+ bool is_valid() const { return 0 <= code_ && code_ < 2; } // currently |
+ int code() const { |
+ ASSERT(is_valid()); |
+ return code_; |
+ } |
+ |
+ int code_; |
+}; |
+ |
+extern XMMRegister xmm0; |
+extern XMMRegister xmm1; |
+extern XMMRegister xmm2; |
+extern XMMRegister xmm3; |
+extern XMMRegister xmm4; |
+extern XMMRegister xmm5; |
+extern XMMRegister xmm6; |
+extern XMMRegister xmm7; |
+ |
+enum Condition { |
+ // any value < 0 is considered no_condition |
+ no_condition = -1, |
+ |
+ overflow = 0, |
+ no_overflow = 1, |
+ below = 2, |
+ above_equal = 3, |
+ equal = 4, |
+ not_equal = 5, |
+ below_equal = 6, |
+ above = 7, |
+ negative = 8, |
+ positive = 9, |
+ parity_even = 10, |
+ parity_odd = 11, |
+ less = 12, |
+ greater_equal = 13, |
+ less_equal = 14, |
+ greater = 15, |
+ |
+ // aliases |
+ carry = below, |
+ not_carry = above_equal, |
+ zero = equal, |
+ not_zero = not_equal, |
+ sign = negative, |
+ not_sign = positive |
+}; |
+ |
+ |
+// Returns the equivalent of !cc. |
+// Negation of the default no_condition (-1) results in a non-default |
+// no_condition value (-2). As long as tests for no_condition check |
+// for condition < 0, this will work as expected. |
+inline Condition NegateCondition(Condition cc); |
+ |
+// Corresponds to transposing the operands of a comparison. |
+inline Condition ReverseCondition(Condition cc) { |
+ switch (cc) { |
+ case below: |
+ return above; |
+ case above: |
+ return below; |
+ case above_equal: |
+ return below_equal; |
+ case below_equal: |
+ return above_equal; |
+ case less: |
+ return greater; |
+ case greater: |
+ return less; |
+ case greater_equal: |
+ return less_equal; |
+ case less_equal: |
+ return greater_equal; |
+ default: |
+ return cc; |
+ }; |
+} |
+ |
+enum Hint { |
+ no_hint = 0, |
+ not_taken = 0x2e, |
+ taken = 0x3e |
+}; |
+ |
+// The result of negating a hint is as if the corresponding condition |
+// were negated by NegateCondition. That is, no_hint is mapped to |
+// itself and not_taken and taken are mapped to each other. |
+inline Hint NegateHint(Hint hint) { |
+ return (hint == no_hint) |
+ ? no_hint |
+ : ((hint == not_taken) ? taken : not_taken); |
+} |
+ |
+ |
+// ----------------------------------------------------------------------------- |
+// Machine instruction Immediates |
+ |
+class Immediate BASE_EMBEDDED { |
+ public: |
+ inline explicit Immediate(int x); |
+ inline explicit Immediate(const char* s); |
+ inline explicit Immediate(const ExternalReference& ext); |
+ inline explicit Immediate(Handle<Object> handle); |
+ inline explicit Immediate(Smi* value); |
+ |
+ static Immediate CodeRelativeOffset(Label* label) { |
+ return Immediate(label); |
+ } |
+ |
+ bool is_zero() const { return x_ == 0 && rmode_ == RelocInfo::NONE; } |
+ bool is_int8() const { |
+ return -128 <= x_ && x_ < 128 && rmode_ == RelocInfo::NONE; |
+ } |
+ bool is_int16() const { |
+ return -32768 <= x_ && x_ < 32768 && rmode_ == RelocInfo::NONE; |
+ } |
+ |
+ private: |
+ inline explicit Immediate(Label* value); |
+ |
+ int x_; |
+ RelocInfo::Mode rmode_; |
+ |
+ friend class Assembler; |
+}; |
+ |
+ |
+// ----------------------------------------------------------------------------- |
+// Machine instruction Operands |
+ |
+enum ScaleFactor { |
+ times_1 = 0, |
+ times_2 = 1, |
+ times_4 = 2, |
+ times_8 = 3 |
+}; |
+ |
+ |
+class Operand BASE_EMBEDDED { |
+ public: |
+ // reg |
+ INLINE(explicit Operand(Register reg)); |
+ |
+ // [disp/r] |
+ INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode)); |
+ // disp only must always be relocated |
+ |
+ // [base + disp/r] |
+ explicit Operand(Register base, int32_t disp, |
+ RelocInfo::Mode rmode = RelocInfo::NONE); |
+ |
+ // [base + index*scale + disp/r] |
+ explicit Operand(Register base, |
+ Register index, |
+ ScaleFactor scale, |
+ int32_t disp, |
+ RelocInfo::Mode rmode = RelocInfo::NONE); |
+ |
+ // [index*scale + disp/r] |
+ explicit Operand(Register index, |
+ ScaleFactor scale, |
+ int32_t disp, |
+ RelocInfo::Mode rmode = RelocInfo::NONE); |
+ |
+ static Operand StaticVariable(const ExternalReference& ext) { |
+ return Operand(reinterpret_cast<int32_t>(ext.address()), |
+ RelocInfo::EXTERNAL_REFERENCE); |
+ } |
+ |
+ static Operand StaticArray(Register index, |
+ ScaleFactor scale, |
+ const ExternalReference& arr) { |
+ return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()), |
+ RelocInfo::EXTERNAL_REFERENCE); |
+ } |
+ |
+ // Returns true if this Operand is a wrapper for the specified register. |
+ bool is_reg(Register reg) const; |
+ |
+ private: |
+ byte buf_[6]; |
+ // The number of bytes in buf_. |
+ unsigned int len_; |
+ // Only valid if len_ > 4. |
+ RelocInfo::Mode rmode_; |
+ |
+ // Set the ModRM byte without an encoded 'reg' register. The |
+ // register is encoded later as part of the emit_operand operation. |
+ inline void set_modrm(int mod, Register rm); |
+ |
+ inline void set_sib(ScaleFactor scale, Register index, Register base); |
+ inline void set_disp8(int8_t disp); |
+ inline void set_dispr(int32_t disp, RelocInfo::Mode rmode); |
+ |
+ friend class Assembler; |
+}; |
+ |
+ |
+// ----------------------------------------------------------------------------- |
+// A Displacement describes the 32bit immediate field of an instruction which |
+// may be used together with a Label in order to refer to a yet unknown code |
+// position. Displacements stored in the instruction stream are used to describe |
+// the instruction and to chain a list of instructions using the same Label. |
+// A Displacement contains 2 different fields: |
+// |
+// next field: position of next displacement in the chain (0 = end of list) |
+// type field: instruction type |
+// |
+// A next value of null (0) indicates the end of a chain (note that there can |
+// be no displacement at position zero, because there is always at least one |
+// instruction byte before the displacement). |
+// |
+// Displacement _data field layout |
+// |
+// |31.....2|1......0| |
+// [ next | type | |
+ |
+class Displacement BASE_EMBEDDED { |
+ public: |
+ enum Type { |
+ UNCONDITIONAL_JUMP, |
+ CODE_RELATIVE, |
+ OTHER |
+ }; |
+ |
+ int data() const { return data_; } |
+ Type type() const { return TypeField::decode(data_); } |
+ void next(Label* L) const { |
+ int n = NextField::decode(data_); |
+ n > 0 ? L->link_to(n) : L->Unuse(); |
+ } |
+ void link_to(Label* L) { init(L, type()); } |
+ |
+ explicit Displacement(int data) { data_ = data; } |
+ |
+ Displacement(Label* L, Type type) { init(L, type); } |
+ |
+ void print() { |
+ PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"), |
+ NextField::decode(data_)); |
+ } |
+ |
+ private: |
+ int data_; |
+ |
+ class TypeField: public BitField<Type, 0, 2> {}; |
+ class NextField: public BitField<int, 2, 32-2> {}; |
+ |
+ void init(Label* L, Type type); |
+}; |
+ |
+ |
+ |
+// CpuFeatures keeps track of which features are supported by the target CPU. |
