Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(403)

Unified Diff: src/ia32/assembler-ia32.cc

Issue 92068: Move backend specific files to separate directories. (Closed)
Patch Set: Added CPPPATH flag and made all includes use same base path. Created 11 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/ia32/assembler-ia32.h ('k') | src/ia32/assembler-ia32-inl.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/ia32/assembler-ia32.cc
diff --git a/src/ia32/assembler-ia32.cc b/src/ia32/assembler-ia32.cc
new file mode 100644
index 0000000000000000000000000000000000000000..3a2d3f82dd4f385f9dd04372470495d7987e6802
--- /dev/null
+++ b/src/ia32/assembler-ia32.cc
@@ -0,0 +1,2240 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the
+// distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+// OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been modified
+// significantly by Google Inc.
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+
+#include "v8.h"
+
+#include "disassembler.h"
+#include "macro-assembler.h"
+#include "serialize.h"
+
+namespace v8 { namespace internal {
+
+// -----------------------------------------------------------------------------
+// Implementation of Register
+
+Register eax = { 0 };
+Register ecx = { 1 };
+Register edx = { 2 };
+Register ebx = { 3 };
+Register esp = { 4 };
+Register ebp = { 5 };
+Register esi = { 6 };
+Register edi = { 7 };
+Register no_reg = { -1 };
+
+XMMRegister xmm0 = { 0 };
+XMMRegister xmm1 = { 1 };
+XMMRegister xmm2 = { 2 };
+XMMRegister xmm3 = { 3 };
+XMMRegister xmm4 = { 4 };
+XMMRegister xmm5 = { 5 };
+XMMRegister xmm6 = { 6 };
+XMMRegister xmm7 = { 7 };
+
+
+// -----------------------------------------------------------------------------
+// Implementation of CpuFeatures
+
+// Safe default is no features.
+uint64_t CpuFeatures::supported_ = 0;
+uint64_t CpuFeatures::enabled_ = 0;
+
+
+// The Probe method needs executable memory, so it uses Heap::CreateCode.
+// Allocation failure is silent and leads to safe default.
+void CpuFeatures::Probe() {
+ ASSERT(Heap::HasBeenSetup());
+ ASSERT(supported_ == 0);
+ if (Serializer::enabled()) return; // No features if we might serialize.
+
+ Assembler assm(NULL, 0);
+ Label cpuid, done;
+#define __ assm.
+ // Save old esp, since we are going to modify the stack.
+ __ push(ebp);
+ __ pushfd();
+ __ push(ecx);
+ __ push(ebx);
+ __ mov(ebp, Operand(esp));
+
+ // If we can modify bit 21 of the EFLAGS register, then CPUID is supported.
+ __ pushfd();
+ __ pop(eax);
+ __ mov(edx, Operand(eax));
+ __ xor_(eax, 0x200000); // Flip bit 21.
+ __ push(eax);
+ __ popfd();
+ __ pushfd();
+ __ pop(eax);
+ __ xor_(eax, Operand(edx)); // Different if CPUID is supported.
+ __ j(not_zero, &cpuid);
+
+ // CPUID not supported. Clear the supported features in edx:eax.
+ __ xor_(eax, Operand(eax));
+ __ xor_(edx, Operand(edx));
+ __ jmp(&done);
+
+ // Invoke CPUID with 1 in eax to get feature information in
+ // ecx:edx. Temporarily enable CPUID support because we know it's
+ // safe here.
+ __ bind(&cpuid);
+ __ mov(eax, 1);
+ supported_ = (1 << CPUID);
+ { Scope fscope(CPUID);
+ __ cpuid();
+ }
+ supported_ = 0;
+
+ // Move the result from ecx:edx to edx:eax and make sure to mark the
+ // CPUID feature as supported.
+ __ mov(eax, Operand(edx));
+ __ or_(eax, 1 << CPUID);
+ __ mov(edx, Operand(ecx));
+
+ // Done.
