Index: src/ia32/assembler-ia32.cc |
diff --git a/src/ia32/assembler-ia32.cc b/src/ia32/assembler-ia32.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..3a2d3f82dd4f385f9dd04372470495d7987e6802 |
--- /dev/null |
+++ b/src/ia32/assembler-ia32.cc |
@@ -0,0 +1,2240 @@ |
+// Copyright (c) 1994-2006 Sun Microsystems Inc. |
+// All Rights Reserved. |
+// |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions |
+// are met: |
+// |
+// - Redistributions of source code must retain the above copyright notice, |
+// this list of conditions and the following disclaimer. |
+// |
+// - Redistribution in binary form must reproduce the above copyright |
+// notice, this list of conditions and the following disclaimer in the |
+// documentation and/or other materials provided with the |
+// distribution. |
+// |
+// - Neither the name of Sun Microsystems or the names of contributors may |
+// be used to endorse or promote products derived from this software without |
+// specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
+// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
+// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
+// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
+// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
+// OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+// The original source code covered by the above license above has been modified |
+// significantly by Google Inc. |
+// Copyright 2006-2008 the V8 project authors. All rights reserved. |
+ |
+#include "v8.h" |
+ |
+#include "disassembler.h" |
+#include "macro-assembler.h" |
+#include "serialize.h" |
+ |
+namespace v8 { namespace internal { |
+ |
+// ----------------------------------------------------------------------------- |
+// Implementation of Register |
+ |
+Register eax = { 0 }; |
+Register ecx = { 1 }; |
+Register edx = { 2 }; |
+Register ebx = { 3 }; |
+Register esp = { 4 }; |
+Register ebp = { 5 }; |
+Register esi = { 6 }; |
+Register edi = { 7 }; |
+Register no_reg = { -1 }; |
+ |
+XMMRegister xmm0 = { 0 }; |
+XMMRegister xmm1 = { 1 }; |
+XMMRegister xmm2 = { 2 }; |
+XMMRegister xmm3 = { 3 }; |
+XMMRegister xmm4 = { 4 }; |
+XMMRegister xmm5 = { 5 }; |
+XMMRegister xmm6 = { 6 }; |
+XMMRegister xmm7 = { 7 }; |
+ |
+ |
+// ----------------------------------------------------------------------------- |
+// Implementation of CpuFeatures |
+ |
+// Safe default is no features. |
+uint64_t CpuFeatures::supported_ = 0; |
+uint64_t CpuFeatures::enabled_ = 0; |
+ |
+ |
+// The Probe method needs executable memory, so it uses Heap::CreateCode. |
+// Allocation failure is silent and leads to safe default. |
+void CpuFeatures::Probe() { |
+ ASSERT(Heap::HasBeenSetup()); |
+ ASSERT(supported_ == 0); |
+ if (Serializer::enabled()) return; // No features if we might serialize. |
+ |
+ Assembler assm(NULL, 0); |
+ Label cpuid, done; |
+#define __ assm. |
+ // Save old esp, since we are going to modify the stack. |
+ __ push(ebp); |
+ __ pushfd(); |
+ __ push(ecx); |
+ __ push(ebx); |
+ __ mov(ebp, Operand(esp)); |
+ |
+ // If we can modify bit 21 of the EFLAGS register, then CPUID is supported. |
+ __ pushfd(); |
+ __ pop(eax); |
+ __ mov(edx, Operand(eax)); |
+ __ xor_(eax, 0x200000); // Flip bit 21. |
+ __ push(eax); |
+ __ popfd(); |
+ __ pushfd(); |
+ __ pop(eax); |
+ __ xor_(eax, Operand(edx)); // Different if CPUID is supported. |
+ __ j(not_zero, &cpuid); |
+ |
+ // CPUID not supported. Clear the supported features in edx:eax. |
+ __ xor_(eax, Operand(eax)); |
+ __ xor_(edx, Operand(edx)); |
+ __ jmp(&done); |
+ |
+ // Invoke CPUID with 1 in eax to get feature information in |
+ // ecx:edx. Temporarily enable CPUID support because we know it's |
+ // safe here. |
+ __ bind(&cpuid); |
+ __ mov(eax, 1); |
+ supported_ = (1 << CPUID); |
+ { Scope fscope(CPUID); |
+ __ cpuid(); |
+ } |
+ supported_ = 0; |
+ |
+ // Move the result from ecx:edx to edx:eax and make sure to mark the |
+ // CPUID feature as supported. |
+ __ mov(eax, Operand(edx)); |
+ __ or_(eax, 1 << CPUID); |
+ __ mov(edx, Operand(ecx)); |
+ |
+ // Done. |
+ __ bind(&done); |
+ __ mov(esp, Operand(ebp)); |
+ __ pop(ebx); |
+ __ pop(ecx); |
+ __ popfd(); |
+ __ pop(ebp); |
+ __ ret(0); |
+#undef __ |
+ |
+ CodeDesc desc; |
+ assm.GetCode(&desc); |
+ Object* code = |
+ Heap::CreateCode(desc, NULL, Code::ComputeFlags(Code::STUB), NULL); |
+ if (!code->IsCode()) return; |
+ LOG(CodeCreateEvent("Builtin", Code::cast(code), "CpuFeatures::Probe")); |
+ typedef uint64_t (*F0)(); |
+ F0 probe = FUNCTION_CAST<F0>(Code::cast(code)->entry()); |
+ supported_ = probe(); |
+} |
+ |
+ |
+// ----------------------------------------------------------------------------- |
+// Implementation of Displacement |
+ |
+void Displacement::init(Label* L, Type type) { |
+ ASSERT(!L->is_bound()); |
+ int next = 0; |
+ if (L->is_linked()) { |
+ next = L->pos(); |
+ ASSERT(next > 0); // Displacements must be at positions > 0 |
+ } |
+ // Ensure that we _never_ overflow the next field. |
+ ASSERT(NextField::is_valid(Assembler::kMaximalBufferSize)); |
+ data_ = NextField::encode(next) | TypeField::encode(type); |
+} |
+ |
+ |
+// ----------------------------------------------------------------------------- |
+// Implementation of RelocInfo |
+ |
+ |
+const int RelocInfo::kApplyMask = |
+ RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY | |
+ 1 << RelocInfo::JS_RETURN | 1 << RelocInfo::INTERNAL_REFERENCE; |
+ |
+ |
+void RelocInfo::PatchCode(byte* instructions, int instruction_count) { |
+ // Patch the code at the current address with the supplied instructions. |
+ for (int i = 0; i < instruction_count; i++) { |
+ *(pc_ + i) = *(instructions + i); |
+ } |
+} |
+ |
+ |
+// Patch the code at the current PC with a call to the target address. |
+// Additional guard int3 instructions can be added if required. |
+void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { |
+ // Call instruction takes up 5 bytes and int3 takes up one byte. |
+ int code_size = 5 + guard_bytes; |
+ |
+ // Patch the code. |
+ CodePatcher patcher(pc_, code_size); |
+ patcher.masm()->call(target, RelocInfo::NONE); |
+ |
+ // Add the requested number of int3 instructions after the call. |
+ for (int i = 0; i < guard_bytes; i++) { |
+ patcher.masm()->int3(); |
+ } |