+// Supported features must be enabled by a Scope before use. |
+// Example: |
+// if (CpuFeatures::IsSupported(SSE2)) { |
+// CpuFeatures::Scope fscope(SSE2); |
+// // Generate SSE2 floating point code. |
+// } else { |
+// // Generate standard x87 floating point code. |
+// } |
+class CpuFeatures : public AllStatic { |
+ public: |
+ // Feature flags bit positions. They are mostly based on the CPUID spec. |
+ // (We assign CPUID itself to one of the currently reserved bits -- |
+ // feel free to change this if needed.) |
+ enum Feature { SSE3 = 32, SSE2 = 26, CMOV = 15, RDTSC = 4, CPUID = 10 }; |
+ // Detect features of the target CPU. Set safe defaults if the serializer |
+ // is enabled (snapshots must be portable). |
+ static void Probe(); |
+ // Check whether a feature is supported by the target CPU. |
+ static bool IsSupported(Feature f) { |
+ return (supported_ & (static_cast<uint64_t>(1) << f)) != 0; |
+ } |
+ // Check whether a feature is currently enabled. |
+ static bool IsEnabled(Feature f) { |
+ return (enabled_ & (static_cast<uint64_t>(1) << f)) != 0; |
+ } |
+ // Enable a specified feature within a scope. |
+ class Scope BASE_EMBEDDED { |
+#ifdef DEBUG |
+ public: |
+ explicit Scope(Feature f) { |
+ ASSERT(CpuFeatures::IsSupported(f)); |
+ old_enabled_ = CpuFeatures::enabled_; |
+ CpuFeatures::enabled_ |= (static_cast<uint64_t>(1) << f); |
+ } |
+ ~Scope() { CpuFeatures::enabled_ = old_enabled_; } |
+ private: |
+ uint64_t old_enabled_; |
+#else |
+ public: |
+ explicit Scope(Feature f) {} |
+#endif |
+ }; |
+ private: |
+ static uint64_t supported_; |
+ static uint64_t enabled_; |
+}; |
+ |
+ |
+class Assembler : public Malloced { |
+ private: |
+ // The relocation writer's position is kGap bytes below the end of |
+ // the generated instructions. This leaves enough space for the |
+ // longest possible ia32 instruction (17 bytes as of 9/26/06) and |
+ // allows for a single, fast space check per instruction. |
+ static const int kGap = 32; |
+ |
+ public: |
+ // Create an assembler. Instructions and relocation information are emitted |
+ // into a buffer, with the instructions starting from the beginning and the |
+ // relocation information starting from the end of the buffer. See CodeDesc |
+ // for a detailed comment on the layout (globals.h). |
+ // |
+ // If the provided buffer is NULL, the assembler allocates and grows its own |
+ // buffer, and buffer_size determines the initial buffer size. The buffer is |
+ // owned by the assembler and deallocated upon destruction of the assembler. |
+ // |
+ // If the provided buffer is not NULL, the assembler uses the provided buffer |
+ // for code generation and assumes its size to be buffer_size. If the buffer |
+ // is too small, a fatal error occurs. No deallocation of the buffer is done |
+ // upon destruction of the assembler. |
+ Assembler(void* buffer, int buffer_size); |
+ ~Assembler(); |
+ |
+ // GetCode emits any pending (non-emitted) code and fills the descriptor |
+ // desc. GetCode() is idempotent; it returns the same result if no other |
+ // Assembler functions are invoked in between GetCode() calls. |
+ void GetCode(CodeDesc* desc); |
+ |
+ // Read/Modify the code target in the branch/call instruction at pc. |
+ inline static Address target_address_at(Address pc); |
+ inline static void set_target_address_at(Address pc, Address target); |
+ |
+ // Distance between the address of the code target in the call instruction |