+ __ bind(&done);
+ __ mov(esp, Operand(ebp));
+ __ pop(ebx);
+ __ pop(ecx);
+ __ popfd();
+ __ pop(ebp);
+ __ ret(0);
+#undef __
+
+ CodeDesc desc;
+ assm.GetCode(&desc);
+ Object* code =
+ Heap::CreateCode(desc, NULL, Code::ComputeFlags(Code::STUB), NULL);
+ if (!code->IsCode()) return;
+ LOG(CodeCreateEvent("Builtin", Code::cast(code), "CpuFeatures::Probe"));
+ typedef uint64_t (*F0)();
+ F0 probe = FUNCTION_CAST<F0>(Code::cast(code)->entry());
+ supported_ = probe();
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of Displacement
+
+void Displacement::init(Label* L, Type type) {
+ ASSERT(!L->is_bound());
+ int next = 0;
+ if (L->is_linked()) {
+ next = L->pos();
+ ASSERT(next > 0); // Displacements must be at positions > 0
+ }
+ // Ensure that we _never_ overflow the next field.
+ ASSERT(NextField::is_valid(Assembler::kMaximalBufferSize));
+ data_ = NextField::encode(next) | TypeField::encode(type);
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of RelocInfo
+
+
+const int RelocInfo::kApplyMask =
+ RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
+ 1 << RelocInfo::JS_RETURN | 1 << RelocInfo::INTERNAL_REFERENCE;
+
+
+void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
+ // Patch the code at the current address with the supplied instructions.
+ for (int i = 0; i < instruction_count; i++) {
+ *(pc_ + i) = *(instructions + i);
+ }
+}
+
+
+// Patch the code at the current PC with a call to the target address.
+// Additional guard int3 instructions can be added if required.
+void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
+ // Call instruction takes up 5 bytes and int3 takes up one byte.
+ int code_size = 5 + guard_bytes;
+
+ // Patch the code.
+ CodePatcher patcher(pc_, code_size);
+ patcher.masm()->call(target, RelocInfo::NONE);
+
+ // Add the requested number of int3 instructions after the call.
+ for (int i = 0; i < guard_bytes; i++) {
+ patcher.masm()->int3();
+ }
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of Operand
+
+Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
+ // [base + disp/r]
+ if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) {
+ // [base]
+ set_modrm(0, base);
+ if (base.is(esp)) set_sib(times_1, esp, base);
+ } else if (is_int8(disp) && rmode == RelocInfo::NONE) {
+ // [base + disp8]
+ set_modrm(1, base);
+ if (base.is(esp)) set_sib(times_1, esp, base);
+ set_disp8(disp);
+ } else {
+ // [base + disp/r]
+ set_modrm(2, base);
+ if (base.is(esp)) set_sib(times_1, esp, base);
+ set_dispr(disp, rmode);
+ }
+}
+
+
+Operand::Operand(Register base,
+ Register index,
+ ScaleFactor scale,
+ int32_t disp,
+ RelocInfo::Mode rmode) {
+ ASSERT(!index.is(esp)); // illegal addressing mode
+ // [base + index*scale + disp/r]
+ if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) {
+ // [base + index*scale]
+ set_modrm(0, esp);
+ set_sib(scale, index, base);
+ } else if (is_int8(disp) && rmode == RelocInfo::NONE) {
+ // [base + index*scale + disp8]
+ set_modrm(1, esp);
+ set_sib(scale, index, base);
+ set_disp8(disp);
+ } else {
+ // [base + index*scale + disp/r]
+ set_modrm(2, esp);
+ set_sib(scale, index, base);
+ set_dispr(disp, rmode);
+ }
+}
+
+
+Operand::Operand(Register index,
+ ScaleFactor scale,
+ int32_t disp,
+ RelocInfo::Mode rmode) {
+ ASSERT(!index.is(esp)); // illegal addressing mode
+ // [index*scale + disp/r]
+ set_modrm(0, esp);
+ set_sib(scale, index, ebp);
+ set_dispr(disp, rmode);
+}
+
+
+void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
+ ASSERT(len_ == 1);
+ ASSERT((scale & -4) == 0);
+ buf_[1] = scale << 6 | index.code() << 3 | base.code();
+ len_ = 2;
+}
+
+
+void Operand::set_disp8(int8_t disp) {
+ ASSERT(len_ == 1 || len_ == 2);
+ *reinterpret_cast<int8_t*>(&buf_[len_++]) = disp;
+}
+
+
+bool Operand::is_reg(Register reg) const {
+ return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only.
+ && ((buf_[0] & 0x07) == reg.code()); // register codes match.
+}
+
+// -----------------------------------------------------------------------------
+// Implementation of Assembler
+
+// Emit a single byte. Must always be inlined.