+} |
+ |
+ |
+// ----------------------------------------------------------------------------- |
+// Implementation of Operand |
+ |
+Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) { |
+ // [base + disp/r] |
+ if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) { |
+ // [base] |
+ set_modrm(0, base); |
+ if (base.is(esp)) set_sib(times_1, esp, base); |
+ } else if (is_int8(disp) && rmode == RelocInfo::NONE) { |
+ // [base + disp8] |
+ set_modrm(1, base); |
+ if (base.is(esp)) set_sib(times_1, esp, base); |
+ set_disp8(disp); |
+ } else { |
+ // [base + disp/r] |
+ set_modrm(2, base); |
+ if (base.is(esp)) set_sib(times_1, esp, base); |
+ set_dispr(disp, rmode); |
+ } |
+} |
+ |
+ |
+Operand::Operand(Register base, |
+ Register index, |
+ ScaleFactor scale, |
+ int32_t disp, |
+ RelocInfo::Mode rmode) { |
+ ASSERT(!index.is(esp)); // illegal addressing mode |
+ // [base + index*scale + disp/r] |
+ if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) { |
+ // [base + index*scale] |
+ set_modrm(0, esp); |
+ set_sib(scale, index, base); |
+ } else if (is_int8(disp) && rmode == RelocInfo::NONE) { |
+ // [base + index*scale + disp8] |
+ set_modrm(1, esp); |
+ set_sib(scale, index, base); |
+ set_disp8(disp); |
+ } else { |
+ // [base + index*scale + disp/r] |
+ set_modrm(2, esp); |
+ set_sib(scale, index, base); |
+ set_dispr(disp, rmode); |
+ } |
+} |
+ |
+ |
+Operand::Operand(Register index, |
+ ScaleFactor scale, |
+ int32_t disp, |
+ RelocInfo::Mode rmode) { |
+ ASSERT(!index.is(esp)); // illegal addressing mode |
+ // [index*scale + disp/r] |
+ set_modrm(0, esp); |
+ set_sib(scale, index, ebp); |
+ set_dispr(disp, rmode); |
+} |
+ |
+ |
+void Operand::set_sib(ScaleFactor scale, Register index, Register base) { |
+ ASSERT(len_ == 1); |
+ ASSERT((scale & -4) == 0); |
+ buf_[1] = scale << 6 | index.code() << 3 | base.code(); |
+ len_ = 2; |
+} |
+ |
+ |
+void Operand::set_disp8(int8_t disp) { |
+ ASSERT(len_ == 1 || len_ == 2); |
+ *reinterpret_cast<int8_t*>(&buf_[len_++]) = disp; |
+} |
+ |
+ |
+bool Operand::is_reg(Register reg) const { |
+ return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only. |
+ && ((buf_[0] & 0x07) == reg.code()); // register codes match. |
+} |
+ |
+// ----------------------------------------------------------------------------- |
+// Implementation of Assembler |
+ |
+// Emit a single byte. Must always be inlined. |
+#define EMIT(x) \ |
+ *pc_++ = (x) |
+ |
+ |
+#ifdef GENERATED_CODE_COVERAGE |
+static void InitCoverageLog(); |
+#endif |
+ |
+// spare_buffer_ |
+static byte* spare_buffer_ = NULL; |
+ |
+Assembler::Assembler(void* buffer, int buffer_size) { |
+ if (buffer == NULL) { |
+ // do our own buffer management |
+ if (buffer_size <= kMinimalBufferSize) { |
+ buffer_size = kMinimalBufferSize; |
+ |
+ if (spare_buffer_ != NULL) { |
+ buffer = spare_buffer_; |
+ spare_buffer_ = NULL; |
+ } |
+ } |
+ if (buffer == NULL) { |
+ buffer_ = NewArray<byte>(buffer_size); |
+ } else { |
+ buffer_ = static_cast<byte*>(buffer); |
+ } |
+ buffer_size_ = buffer_size; |
+ own_buffer_ = true; |
+ } else { |
+ // use externally provided buffer instead |
+ ASSERT(buffer_size > 0); |
+ buffer_ = static_cast<byte*>(buffer); |
+ buffer_size_ = buffer_size; |
+ own_buffer_ = false; |
+ } |
+ |
+ // Clear the buffer in debug mode unless it was provided by the |
+ // caller in which case we can't be sure it's okay to overwrite |
+ // existing code in it; see CodePatcher::CodePatcher(...). |
+#ifdef DEBUG |
+ if (own_buffer_) { |
+ memset(buffer_, 0xCC, buffer_size); // int3 |
+ } |
+#endif |
+ |
+ // setup buffer pointers |
+ ASSERT(buffer_ != NULL); |
+ pc_ = buffer_; |
+ reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
+ |
+ last_pc_ = NULL; |
+ current_statement_position_ = RelocInfo::kNoPosition; |
+ current_position_ = RelocInfo::kNoPosition; |
+ written_statement_position_ = current_statement_position_; |
+ written_position_ = current_position_; |
+#ifdef GENERATED_CODE_COVERAGE |
+ InitCoverageLog(); |
+#endif |
+} |
+ |
+ |
+Assembler::~Assembler() { |
+ if (own_buffer_) { |
+ if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { |
+ spare_buffer_ = buffer_; |
+ } else { |
+ DeleteArray(buffer_); |
+ } |
+ } |
+} |
+ |
+ |
+void Assembler::GetCode(CodeDesc* desc) { |
+ // finalize code |
+ // (at this point overflow() may be true, but the gap ensures that |
+ // we are still not overlapping instructions and relocation info) |
+ ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap |
+ // setup desc |
+ desc->buffer = buffer_; |
+ desc->buffer_size = buffer_size_; |
+ desc->instr_size = pc_offset(); |
+ desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
+ desc->origin = this; |
+ |
+ Counters::reloc_info_size.Increment(desc->reloc_size); |
+} |
+ |
+ |
+void Assembler::Align(int m) { |
+ ASSERT(IsPowerOf2(m)); |
+ while ((pc_offset() & (m - 1)) != 0) { |
+ nop(); |
+ } |
+} |
+ |
+ |
+void Assembler::cpuid() { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CPUID)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0xA2); |
+} |
+ |
+ |
+void Assembler::pushad() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x60); |
+} |
+ |
+ |
+void Assembler::popad() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x61); |
+} |
+ |
+ |
+void Assembler::pushfd() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x9C); |
+} |
+ |
+ |
+void Assembler::popfd() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x9D); |
+} |
+ |
+ |
+void Assembler::push(const Immediate& x) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ if (x.is_int8()) { |
+ EMIT(0x6a); |
+ EMIT(x.x_); |
+ } else { |
+ EMIT(0x68); |
+ emit(x); |
+ } |
+} |
+ |
+ |
+void Assembler::push(Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x50 | src.code()); |
+} |
+ |
+ |
+void Assembler::push(const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xFF); |
+ emit_operand(esi, src); |
+} |
+ |
+ |
+void Assembler::pop(Register dst) { |
+ ASSERT(reloc_info_writer.last_pc() != NULL); |
+ if (FLAG_push_pop_elimination && (reloc_info_writer.last_pc() <= last_pc_)) { |
+ // (last_pc_ != NULL) is rolled into the above check |
+ // If a last_pc_ is set, we need to make sure that there has not been any |
+ // relocation information generated between the last instruction and this |