+ // and the return address |
+ static const int kTargetAddrToReturnAddrDist = kPointerSize; |
+ |
+ |
+ // --------------------------------------------------------------------------- |
+ // Code generation |
+ // |
+ // - function names correspond one-to-one to ia32 instruction mnemonics |
+ // - unless specified otherwise, instructions operate on 32bit operands |
+ // - instructions on 8bit (byte) operands/registers have a trailing '_b' |
+ // - instructions on 16bit (word) operands/registers have a trailing '_w' |
+ // - naming conflicts with C++ keywords are resolved via a trailing '_' |
+ |
+ // NOTE ON INTERFACE: Currently, the interface is not very consistent |
+ // in the sense that some operations (e.g. mov()) can be called in more |
+ // the one way to generate the same instruction: The Register argument |
+ // can in some cases be replaced with an Operand(Register) argument. |
+ // This should be cleaned up and made more orthogonal. The questions |
+ // is: should we always use Operands instead of Registers where an |
+ // Operand is possible, or should we have a Register (overloaded) form |
+ // instead? We must be careful to make sure that the selected instruction |
+ // is obvious from the parameters to avoid hard-to-find code generation |
+ // bugs. |
+ |
+ // Insert the smallest number of nop instructions |
+ // possible to align the pc offset to a multiple |
+ // of m. m must be a power of 2. |
+ void Align(int m); |
+ |
+ // Stack |
+ void pushad(); |
+ void popad(); |
+ |
+ void pushfd(); |
+ void popfd(); |
+ |
+ void push(const Immediate& x); |
+ void push(Register src); |
+ void push(const Operand& src); |
+ void push(Label* label, RelocInfo::Mode relocation_mode); |
+ |
+ void pop(Register dst); |
+ void pop(const Operand& dst); |
+ |
+ void enter(const Immediate& size); |
+ void leave(); |
+ |
+ // Moves |
+ void mov_b(Register dst, const Operand& src); |
+ void mov_b(const Operand& dst, int8_t imm8); |
+ void mov_b(const Operand& dst, Register src); |
+ |
+ void mov_w(Register dst, const Operand& src); |
+ void mov_w(const Operand& dst, Register src); |
+ |
+ void mov(Register dst, int32_t imm32); |
+ void mov(Register dst, const Immediate& x); |
+ void mov(Register dst, Handle<Object> handle); |
+ void mov(Register dst, const Operand& src); |
+ void mov(Register dst, Register src); |
+ void mov(const Operand& dst, const Immediate& x); |
+ void mov(const Operand& dst, Handle<Object> handle); |
+ void mov(const Operand& dst, Register src); |
+ |
+ void movsx_b(Register dst, const Operand& src); |
+ |
+ void movsx_w(Register dst, const Operand& src); |
+ |
+ void movzx_b(Register dst, const Operand& src); |
+ |
+ void movzx_w(Register dst, const Operand& src); |
+ |
+ // Conditional moves |
+ void cmov(Condition cc, Register dst, int32_t imm32); |
+ void cmov(Condition cc, Register dst, Handle<Object> handle); |
+ void cmov(Condition cc, Register dst, const Operand& src); |
+ |
+ // Exchange two registers |
+ void xchg(Register dst, Register src); |
+ |
+ // Arithmetics |
+ void adc(Register dst, int32_t imm32); |
+ void adc(Register dst, const Operand& src); |
+ |
+ void add(Register dst, const Operand& src); |
+ void add(const Operand& dst, const Immediate& x); |
+ |
+ void and_(Register dst, int32_t imm32); |
+ void and_(Register dst, const Operand& src); |
+ void and_(const Operand& src, Register dst); |
+ void and_(const Operand& dst, const Immediate& x); |
+ |