+#define EMIT(x) \
+ *pc_++ = (x)
+
+
+#ifdef GENERATED_CODE_COVERAGE
+static void InitCoverageLog();
+#endif
+
+// spare_buffer_
+static byte* spare_buffer_ = NULL;
+
+Assembler::Assembler(void* buffer, int buffer_size) {
+ if (buffer == NULL) {
+ // do our own buffer management
+ if (buffer_size <= kMinimalBufferSize) {
+ buffer_size = kMinimalBufferSize;
+
+ if (spare_buffer_ != NULL) {
+ buffer = spare_buffer_;
+ spare_buffer_ = NULL;
+ }
+ }
+ if (buffer == NULL) {
+ buffer_ = NewArray<byte>(buffer_size);
+ } else {
+ buffer_ = static_cast<byte*>(buffer);
+ }
+ buffer_size_ = buffer_size;
+ own_buffer_ = true;
+ } else {
+ // use externally provided buffer instead
+ ASSERT(buffer_size > 0);
+ buffer_ = static_cast<byte*>(buffer);
+ buffer_size_ = buffer_size;
+ own_buffer_ = false;
+ }
+
+ // Clear the buffer in debug mode unless it was provided by the
+ // caller in which case we can't be sure it's okay to overwrite
+ // existing code in it; see CodePatcher::CodePatcher(...).
+#ifdef DEBUG
+ if (own_buffer_) {
+ memset(buffer_, 0xCC, buffer_size); // int3
+ }
+#endif
+
+ // setup buffer pointers
+ ASSERT(buffer_ != NULL);
+ pc_ = buffer_;
+ reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
+
+ last_pc_ = NULL;
+ current_statement_position_ = RelocInfo::kNoPosition;
+ current_position_ = RelocInfo::kNoPosition;
+ written_statement_position_ = current_statement_position_;
+ written_position_ = current_position_;
+#ifdef GENERATED_CODE_COVERAGE
+ InitCoverageLog();
+#endif
+}
+
+
+Assembler::~Assembler() {
+ if (own_buffer_) {
+ if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
+ spare_buffer_ = buffer_;
+ } else {
+ DeleteArray(buffer_);
+ }
+ }
+}
+
+
+void Assembler::GetCode(CodeDesc* desc) {
+ // finalize code
+ // (at this point overflow() may be true, but the gap ensures that
+ // we are still not overlapping instructions and relocation info)
+ ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap
+ // setup desc
+ desc->buffer = buffer_;
+ desc->buffer_size = buffer_size_;
+ desc->instr_size = pc_offset();
+ desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
+ desc->origin = this;
+
+ Counters::reloc_info_size.Increment(desc->reloc_size);
+}
+
+
+void Assembler::Align(int m) {
+ ASSERT(IsPowerOf2(m));
+ while ((pc_offset() & (m - 1)) != 0) {
+ nop();
+ }
+}
+
+
+void Assembler::cpuid() {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CPUID));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0xA2);
+}
+
+
+void Assembler::pushad() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x60);
+}
+
+
+void Assembler::popad() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x61);
+}
+
+
+void Assembler::pushfd() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x9C);
+}
+
+
+void Assembler::popfd() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x9D);
+}
+
+
+void Assembler::push(const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ if (x.is_int8()) {
+ EMIT(0x6a);
+ EMIT(x.x_);
+ } else {
+ EMIT(0x68);
+ emit(x);
+ }
+}
+
+
+void Assembler::push(Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x50 | src.code());
+}
+
+
+void Assembler::push(const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xFF);
+ emit_operand(esi, src);
+}
+
+
+void Assembler::pop(Register dst) {
+ ASSERT(reloc_info_writer.last_pc() != NULL);
+ if (FLAG_push_pop_elimination && (reloc_info_writer.last_pc() <= last_pc_)) {
+ // (last_pc_ != NULL) is rolled into the above check
+ // If a last_pc_ is set, we need to make sure that there has not been any
+ // relocation information generated between the last instruction and this
+ // pop instruction.
+ byte instr = last_pc_[0];
+ if ((instr & ~0x7) == 0x50) {
+ int push_reg_code = instr & 0x7;
+ if (push_reg_code == dst.code()) {
+ pc_ = last_pc_;
+ if (FLAG_print_push_pop_elimination) {
+ PrintF("%d push/pop (same reg) eliminated\n", pc_offset());
+ }
+ } else {
+ // Convert 'push src; pop dst' to 'mov dst, src'.