+ // pop instruction. |
+ byte instr = last_pc_[0]; |
+ if ((instr & ~0x7) == 0x50) { |
+ int push_reg_code = instr & 0x7; |
+ if (push_reg_code == dst.code()) { |
+ pc_ = last_pc_; |
+ if (FLAG_print_push_pop_elimination) { |
+ PrintF("%d push/pop (same reg) eliminated\n", pc_offset()); |
+ } |
+ } else { |
+ // Convert 'push src; pop dst' to 'mov dst, src'. |
+ last_pc_[0] = 0x8b; |
+ Register src = { push_reg_code }; |
+ EnsureSpace ensure_space(this); |
+ emit_operand(dst, Operand(src)); |
+ if (FLAG_print_push_pop_elimination) { |
+ PrintF("%d push/pop (reg->reg) eliminated\n", pc_offset()); |
+ } |
+ } |
+ last_pc_ = NULL; |
+ return; |
+ } else if (instr == 0xff) { // push of an operand, convert to a move |
+ byte op1 = last_pc_[1]; |
+ // Check if the operation is really a push |
+ if ((op1 & 0x38) == (6 << 3)) { |
+ op1 = (op1 & ~0x38) | static_cast<byte>(dst.code() << 3); |
+ last_pc_[0] = 0x8b; |
+ last_pc_[1] = op1; |
+ last_pc_ = NULL; |
+ if (FLAG_print_push_pop_elimination) { |
+ PrintF("%d push/pop (op->reg) eliminated\n", pc_offset()); |
+ } |
+ return; |
+ } |
+ } else if ((instr == 0x89) && |
+ (last_pc_[1] == 0x04) && |
+ (last_pc_[2] == 0x24)) { |
+ // 0x71283c 396 890424 mov [esp],eax |
+ // 0x71283f 399 58 pop eax |
+ if (dst.is(eax)) { |
+ // change to |
+ // 0x710fac 216 83c404 add esp,0x4 |
+ last_pc_[0] = 0x83; |
+ last_pc_[1] = 0xc4; |
+ last_pc_[2] = 0x04; |
+ last_pc_ = NULL; |
+ if (FLAG_print_push_pop_elimination) { |
+ PrintF("%d push/pop (mov-pop) eliminated\n", pc_offset()); |
+ } |
+ return; |
+ } |
+ } else if (instr == 0x6a && dst.is(eax)) { // push of immediate 8 bit |
+ byte imm8 = last_pc_[1]; |
+ if (imm8 == 0) { |
+ // 6a00 push 0x0 |
+ // 58 pop eax |
+ last_pc_[0] = 0x31; |
+ last_pc_[1] = 0xc0; |
+ // change to |
+ // 31c0 xor eax,eax |
+ last_pc_ = NULL; |
+ if (FLAG_print_push_pop_elimination) { |
+ PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); |
+ } |
+ return; |
+ } else { |
+ // 6a00 push 0xXX |
+ // 58 pop eax |
+ last_pc_[0] = 0xb8; |
+ EnsureSpace ensure_space(this); |
+ if ((imm8 & 0x80) != 0) { |
+ EMIT(0xff); |
+ EMIT(0xff); |
+ EMIT(0xff); |
+ // change to |
+ // b8XXffffff mov eax,0xffffffXX |
+ } else { |
+ EMIT(0x00); |
+ EMIT(0x00); |
+ EMIT(0x00); |
+ // change to |
+ // b8XX000000 mov eax,0x000000XX |
+ } |
+ last_pc_ = NULL; |
+ if (FLAG_print_push_pop_elimination) { |
+ PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); |
+ } |
+ return; |
+ } |
+ } else if (instr == 0x68 && dst.is(eax)) { // push of immediate 32 bit |
+ // 68XXXXXXXX push 0xXXXXXXXX |
+ // 58 pop eax |
+ last_pc_[0] = 0xb8; |
+ last_pc_ = NULL; |
+ // change to |
+ // b8XXXXXXXX mov eax,0xXXXXXXXX |
+ if (FLAG_print_push_pop_elimination) { |
+ PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); |
+ } |
+ return; |
+ } |
+ |
+ // Other potential patterns for peephole: |
+ // 0x712716 102 890424 mov [esp], eax |
+ // 0x712719 105 8b1424 mov edx, [esp] |
+ } |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x58 | dst.code()); |
+} |
+ |
+ |
+void Assembler::pop(const Operand& dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x8F); |
+ emit_operand(eax, dst); |
+} |
+ |
+ |
+void Assembler::enter(const Immediate& size) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xC8); |
+ emit_w(size); |
+ EMIT(0); |
+} |
+ |
+ |
+void Assembler::leave() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xC9); |
+} |
+ |
+ |
+void Assembler::mov_b(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x8A); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::mov_b(const Operand& dst, int8_t imm8) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xC6); |
+ emit_operand(eax, dst); |
+ EMIT(imm8); |
+} |
+ |
+ |
+void Assembler::mov_b(const Operand& dst, Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x88); |
+ emit_operand(src, dst); |
+} |
+ |
+ |
+void Assembler::mov_w(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x66); |
+ EMIT(0x8B); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::mov_w(const Operand& dst, Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x66); |
+ EMIT(0x89); |
+ emit_operand(src, dst); |
+} |
+ |
+ |
+void Assembler::mov(Register dst, int32_t imm32) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xB8 | dst.code()); |
+ emit(imm32); |
+} |
+ |
+ |
+void Assembler::mov(Register dst, const Immediate& x) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xB8 | dst.code()); |
+ emit(x); |
+} |
+ |
+ |
+void Assembler::mov(Register dst, Handle<Object> handle) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xB8 | dst.code()); |
+ emit(handle); |
+} |
+ |
+ |
+void Assembler::mov(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x8B); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::mov(Register dst, Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x89); |
+ EMIT(0xC0 | src.code() << 3 | dst.code()); |
+} |
+ |
+ |
+void Assembler::mov(const Operand& dst, const Immediate& x) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xC7); |
+ emit_operand(eax, dst); |
+ emit(x); |
+} |
+ |
+ |
+void Assembler::mov(const Operand& dst, Handle<Object> handle) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xC7); |
+ emit_operand(eax, dst); |
+ emit(handle); |
+} |
+ |
+ |
+void Assembler::mov(const Operand& dst, Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x89); |
+ emit_operand(src, dst); |
+} |
+ |
+ |
+void Assembler::movsx_b(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0xBE); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::movsx_w(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0xBF); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::movzx_b(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0xB6); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::movzx_w(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0xB7); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::cmov(Condition cc, Register dst, int32_t imm32) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ UNIMPLEMENTED(); |
+ USE(cc); |
+ USE(dst); |
+ USE(imm32); |
+} |
+ |
+ |
+void Assembler::cmov(Condition cc, Register dst, Handle<Object> handle) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ UNIMPLEMENTED(); |
+ USE(cc); |
+ USE(dst); |