+ void cmpb(const Operand& op, int8_t imm8); |
+ void cmpb_al(const Operand& op); |
+ void cmpw_ax(const Operand& op); |
+ void cmpw(const Operand& op, Immediate imm16); |
+ void cmp(Register reg, int32_t imm32); |
+ void cmp(Register reg, Handle<Object> handle); |
+ void cmp(Register reg, const Operand& op); |
+ void cmp(const Operand& op, const Immediate& imm); |
+ |
+ void dec_b(Register dst); |
+ |
+ void dec(Register dst); |
+ void dec(const Operand& dst); |
+ |
+ void cdq(); |
+ |
+ void idiv(Register src); |
+ |
+ void imul(Register dst, const Operand& src); |
+ void imul(Register dst, Register src, int32_t imm32); |
+ |
+ void inc(Register dst); |
+ void inc(const Operand& dst); |
+ |
+ void lea(Register dst, const Operand& src); |
+ |
+ void mul(Register src); |
+ |
+ void neg(Register dst); |
+ |
+ void not_(Register dst); |
+ |
+ void or_(Register dst, int32_t imm32); |
+ void or_(Register dst, const Operand& src); |
+ void or_(const Operand& dst, Register src); |
+ void or_(const Operand& dst, const Immediate& x); |
+ |
+ void rcl(Register dst, uint8_t imm8); |
+ |
+ void sar(Register dst, uint8_t imm8); |
+ void sar(Register dst); |
+ |
+ void sbb(Register dst, const Operand& src); |
+ |
+ void shld(Register dst, const Operand& src); |
+ |
+ void shl(Register dst, uint8_t imm8); |
+ void shl(Register dst); |
+ |
+ void shrd(Register dst, const Operand& src); |
+ |
+ void shr(Register dst, uint8_t imm8); |
+ void shr(Register dst); |
+ void shr_cl(Register dst); |
+ |
+ void sub(const Operand& dst, const Immediate& x); |
+ void sub(Register dst, const Operand& src); |
+ void sub(const Operand& dst, Register src); |
+ |
+ void test(Register reg, const Immediate& imm); |
+ void test(Register reg, const Operand& op); |
+ void test(const Operand& op, const Immediate& imm); |
+ |
+ void xor_(Register dst, int32_t imm32); |
+ void xor_(Register dst, const Operand& src); |
+ void xor_(const Operand& src, Register dst); |
+ void xor_(const Operand& dst, const Immediate& x); |
+ |
+ // Bit operations. |
+ void bt(const Operand& dst, Register src); |
+ void bts(const Operand& dst, Register src); |
+ |
+ // Miscellaneous |
+ void hlt(); |
+ void int3(); |
+ void nop(); |
+ void rdtsc(); |
+ void ret(int imm16); |
+ |
+ // Label operations & relative jumps (PPUM Appendix D) |
+ // |
+ // Takes a branch opcode (cc) and a label (L) and generates |
+ // either a backward branch or a forward branch and links it |
+ // to the label fixup chain. Usage: |
+ // |
+ // Label L; // unbound label |
+ // j(cc, &L); // forward branch to unbound label |
+ // bind(&L); // bind label to the current pc |
+ // j(cc, &L); // backward branch to bound label |
+ // bind(&L); // illegal: a label may be bound only once |
+ // |
+ // Note: The same Label can be used for forward and backward branches |
+ // but it may be bound only once. |
+ |
+ void bind(Label* L); // binds an unbound label L to the current code position |
+ |
+ // Calls |
+ void call(Label* L); |
+ void call(byte* entry, RelocInfo::Mode rmode); |
+ void call(const Operand& adr); |
+ void call(Handle<Code> code, RelocInfo::Mode rmode); |
+ |
+ // Jumps |
+ void jmp(Label* L); // unconditional jump to L |
+ void jmp(byte* entry, RelocInfo::Mode rmode); |
+ void jmp(const Operand& adr); |
+ void jmp(Handle<Code> code, RelocInfo::Mode rmode); |
+ |
+ // Conditional jumps |
+ void j(Condition cc, Label* L, Hint hint = no_hint); |
+ void j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint = no_hint); |