+ last_pc_[0] = 0x8b;
+ Register src = { push_reg_code };
+ EnsureSpace ensure_space(this);
+ emit_operand(dst, Operand(src));
+ if (FLAG_print_push_pop_elimination) {
+ PrintF("%d push/pop (reg->reg) eliminated\n", pc_offset());
+ }
+ }
+ last_pc_ = NULL;
+ return;
+ } else if (instr == 0xff) { // push of an operand, convert to a move
+ byte op1 = last_pc_[1];
+ // Check if the operation is really a push
+ if ((op1 & 0x38) == (6 << 3)) {
+ op1 = (op1 & ~0x38) | static_cast<byte>(dst.code() << 3);
+ last_pc_[0] = 0x8b;
+ last_pc_[1] = op1;
+ last_pc_ = NULL;
+ if (FLAG_print_push_pop_elimination) {
+ PrintF("%d push/pop (op->reg) eliminated\n", pc_offset());
+ }
+ return;
+ }
+ } else if ((instr == 0x89) &&
+ (last_pc_[1] == 0x04) &&
+ (last_pc_[2] == 0x24)) {
+ // 0x71283c 396 890424 mov [esp],eax
+ // 0x71283f 399 58 pop eax
+ if (dst.is(eax)) {
+ // change to
+ // 0x710fac 216 83c404 add esp,0x4
+ last_pc_[0] = 0x83;
+ last_pc_[1] = 0xc4;
+ last_pc_[2] = 0x04;
+ last_pc_ = NULL;
+ if (FLAG_print_push_pop_elimination) {
+ PrintF("%d push/pop (mov-pop) eliminated\n", pc_offset());
+ }
+ return;
+ }
+ } else if (instr == 0x6a && dst.is(eax)) { // push of immediate 8 bit
+ byte imm8 = last_pc_[1];
+ if (imm8 == 0) {
+ // 6a00 push 0x0
+ // 58 pop eax
+ last_pc_[0] = 0x31;
+ last_pc_[1] = 0xc0;
+ // change to
+ // 31c0 xor eax,eax
+ last_pc_ = NULL;
+ if (FLAG_print_push_pop_elimination) {
+ PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset());
+ }
+ return;
+ } else {
+ // 6a00 push 0xXX
+ // 58 pop eax
+ last_pc_[0] = 0xb8;
+ EnsureSpace ensure_space(this);
+ if ((imm8 & 0x80) != 0) {
+ EMIT(0xff);
+ EMIT(0xff);
+ EMIT(0xff);
+ // change to
+ // b8XXffffff mov eax,0xffffffXX
+ } else {
+ EMIT(0x00);
+ EMIT(0x00);
+ EMIT(0x00);
+ // change to
+ // b8XX000000 mov eax,0x000000XX
+ }
+ last_pc_ = NULL;
+ if (FLAG_print_push_pop_elimination) {
+ PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset());
+ }
+ return;
+ }
+ } else if (instr == 0x68 && dst.is(eax)) { // push of immediate 32 bit
+ // 68XXXXXXXX push 0xXXXXXXXX
+ // 58 pop eax
+ last_pc_[0] = 0xb8;
+ last_pc_ = NULL;
+ // change to
+ // b8XXXXXXXX mov eax,0xXXXXXXXX
+ if (FLAG_print_push_pop_elimination) {
+ PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset());
+ }
+ return;
+ }
+
+ // Other potential patterns for peephole:
+ // 0x712716 102 890424 mov [esp], eax
+ // 0x712719 105 8b1424 mov edx, [esp]
+ }
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x58 | dst.code());
+}
+
+
+void Assembler::pop(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x8F);
+ emit_operand(eax, dst);
+}
+
+
+void Assembler::enter(const Immediate& size) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xC8);
+ emit_w(size);
+ EMIT(0);
+}
+
+
+void Assembler::leave() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xC9);
+}
+
+
+void Assembler::mov_b(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x8A);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::mov_b(const Operand& dst, int8_t imm8) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xC6);
+ emit_operand(eax, dst);
+ EMIT(imm8);
+}
+
+
+void Assembler::mov_b(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x88);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::mov_w(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x66);
+ EMIT(0x8B);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::mov_w(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x66);
+ EMIT(0x89);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::mov(Register dst, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xB8 | dst.code());
+ emit(imm32);
+}
+
+
+void Assembler::mov(Register dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xB8 | dst.code());
+ emit(x);
+}
+
+
+void Assembler::mov(Register dst, Handle<Object> handle) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xB8 | dst.code());
+ emit(handle);
+}
+
+
+void Assembler::mov(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x8B);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::mov(Register dst, Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x89);
+ EMIT(0xC0 | src.code() << 3 | dst.code());
+}
+
+
+void Assembler::mov(const Operand& dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xC7);