+ USE(handle); |
+} |
+ |
+ |
+void Assembler::cmov(Condition cc, Register dst, const Operand& src) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ UNIMPLEMENTED(); |
+ USE(cc); |
+ USE(dst); |
+ USE(src); |
+} |
+ |
+ |
+void Assembler::xchg(Register dst, Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ if (src.is(eax) || dst.is(eax)) { // Single-byte encoding |
+ EMIT(0x90 | (src.is(eax) ? dst.code() : src.code())); |
+ } else { |
+ EMIT(0x87); |
+ EMIT(0xC0 | src.code() << 3 | dst.code()); |
+ } |
+} |
+ |
+ |
+void Assembler::adc(Register dst, int32_t imm32) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(2, Operand(dst), Immediate(imm32)); |
+} |
+ |
+ |
+void Assembler::adc(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x13); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::add(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x03); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::add(const Operand& dst, const Immediate& x) { |
+ ASSERT(reloc_info_writer.last_pc() != NULL); |
+ if (FLAG_push_pop_elimination && (reloc_info_writer.last_pc() <= last_pc_)) { |
+ byte instr = last_pc_[0]; |
+ if ((instr & 0xf8) == 0x50) { |
+ // Last instruction was a push. Check whether this is a pop without a |
+ // result. |
+ if ((dst.is_reg(esp)) && |
+ (x.x_ == kPointerSize) && (x.rmode_ == RelocInfo::NONE)) { |
+ pc_ = last_pc_; |
+ last_pc_ = NULL; |
+ if (FLAG_print_push_pop_elimination) { |
+ PrintF("%d push/pop(noreg) eliminated\n", pc_offset()); |
+ } |
+ return; |
+ } |
+ } |
+ } |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(0, dst, x); |
+} |
+ |
+ |
+void Assembler::and_(Register dst, int32_t imm32) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(4, Operand(dst), Immediate(imm32)); |
+} |
+ |
+ |
+void Assembler::and_(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x23); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::and_(const Operand& dst, const Immediate& x) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(4, dst, x); |
+} |
+ |
+ |
+void Assembler::and_(const Operand& dst, Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x21); |
+ emit_operand(src, dst); |
+} |
+ |
+ |
+void Assembler::cmpb(const Operand& op, int8_t imm8) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x80); |
+ emit_operand(edi, op); // edi == 7 |
+ EMIT(imm8); |
+} |
+ |
+ |
+void Assembler::cmpw(const Operand& op, Immediate imm16) { |
+ ASSERT(imm16.is_int16()); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x66); |
+ EMIT(0x81); |
+ emit_operand(edi, op); |
+ emit_w(imm16); |
+} |
+ |
+ |
+void Assembler::cmp(Register reg, int32_t imm32) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(7, Operand(reg), Immediate(imm32)); |
+} |
+ |
+ |
+void Assembler::cmp(Register reg, Handle<Object> handle) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(7, Operand(reg), Immediate(handle)); |
+} |
+ |
+ |
+void Assembler::cmp(Register reg, const Operand& op) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x3B); |
+ emit_operand(reg, op); |
+} |
+ |
+ |
+void Assembler::cmp(const Operand& op, const Immediate& imm) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(7, op, imm); |
+} |
+ |
+ |
+void Assembler::cmpb_al(const Operand& op) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x38); // CMP r/m8, r8 |
+ emit_operand(eax, op); // eax has same code as register al. |
+} |
+ |
+ |
+void Assembler::cmpw_ax(const Operand& op) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x66); |
+ EMIT(0x39); // CMP r/m16, r16 |
+ emit_operand(eax, op); // eax has same code as register ax. |
+} |
+ |
+ |
+void Assembler::dec_b(Register dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xFE); |
+ EMIT(0xC8 | dst.code()); |
+} |
+ |
+ |
+void Assembler::dec(Register dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x48 | dst.code()); |
+} |
+ |
+ |
+void Assembler::dec(const Operand& dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xFF); |
+ emit_operand(ecx, dst); |
+} |
+ |
+ |
+void Assembler::cdq() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x99); |
+} |
+ |
+ |
+void Assembler::idiv(Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF7); |
+ EMIT(0xF8 | src.code()); |
+} |
+ |
+ |
+void Assembler::imul(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0xAF); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::imul(Register dst, Register src, int32_t imm32) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ if (is_int8(imm32)) { |
+ EMIT(0x6B); |
+ EMIT(0xC0 | dst.code() << 3 | src.code()); |
+ EMIT(imm32); |
+ } else { |
+ EMIT(0x69); |
+ EMIT(0xC0 | dst.code() << 3 | src.code()); |
+ emit(imm32); |
+ } |
+} |
+ |
+ |
+void Assembler::inc(Register dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x40 | dst.code()); |
+} |
+ |
+ |
+void Assembler::inc(const Operand& dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xFF); |
+ emit_operand(eax, dst); |
+} |
+ |
+ |
+void Assembler::lea(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x8D); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::mul(Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF7); |
+ EMIT(0xE0 | src.code()); |
+} |
+ |
+ |
+void Assembler::neg(Register dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF7); |
+ EMIT(0xD8 | dst.code()); |
+} |
+ |
+ |
+void Assembler::not_(Register dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF7); |
+ EMIT(0xD0 | dst.code()); |
+} |
+ |
+ |
+void Assembler::or_(Register dst, int32_t imm32) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(1, Operand(dst), Immediate(imm32)); |
+} |
+ |
+ |
+void Assembler::or_(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0B); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::or_(const Operand& dst, const Immediate& x) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(1, dst, x); |
+} |
+ |
+ |
+void Assembler::or_(const Operand& dst, Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x09); |
+ emit_operand(src, dst); |
+} |
+ |
+ |
+void Assembler::rcl(Register dst, uint8_t imm8) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ ASSERT(is_uint5(imm8)); // illegal shift count |
+ if (imm8 == 1) { |
+ EMIT(0xD1); |
+ EMIT(0xD0 | dst.code()); |
+ } else { |
+ EMIT(0xC1); |
+ EMIT(0xD0 | dst.code()); |
+ EMIT(imm8); |
+ } |