+ void j(Condition cc, Handle<Code> code, Hint hint = no_hint); |
+ |
+ // Floating-point operations |
+ void fld(int i); |
+ |
+ void fld1(); |
+ void fldz(); |
+ |
+ void fld_s(const Operand& adr); |
+ void fld_d(const Operand& adr); |
+ |
+ void fstp_s(const Operand& adr); |
+ void fstp_d(const Operand& adr); |
+ |
+ void fild_s(const Operand& adr); |
+ void fild_d(const Operand& adr); |
+ |
+ void fist_s(const Operand& adr); |
+ |
+ void fistp_s(const Operand& adr); |
+ void fistp_d(const Operand& adr); |
+ |
+ void fisttp_s(const Operand& adr); |
+ |
+ void fabs(); |
+ void fchs(); |
+ |
+ void fadd(int i); |
+ void fsub(int i); |
+ void fmul(int i); |
+ void fdiv(int i); |
+ |
+ void fisub_s(const Operand& adr); |
+ |
+ void faddp(int i = 1); |
+ void fsubp(int i = 1); |
+ void fsubrp(int i = 1); |
+ void fmulp(int i = 1); |
+ void fdivp(int i = 1); |
+ void fprem(); |
+ void fprem1(); |
+ |
+ void fxch(int i = 1); |
+ void fincstp(); |
+ void ffree(int i = 0); |
+ |
+ void ftst(); |
+ void fucomp(int i); |
+ void fucompp(); |
+ void fcompp(); |
+ void fnstsw_ax(); |
+ void fwait(); |
+ void fnclex(); |
+ |
+ void frndint(); |
+ |
+ void sahf(); |
+ void setcc(Condition cc, Register reg); |
+ |
+ void cpuid(); |
+ |
+ // SSE2 instructions |
+ void cvttss2si(Register dst, const Operand& src); |
+ void cvttsd2si(Register dst, const Operand& src); |
+ |
+ void cvtsi2sd(XMMRegister dst, const Operand& src); |
+ |
+ void addsd(XMMRegister dst, XMMRegister src); |
+ void subsd(XMMRegister dst, XMMRegister src); |
+ void mulsd(XMMRegister dst, XMMRegister src); |
+ void divsd(XMMRegister dst, XMMRegister src); |
+ |
+ // Use either movsd or movlpd. |
+ void movdbl(XMMRegister dst, const Operand& src); |
+ void movdbl(const Operand& dst, XMMRegister src); |
+ |
+ // Debugging |
+ void Print(); |
+ |
+ // Check the code size generated from label to here. |
+ int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); } |
+ |
+ // Mark address of the ExitJSFrame code. |
+ void RecordJSReturn(); |
+ |
+ // Record a comment relocation entry that can be used by a disassembler. |
+ // Use --debug_code to enable. |
+ void RecordComment(const char* msg); |
+ |
+ void RecordPosition(int pos); |
+ void RecordStatementPosition(int pos); |
+ void WriteRecordedPositions(); |
+ |
+ // Writes a single word of data in the code stream. |
+ // Used for inline tables, e.g., jump-tables. |
+ void dd(uint32_t data, RelocInfo::Mode reloc_info); |
+ |
+ // Writes the absolute address of a bound label at the given position in |
+ // the generated code. That positions should have the relocation mode |
+ // internal_reference! |
+ void WriteInternalReference(int position, const Label& bound_label); |
+ |
+ int pc_offset() const { return pc_ - buffer_; } |
+ int current_statement_position() const { return current_statement_position_; } |
+ int current_position() const { return current_position_; } |
+ |
+ // Check if there is less than kGap bytes available in the buffer. |
+ // If this is the case, we need to grow the buffer before emitting |
+ // an instruction or relocation information. |
+ inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } |
+ |
+ // Get the number of bytes available in the buffer. |
+ inline int available_space() const { return reloc_info_writer.pos() - pc_; } |
+ |
+ // Avoid overflows for displacements etc. |
+ static const int kMaximalBufferSize = 512*MB; |
+ static const int kMinimalBufferSize = 4*KB; |