+ emit_operand(eax, dst);
+ emit(x);
+}
+
+
+void Assembler::mov(const Operand& dst, Handle<Object> handle) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xC7);
+ emit_operand(eax, dst);
+ emit(handle);
+}
+
+
+void Assembler::mov(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x89);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::movsx_b(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0xBE);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::movsx_w(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0xBF);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::movzx_b(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0xB6);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::movzx_w(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0xB7);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::cmov(Condition cc, Register dst, int32_t imm32) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ UNIMPLEMENTED();
+ USE(cc);
+ USE(dst);
+ USE(imm32);
+}
+
+
+void Assembler::cmov(Condition cc, Register dst, Handle<Object> handle) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ UNIMPLEMENTED();
+ USE(cc);
+ USE(dst);
+ USE(handle);
+}
+
+
+void Assembler::cmov(Condition cc, Register dst, const Operand& src) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ UNIMPLEMENTED();
+ USE(cc);
+ USE(dst);
+ USE(src);
+}
+
+
+void Assembler::xchg(Register dst, Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ if (src.is(eax) || dst.is(eax)) { // Single-byte encoding
+ EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
+ } else {
+ EMIT(0x87);
+ EMIT(0xC0 | src.code() << 3 | dst.code());
+ }
+}
+
+
+void Assembler::adc(Register dst, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(2, Operand(dst), Immediate(imm32));
+}
+
+
+void Assembler::adc(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x13);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::add(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x03);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::add(const Operand& dst, const Immediate& x) {
+ ASSERT(reloc_info_writer.last_pc() != NULL);
+ if (FLAG_push_pop_elimination && (reloc_info_writer.last_pc() <= last_pc_)) {
+ byte instr = last_pc_[0];
+ if ((instr & 0xf8) == 0x50) {
+ // Last instruction was a push. Check whether this is a pop without a
+ // result.
+ if ((dst.is_reg(esp)) &&
+ (x.x_ == kPointerSize) && (x.rmode_ == RelocInfo::NONE)) {
+ pc_ = last_pc_;
+ last_pc_ = NULL;
+ if (FLAG_print_push_pop_elimination) {
+ PrintF("%d push/pop(noreg) eliminated\n", pc_offset());
+ }
+ return;
+ }
+ }
+ }
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(0, dst, x);
+}
+
+
+void Assembler::and_(Register dst, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(4, Operand(dst), Immediate(imm32));
+}
+
+
+void Assembler::and_(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x23);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::and_(const Operand& dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(4, dst, x);
+}
+
+
+void Assembler::and_(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x21);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::cmpb(const Operand& op, int8_t imm8) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x80);
+ emit_operand(edi, op); // edi == 7
+ EMIT(imm8);
+}
+
+
+void Assembler::cmpw(const Operand& op, Immediate imm16) {
+ ASSERT(imm16.is_int16());
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x66);
+ EMIT(0x81);
+ emit_operand(edi, op);
+ emit_w(imm16);
+}
+
+
+void Assembler::cmp(Register reg, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(7, Operand(reg), Immediate(imm32));
+}
+
+
+void Assembler::cmp(Register reg, Handle<Object> handle) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(7, Operand(reg), Immediate(handle));
+}
+
+
+void Assembler::cmp(Register reg, const Operand& op) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x3B);
+ emit_operand(reg, op);
+}
+
+
+void Assembler::cmp(const Operand& op, const Immediate& imm) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(7, op, imm);
+}
+
+
+void Assembler::cmpb_al(const Operand& op) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x38); // CMP r/m8, r8
+ emit_operand(eax, op); // eax has same code as register al.