+} |
+ |
+ |
+void Assembler::sar(Register dst, uint8_t imm8) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ ASSERT(is_uint5(imm8)); // illegal shift count |
+ if (imm8 == 1) { |
+ EMIT(0xD1); |
+ EMIT(0xF8 | dst.code()); |
+ } else { |
+ EMIT(0xC1); |
+ EMIT(0xF8 | dst.code()); |
+ EMIT(imm8); |
+ } |
+} |
+ |
+ |
+void Assembler::sar(Register dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD3); |
+ EMIT(0xF8 | dst.code()); |
+} |
+ |
+ |
+void Assembler::sbb(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x1B); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::shld(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0xA5); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::shl(Register dst, uint8_t imm8) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ ASSERT(is_uint5(imm8)); // illegal shift count |
+ if (imm8 == 1) { |
+ EMIT(0xD1); |
+ EMIT(0xE0 | dst.code()); |
+ } else { |
+ EMIT(0xC1); |
+ EMIT(0xE0 | dst.code()); |
+ EMIT(imm8); |
+ } |
+} |
+ |
+ |
+void Assembler::shl(Register dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD3); |
+ EMIT(0xE0 | dst.code()); |
+} |
+ |
+ |
+void Assembler::shrd(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0xAD); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::shr(Register dst, uint8_t imm8) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ ASSERT(is_uint5(imm8)); // illegal shift count |
+ EMIT(0xC1); |
+ EMIT(0xE8 | dst.code()); |
+ EMIT(imm8); |
+} |
+ |
+ |
+void Assembler::shr(Register dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD3); |
+ EMIT(0xE8 | dst.code()); |
+} |
+ |
+ |
+void Assembler::shr_cl(Register dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD1); |
+ EMIT(0xE8 | dst.code()); |
+} |
+ |
+ |
+void Assembler::sub(const Operand& dst, const Immediate& x) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(5, dst, x); |
+} |
+ |
+ |
+void Assembler::sub(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x2B); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::sub(const Operand& dst, Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x29); |
+ emit_operand(src, dst); |
+} |
+ |
+ |
+void Assembler::test(Register reg, const Immediate& imm) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ // Only use test against byte for registers that have a byte |
+ // variant: eax, ebx, ecx, and edx. |
+ if (imm.rmode_ == RelocInfo::NONE && is_uint8(imm.x_) && reg.code() < 4) { |
+ uint8_t imm8 = imm.x_; |
+ if (reg.is(eax)) { |
+ EMIT(0xA8); |
+ EMIT(imm8); |
+ } else { |
+ emit_arith_b(0xF6, 0xC0, reg, imm8); |
+ } |
+ } else { |
+ // This is not using emit_arith because test doesn't support |
+ // sign-extension of 8-bit operands. |
+ if (reg.is(eax)) { |
+ EMIT(0xA9); |
+ } else { |
+ EMIT(0xF7); |
+ EMIT(0xC0 | reg.code()); |
+ } |
+ emit(imm); |
+ } |
+} |
+ |
+ |
+void Assembler::test(Register reg, const Operand& op) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x85); |
+ emit_operand(reg, op); |
+} |
+ |
+ |
+void Assembler::test(const Operand& op, const Immediate& imm) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF7); |
+ emit_operand(eax, op); |
+ emit(imm); |
+} |
+ |
+ |
+void Assembler::xor_(Register dst, int32_t imm32) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(6, Operand(dst), Immediate(imm32)); |
+} |
+ |
+ |
+void Assembler::xor_(Register dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x33); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::xor_(const Operand& src, Register dst) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x31); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::xor_(const Operand& dst, const Immediate& x) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_arith(6, dst, x); |
+} |
+ |
+ |
+void Assembler::bt(const Operand& dst, Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0xA3); |
+ emit_operand(src, dst); |
+} |
+ |
+ |
+void Assembler::bts(const Operand& dst, Register src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0xAB); |
+ emit_operand(src, dst); |
+} |
+ |
+ |
+void Assembler::hlt() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF4); |
+} |
+ |
+ |
+void Assembler::int3() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xCC); |
+} |
+ |
+ |
+void Assembler::nop() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x90); |
+} |
+ |
+ |
+void Assembler::rdtsc() { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::RDTSC)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0x31); |
+} |
+ |
+ |
+void Assembler::ret(int imm16) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ ASSERT(is_uint16(imm16)); |
+ if (imm16 == 0) { |
+ EMIT(0xC3); |
+ } else { |
+ EMIT(0xC2); |
+ EMIT(imm16 & 0xFF); |
+ EMIT((imm16 >> 8) & 0xFF); |
+ } |
+} |
+ |
+ |
+// Labels refer to positions in the (to be) generated code. |
+// There are bound, linked, and unused labels. |
+// |
+// Bound labels refer to known positions in the already |
+// generated code. pos() is the position the label refers to. |
+// |
+// Linked labels refer to unknown positions in the code |
+// to be generated; pos() is the position of the 32bit |
+// Displacement of the last instruction using the label. |
+ |
+ |
+void Assembler::print(Label* L) { |
+ if (L->is_unused()) { |
+ PrintF("unused label\n"); |
+ } else if (L->is_bound()) { |
+ PrintF("bound label to %d\n", L->pos()); |
+ } else if (L->is_linked()) { |
+ Label l = *L; |
+ PrintF("unbound label"); |
+ while (l.is_linked()) { |
+ Displacement disp = disp_at(&l); |
+ PrintF("@ %d ", l.pos()); |
+ disp.print(); |
+ PrintF("\n"); |
+ disp.next(&l); |
+ } |
+ } else { |
+ PrintF("label in inconsistent state (pos = %d)\n", L->pos_); |
+ } |
+} |
+ |
+ |
+void Assembler::bind_to(Label* L, int pos) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = NULL; |
+ ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position |
+ while (L->is_linked()) { |
+ Displacement disp = disp_at(L); |
+ int fixup_pos = L->pos(); |
+ if (disp.type() == Displacement::CODE_RELATIVE) { |
+ // Relative to Code* heap object pointer. |
+ long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag); |
+ } else { |
+ if (disp.type() == Displacement::UNCONDITIONAL_JUMP) { |
+ ASSERT(byte_at(fixup_pos - 1) == 0xE9); // jmp expected |
+ } |