+ |
+ protected: |
+ void movsd(XMMRegister dst, const Operand& src); |
+ void movsd(const Operand& dst, XMMRegister src); |
+ |
+ void emit_sse_operand(XMMRegister reg, const Operand& adr); |
+ void emit_sse_operand(XMMRegister dst, XMMRegister src); |
+ |
+ |
+ private: |
+ byte* addr_at(int pos) { return buffer_ + pos; } |
+ byte byte_at(int pos) { return buffer_[pos]; } |
+ uint32_t long_at(int pos) { |
+ return *reinterpret_cast<uint32_t*>(addr_at(pos)); |
+ } |
+ void long_at_put(int pos, uint32_t x) { |
+ *reinterpret_cast<uint32_t*>(addr_at(pos)) = x; |
+ } |
+ |
+ // code emission |
+ void GrowBuffer(); |
+ inline void emit(uint32_t x); |
+ inline void emit(Handle<Object> handle); |
+ inline void emit(uint32_t x, RelocInfo::Mode rmode); |
+ inline void emit(const Immediate& x); |
+ inline void emit_w(const Immediate& x); |
+ |
+ // Emit the code-object-relative offset of the label's position |
+ inline void emit_code_relative_offset(Label* label); |
+ |
+ // instruction generation |
+ void emit_arith_b(int op1, int op2, Register dst, int imm8); |
+ |
+ // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81) |
+ // with a given destination expression and an immediate operand. It attempts |
+ // to use the shortest encoding possible. |
+ // sel specifies the /n in the modrm byte (see the Intel PRM). |
+ void emit_arith(int sel, Operand dst, const Immediate& x); |
+ |
+ void emit_operand(Register reg, const Operand& adr); |
+ |
+ void emit_farith(int b1, int b2, int i); |
+ |
+ // labels |
+ void print(Label* L); |
+ void bind_to(Label* L, int pos); |
+ void link_to(Label* L, Label* appendix); |
+ |
+ // displacements |
+ inline Displacement disp_at(Label* L); |
+ inline void disp_at_put(Label* L, Displacement disp); |
+ inline void emit_disp(Label* L, Displacement::Type type); |
+ |
+ // record reloc info for current pc_ |
+ void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); |
+ |
+ friend class CodePatcher; |
+ friend class EnsureSpace; |
+ |
+ // Code buffer: |
+ // The buffer into which code and relocation info are generated. |
+ byte* buffer_; |
+ int buffer_size_; |
+ // True if the assembler owns the buffer, false if buffer is external. |
+ bool own_buffer_; |
+ |
+ // code generation |
+ byte* pc_; // the program counter; moves forward |
+ RelocInfoWriter reloc_info_writer; |
+ |
+ // push-pop elimination |
+ byte* last_pc_; |
+ |
+ // source position information |
+ int current_statement_position_; |
+ int current_position_; |
+ int written_statement_position_; |
+ int written_position_; |
+}; |
+ |
+ |
+// Helper class that ensures that there is enough space for generating |
+// instructions and relocation information. The constructor makes |
+// sure that there is enough space and (in debug mode) the destructor |
+// checks that we did not generate too much. |
+class EnsureSpace BASE_EMBEDDED { |
+ public: |
+ explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) { |
+ if (assembler_->overflow()) assembler_->GrowBuffer(); |
+#ifdef DEBUG |
+ space_before_ = assembler_->available_space(); |
+#endif |
+ } |
+ |
+#ifdef DEBUG |
+ ~EnsureSpace() { |
+ int bytes_generated = space_before_ - assembler_->available_space(); |
+ ASSERT(bytes_generated < assembler_->kGap); |
+ } |
+#endif |
+ |
+ private: |
+ Assembler* assembler_; |
+#ifdef DEBUG |
+ int space_before_; |
+#endif |
+}; |
+ |
+} } // namespace v8::internal |
+ |
+#endif // V8_ASSEMBLER_IA32_H_ |