+ // relative address, relative to point after address |
+ int imm32 = pos - (fixup_pos + sizeof(int32_t)); |
+ long_at_put(fixup_pos, imm32); |
+ } |
+ disp.next(L); |
+ } |
+ L->bind_to(pos); |
+} |
+ |
+ |
+void Assembler::link_to(Label* L, Label* appendix) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = NULL; |
+ if (appendix->is_linked()) { |
+ if (L->is_linked()) { |
+ // append appendix to L's list |
+ Label p; |
+ Label q = *L; |
+ do { |
+ p = q; |
+ Displacement disp = disp_at(&q); |
+ disp.next(&q); |
+ } while (q.is_linked()); |
+ Displacement disp = disp_at(&p); |
+ disp.link_to(appendix); |
+ disp_at_put(&p, disp); |
+ p.Unuse(); // to avoid assertion failure in ~Label |
+ } else { |
+ // L is empty, simply use appendix |
+ *L = *appendix; |
+ } |
+ } |
+ appendix->Unuse(); // appendix should not be used anymore |
+} |
+ |
+ |
+void Assembler::bind(Label* L) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = NULL; |
+ ASSERT(!L->is_bound()); // label can only be bound once |
+ bind_to(L, pc_offset()); |
+} |
+ |
+ |
+void Assembler::call(Label* L) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ if (L->is_bound()) { |
+ const int long_size = 5; |
+ int offs = L->pos() - pc_offset(); |
+ ASSERT(offs <= 0); |
+ // 1110 1000 #32-bit disp |
+ EMIT(0xE8); |
+ emit(offs - long_size); |
+ } else { |
+ // 1110 1000 #32-bit disp |
+ EMIT(0xE8); |
+ emit_disp(L, Displacement::OTHER); |
+ } |
+} |
+ |
+ |
+void Assembler::call(byte* entry, RelocInfo::Mode rmode) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ ASSERT(!RelocInfo::IsCodeTarget(rmode)); |
+ EMIT(0xE8); |
+ emit(entry - (pc_ + sizeof(int32_t)), rmode); |
+} |
+ |
+ |
+void Assembler::call(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xFF); |
+ emit_operand(edx, adr); |
+} |
+ |
+ |
+void Assembler::call(Handle<Code> code, RelocInfo::Mode rmode) { |
+ WriteRecordedPositions(); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ ASSERT(RelocInfo::IsCodeTarget(rmode)); |
+ EMIT(0xE8); |
+ emit(reinterpret_cast<intptr_t>(code.location()), rmode); |
+} |
+ |
+ |
+void Assembler::jmp(Label* L) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ if (L->is_bound()) { |
+ const int short_size = 2; |
+ const int long_size = 5; |
+ int offs = L->pos() - pc_offset(); |
+ ASSERT(offs <= 0); |
+ if (is_int8(offs - short_size)) { |
+ // 1110 1011 #8-bit disp |
+ EMIT(0xEB); |
+ EMIT((offs - short_size) & 0xFF); |
+ } else { |
+ // 1110 1001 #32-bit disp |
+ EMIT(0xE9); |
+ emit(offs - long_size); |
+ } |
+ } else { |
+ // 1110 1001 #32-bit disp |
+ EMIT(0xE9); |
+ emit_disp(L, Displacement::UNCONDITIONAL_JUMP); |
+ } |
+} |
+ |
+ |
+void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ ASSERT(!RelocInfo::IsCodeTarget(rmode)); |
+ EMIT(0xE9); |
+ emit(entry - (pc_ + sizeof(int32_t)), rmode); |
+} |
+ |
+ |
+void Assembler::jmp(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xFF); |
+ emit_operand(esp, adr); |
+} |
+ |
+ |
+void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ ASSERT(RelocInfo::IsCodeTarget(rmode)); |
+ EMIT(0xE9); |
+ emit(reinterpret_cast<intptr_t>(code.location()), rmode); |
+} |
+ |
+ |
+ |
+void Assembler::j(Condition cc, Label* L, Hint hint) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ ASSERT(0 <= cc && cc < 16); |
+ if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); |
+ if (L->is_bound()) { |
+ const int short_size = 2; |
+ const int long_size = 6; |
+ int offs = L->pos() - pc_offset(); |
+ ASSERT(offs <= 0); |
+ if (is_int8(offs - short_size)) { |
+ // 0111 tttn #8-bit disp |
+ EMIT(0x70 | cc); |
+ EMIT((offs - short_size) & 0xFF); |
+ } else { |
+ // 0000 1111 1000 tttn #32-bit disp |
+ EMIT(0x0F); |
+ EMIT(0x80 | cc); |
+ emit(offs - long_size); |
+ } |
+ } else { |
+ // 0000 1111 1000 tttn #32-bit disp |
+ // Note: could eliminate cond. jumps to this jump if condition |
+ // is the same however, seems to be rather unlikely case. |
+ EMIT(0x0F); |
+ EMIT(0x80 | cc); |
+ emit_disp(L, Displacement::OTHER); |
+ } |
+} |
+ |
+ |
+void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ ASSERT((0 <= cc) && (cc < 16)); |
+ if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); |
+ // 0000 1111 1000 tttn #32-bit disp |
+ EMIT(0x0F); |
+ EMIT(0x80 | cc); |
+ emit(entry - (pc_ + sizeof(int32_t)), rmode); |
+} |
+ |
+ |
+void Assembler::j(Condition cc, Handle<Code> code, Hint hint) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); |
+ // 0000 1111 1000 tttn #32-bit disp |
+ EMIT(0x0F); |
+ EMIT(0x80 | cc); |
+ emit(reinterpret_cast<intptr_t>(code.location()), RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
+// FPU instructions |
+ |
+ |
+void Assembler::fld(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xD9, 0xC0, i); |
+} |
+ |
+ |
+void Assembler::fld1() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD9); |
+ EMIT(0xE8); |
+} |
+ |
+ |
+void Assembler::fldz() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD9); |
+ EMIT(0xEE); |
+} |
+ |
+ |
+void Assembler::fld_s(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD9); |
+ emit_operand(eax, adr); |
+} |
+ |
+ |
+void Assembler::fld_d(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDD); |
+ emit_operand(eax, adr); |
+} |
+ |
+ |
+void Assembler::fstp_s(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD9); |
+ emit_operand(ebx, adr); |
+} |
+ |
+ |
+void Assembler::fstp_d(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDD); |
+ emit_operand(ebx, adr); |
+} |
+ |
+ |
+void Assembler::fild_s(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDB); |
+ emit_operand(eax, adr); |
+} |
+ |
+ |
+void Assembler::fild_d(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDF); |
+ emit_operand(ebp, adr); |
+} |
+ |
+ |
+void Assembler::fistp_s(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDB); |
+ emit_operand(ebx, adr); |
+} |
+ |
+ |
+void Assembler::fisttp_s(const Operand& adr) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE3)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDB); |
+ emit_operand(ecx, adr); |
+} |
+ |
+ |
+void Assembler::fist_s(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDB); |
+ emit_operand(edx, adr); |
+} |
+ |
+ |
+void Assembler::fistp_d(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDF); |
+ emit_operand(edi, adr); |
+} |
+ |
+ |
+void Assembler::fabs() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD9); |
+ EMIT(0xE1); |
+} |
+ |
+ |
+void Assembler::fchs() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD9); |
+ EMIT(0xE0); |
+} |
+ |
+ |
+void Assembler::fadd(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xDC, 0xC0, i); |
+} |
+ |
+ |
+void Assembler::fsub(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xDC, 0xE8, i); |
+} |
+ |
+ |
+void Assembler::fisub_s(const Operand& adr) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDA); |
+ emit_operand(esp, adr); |
+} |
+ |
+ |
+void Assembler::fmul(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xDC, 0xC8, i); |
+} |
+ |
+ |
+void Assembler::fdiv(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xDC, 0xF8, i); |
+} |
+ |
+ |
+void Assembler::faddp(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xDE, 0xC0, i); |
+} |
+ |
+ |
+void Assembler::fsubp(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xDE, 0xE8, i); |
+} |
+ |
+ |
+void Assembler::fsubrp(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xDE, 0xE0, i); |
+} |
+ |
+ |
+void Assembler::fmulp(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xDE, 0xC8, i); |
+} |
+ |
+ |
+void Assembler::fdivp(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xDE, 0xF8, i); |
+} |
+ |
+ |
+void Assembler::fprem() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD9); |
+ EMIT(0xF8); |
+} |
+ |
+ |
+void Assembler::fprem1() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD9); |
+ EMIT(0xF5); |
+} |
+ |
+ |
+void Assembler::fxch(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xD9, 0xC8, i); |
+} |
+ |
+ |
+void Assembler::fincstp() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD9); |
+ EMIT(0xF7); |
+} |
+ |
+ |
+void Assembler::ffree(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xDD, 0xC0, i); |
+} |
+ |
+ |
+void Assembler::ftst() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD9); |
+ EMIT(0xE4); |
+} |
+ |
+ |
+void Assembler::fucomp(int i) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ emit_farith(0xDD, 0xE8, i); |
+} |
+ |
+ |
+void Assembler::fucompp() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDA); |
+ EMIT(0xE9); |
+} |
+ |
+ |
+void Assembler::fcompp() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDE); |
+ EMIT(0xD9); |
+} |
+ |
+ |
+void Assembler::fnstsw_ax() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xdF); |
+ EMIT(0xE0); |
+} |
+ |
+ |
+void Assembler::fwait() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x9B); |
+} |
+ |
+ |
+void Assembler::frndint() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xD9); |
+ EMIT(0xFC); |
+} |
+ |
+ |
+void Assembler::fnclex() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xDB); |
+ EMIT(0xE2); |
+} |
+ |
+ |
+void Assembler::sahf() { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x9E); |
+} |
+ |
+ |
+void Assembler::setcc(Condition cc, Register reg) { |
+ ASSERT(reg.is_byte_register()); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0x0F); |
+ EMIT(0x90 | cc); |
+ EMIT(0xC0 | reg.code()); |
+} |
+ |
+ |
+void Assembler::cvttss2si(Register dst, const Operand& src) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF3); |
+ EMIT(0x0F); |
+ EMIT(0x2C); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::cvttsd2si(Register dst, const Operand& src) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF2); |
+ EMIT(0x0F); |
+ EMIT(0x2C); |
+ emit_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF2); |
+ EMIT(0x0F); |
+ EMIT(0x2A); |
+ emit_sse_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::addsd(XMMRegister dst, XMMRegister src) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF2); |
+ EMIT(0x0F); |
+ EMIT(0x58); |
+ emit_sse_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::mulsd(XMMRegister dst, XMMRegister src) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF2); |
+ EMIT(0x0F); |
+ EMIT(0x59); |
+ emit_sse_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::subsd(XMMRegister dst, XMMRegister src) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF2); |
+ EMIT(0x0F); |
+ EMIT(0x5C); |
+ emit_sse_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::divsd(XMMRegister dst, XMMRegister src) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF2); |
+ EMIT(0x0F); |
+ EMIT(0x5E); |
+ emit_sse_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::movdbl(XMMRegister dst, const Operand& src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ movsd(dst, src); |
+} |
+ |
+ |
+void Assembler::movdbl(const Operand& dst, XMMRegister src) { |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ movsd(dst, src); |
+} |
+ |
+ |
+void Assembler::movsd(const Operand& dst, XMMRegister src ) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF2); // double |
+ EMIT(0x0F); |
+ EMIT(0x11); // store |
+ emit_sse_operand(src, dst); |
+} |
+ |
+ |
+void Assembler::movsd(XMMRegister dst, const Operand& src) { |
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); |
+ EnsureSpace ensure_space(this); |
+ last_pc_ = pc_; |
+ EMIT(0xF2); // double |
+ EMIT(0x0F); |
+ EMIT(0x10); // load |
+ emit_sse_operand(dst, src); |
+} |
+ |
+ |
+void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) { |
+ Register ireg = { reg.code() }; |
+ emit_operand(ireg, adr); |
+} |
+ |
+ |
+void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) { |
+ EMIT(0xC0 | dst.code() << 3 | src.code()); |
+} |
+ |
+ |
+void Assembler::Print() { |
+ Disassembler::Decode(stdout, buffer_, pc_); |
+} |
+ |
+ |
+void Assembler::RecordJSReturn() { |
+ WriteRecordedPositions(); |
+ EnsureSpace ensure_space(this); |
+ RecordRelocInfo(RelocInfo::JS_RETURN); |
+} |
+ |
+ |
+void Assembler::RecordComment(const char* msg) { |
+ if (FLAG_debug_code) { |
+ EnsureSpace ensure_space(this); |
+ RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
+ } |
+} |
+ |
+ |
+void Assembler::RecordPosition(int pos) { |
+ ASSERT(pos != RelocInfo::kNoPosition); |
+ ASSERT(pos >= 0); |
+ current_position_ = pos; |
+} |
+ |
+ |
+void Assembler::RecordStatementPosition(int pos) { |
+ ASSERT(pos != RelocInfo::kNoPosition); |
+ ASSERT(pos >= 0); |
+ current_statement_position_ = pos; |
+} |
+ |
+ |
+void Assembler::WriteRecordedPositions() { |
+ // Write the statement position if it is different from what was written last |
+ // time. |
+ if (current_statement_position_ != written_statement_position_) { |
+ EnsureSpace ensure_space(this); |
+ RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); |
+ written_statement_position_ = current_statement_position_; |
+ } |
+ |
+ // Write the position if it is different from what was written last time and |
+ // also different from the written statement position. |
+ if (current_position_ != written_position_ && |
+ current_position_ != written_statement_position_) { |
+ EnsureSpace ensure_space(this); |
+ RecordRelocInfo(RelocInfo::POSITION, current_position_); |
+ written_position_ = current_position_; |
+ } |
+} |
+ |
+ |
+void Assembler::GrowBuffer() { |
+ ASSERT(overflow()); // should not call this otherwise |
+ if (!own_buffer_) FATAL("external code buffer is too small"); |
+ |
+ // compute new buffer size |
+ CodeDesc desc; // the new buffer |
+ if (buffer_size_ < 4*KB) { |
+ desc.buffer_size = 4*KB; |
+ } else { |
+ desc.buffer_size = 2*buffer_size_; |
+ } |
+ // Some internal data structures overflow for very large buffers, |
+ // they must ensure that kMaximalBufferSize is not too large. |
+ if ((desc.buffer_size > kMaximalBufferSize) || |
+ (desc.buffer_size > Heap::OldGenerationSize())) { |
+ V8::FatalProcessOutOfMemory("Assembler::GrowBuffer"); |
+ } |
+ |
+ // setup new buffer |
+ desc.buffer = NewArray<byte>(desc.buffer_size); |
+ desc.instr_size = pc_offset(); |
+ desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos()); |
+ |
+ // Clear the buffer in debug mode. Use 'int3' instructions to make |
+ // sure to get into problems if we ever run uninitialized code. |
+#ifdef DEBUG |
+ memset(desc.buffer, 0xCC, desc.buffer_size); |
+#endif |
+ |
+ // copy the data |
+ int pc_delta = desc.buffer - buffer_; |
+ int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); |
+ memmove(desc.buffer, buffer_, desc.instr_size); |
+ memmove(rc_delta + reloc_info_writer.pos(), |
+ reloc_info_writer.pos(), desc.reloc_size); |
+ |
+ // switch buffers |
+ if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { |
+ spare_buffer_ = buffer_; |
+ } else { |
+ DeleteArray(buffer_); |
+ } |
+ buffer_ = desc.buffer; |
+ buffer_size_ = desc.buffer_size; |
+ pc_ += pc_delta; |
+ if (last_pc_ != NULL) { |
+ last_pc_ += pc_delta; |
+ } |
+ reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
+ reloc_info_writer.last_pc() + pc_delta); |
+ |
+ // relocate runtime entries |
+ for (RelocIterator it(desc); !it.done(); it.next()) { |
+ RelocInfo::Mode rmode = it.rinfo()->rmode(); |
+ if (rmode == RelocInfo::RUNTIME_ENTRY) { |
+ int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc()); |
+ *p -= pc_delta; // relocate entry |
+ } else if (rmode == RelocInfo::INTERNAL_REFERENCE) { |
+ int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc()); |
+ if (*p != 0) { // 0 means uninitialized. |
+ *p += pc_delta; |
+ } |
+ } |
+ } |
+ |
+ ASSERT(!overflow()); |
+} |
+ |
+ |
+void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) { |
+ ASSERT(is_uint8(op1) && is_uint8(op2)); // wrong opcode |
+ ASSERT(is_uint8(imm8)); |
+ ASSERT((op1 & 0x01) == 0); // should be 8bit operation |
+ EMIT(op1); |
+ EMIT(op2 | dst.code()); |
+ EMIT(imm8); |
+} |
+ |
+ |
+void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) { |
+ ASSERT((0 <= sel) && (sel <= 7)); |
+ Register ireg = { sel }; |
+ if (x.is_int8()) { |
+ EMIT(0x83); // using a sign-extended 8-bit immediate. |
+ emit_operand(ireg, dst); |
+ EMIT(x.x_ & 0xFF); |
+ } else if (dst.is_reg(eax)) { |
+ EMIT((sel << 3) | 0x05); // short form if the destination is eax. |
+ emit(x); |
+ } else { |
+ EMIT(0x81); // using a literal 32-bit immediate. |
+ emit_operand(ireg, dst); |
+ emit(x); |
+ } |
+} |
+ |
+ |
+void Assembler::emit_operand(Register reg, const Operand& adr) { |
+ const unsigned length = adr.len_; |
+ ASSERT(length > 0); |
+ |
+ // Emit updated ModRM byte containing the given register. |
+ pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3); |
+ |
+ // Emit the rest of the encoded operand. |
+ for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i]; |
+ pc_ += length; |
+ |
+ // Emit relocation information if necessary. |
+ if (length >= sizeof(int32_t) && adr.rmode_ != RelocInfo::NONE) { |
+ pc_ -= sizeof(int32_t); // pc_ must be *at* disp32 |
+ RecordRelocInfo(adr.rmode_); |
+ pc_ += sizeof(int32_t); |
+ } |
+} |
+ |
+ |
+void Assembler::emit_farith(int b1, int b2, int i) { |
+ ASSERT(is_uint8(b1) && is_uint8(b2)); // wrong opcode |
+ ASSERT(0 <= i && i < 8); // illegal stack offset |
+ EMIT(b1); |
+ EMIT(b2 + i); |
+} |
+ |
+ |
+void Assembler::dd(uint32_t data, RelocInfo::Mode reloc_info) { |
+ EnsureSpace ensure_space(this); |
+ emit(data, reloc_info); |
+} |
+ |
+ |
+void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
+ ASSERT(rmode != RelocInfo::NONE); |
+ // Don't record external references unless the heap will be serialized. |
+ if (rmode == RelocInfo::EXTERNAL_REFERENCE && |
+ !Serializer::enabled() && |
+ !FLAG_debug_code) { |
+ return; |
+ } |
+ RelocInfo rinfo(pc_, rmode, data); |
+ reloc_info_writer.Write(&rinfo); |
+} |
+ |
+ |
+void Assembler::WriteInternalReference(int position, const Label& bound_label) { |
+ ASSERT(bound_label.is_bound()); |
+ ASSERT(0 <= position); |
+ ASSERT(position + static_cast<int>(sizeof(uint32_t)) <= pc_offset()); |
+ ASSERT(long_at(position) == 0); // only initialize once! |
+ |
+ uint32_t label_loc = reinterpret_cast<uint32_t>(addr_at(bound_label.pos())); |
+ long_at_put(position, label_loc); |
+} |
+ |
+ |
+#ifdef GENERATED_CODE_COVERAGE |
+static FILE* coverage_log = NULL; |
+ |
+ |
+static void InitCoverageLog() { |
+ char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); |
+ if (file_name != NULL) { |
+ coverage_log = fopen(file_name, "aw+"); |
+ } |
+} |
+ |
+ |
+void LogGeneratedCodeCoverage(const char* file_line) { |
+ const char* return_address = (&file_line)[-1]; |
+ char* push_insn = const_cast<char*>(return_address - 12); |
+ push_insn[0] = 0xeb; // Relative branch insn. |
+ push_insn[1] = 13; // Skip over coverage insns. |
+ if (coverage_log != NULL) { |
+ fprintf(coverage_log, "%s\n", file_line); |
+ fflush(coverage_log); |
+ } |
+} |
+ |
+#endif |
+ |
+} } // namespace v8::internal |