+}
+
+
+void Assembler::cmpw_ax(const Operand& op) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x66);
+ EMIT(0x39); // CMP r/m16, r16
+ emit_operand(eax, op); // eax has same code as register ax.
+}
+
+
+void Assembler::dec_b(Register dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xFE);
+ EMIT(0xC8 | dst.code());
+}
+
+
+void Assembler::dec(Register dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x48 | dst.code());
+}
+
+
+void Assembler::dec(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xFF);
+ emit_operand(ecx, dst);
+}
+
+
+void Assembler::cdq() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x99);
+}
+
+
+void Assembler::idiv(Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF7);
+ EMIT(0xF8 | src.code());
+}
+
+
+void Assembler::imul(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0xAF);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::imul(Register dst, Register src, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ if (is_int8(imm32)) {
+ EMIT(0x6B);
+ EMIT(0xC0 | dst.code() << 3 | src.code());
+ EMIT(imm32);
+ } else {
+ EMIT(0x69);
+ EMIT(0xC0 | dst.code() << 3 | src.code());
+ emit(imm32);
+ }
+}
+
+
+void Assembler::inc(Register dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x40 | dst.code());
+}
+
+
+void Assembler::inc(const Operand& dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xFF);
+ emit_operand(eax, dst);
+}
+
+
+void Assembler::lea(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x8D);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::mul(Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF7);
+ EMIT(0xE0 | src.code());
+}
+
+
+void Assembler::neg(Register dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF7);
+ EMIT(0xD8 | dst.code());
+}
+
+
+void Assembler::not_(Register dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF7);
+ EMIT(0xD0 | dst.code());
+}
+
+
+void Assembler::or_(Register dst, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(1, Operand(dst), Immediate(imm32));
+}
+
+
+void Assembler::or_(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0B);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::or_(const Operand& dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(1, dst, x);
+}
+
+
+void Assembler::or_(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x09);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::rcl(Register dst, uint8_t imm8) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ ASSERT(is_uint5(imm8)); // illegal shift count
+ if (imm8 == 1) {
+ EMIT(0xD1);
+ EMIT(0xD0 | dst.code());
+ } else {
+ EMIT(0xC1);
+ EMIT(0xD0 | dst.code());
+ EMIT(imm8);
+ }
+}
+
+
+void Assembler::sar(Register dst, uint8_t imm8) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ ASSERT(is_uint5(imm8)); // illegal shift count
+ if (imm8 == 1) {
+ EMIT(0xD1);
+ EMIT(0xF8 | dst.code());
+ } else {
+ EMIT(0xC1);
+ EMIT(0xF8 | dst.code());
+ EMIT(imm8);
+ }
+}
+
+
+void Assembler::sar(Register dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD3);
+ EMIT(0xF8 | dst.code());
+}
+
+
+void Assembler::sbb(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x1B);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::shld(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0xA5);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::shl(Register dst, uint8_t imm8) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ ASSERT(is_uint5(imm8)); // illegal shift count
+ if (imm8 == 1) {
+ EMIT(0xD1);
+ EMIT(0xE0 | dst.code());
+ } else {
+ EMIT(0xC1);
+ EMIT(0xE0 | dst.code());
+ EMIT(imm8);
+ }
+}
+
+
+void Assembler::shl(Register dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD3);
+ EMIT(0xE0 | dst.code());
+}
+
+
+void Assembler::shrd(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0xAD);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::shr(Register dst, uint8_t imm8) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ ASSERT(is_uint5(imm8)); // illegal shift count
+ EMIT(0xC1);
+ EMIT(0xE8 | dst.code());
+ EMIT(imm8);
+}
+
+
+void Assembler::shr(Register dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD3);
+ EMIT(0xE8 | dst.code());
+}
+
+
+void Assembler::shr_cl(Register dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD1);
+ EMIT(0xE8 | dst.code());
+}
+
+
+void Assembler::sub(const Operand& dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(5, dst, x);
+}
+
+
+void Assembler::sub(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x2B);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::sub(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x29);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::test(Register reg, const Immediate& imm) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ // Only use test against byte for registers that have a byte
+ // variant: eax, ebx, ecx, and edx.
+ if (imm.rmode_ == RelocInfo::NONE && is_uint8(imm.x_) && reg.code() < 4) {
+ uint8_t imm8 = imm.x_;
+ if (reg.is(eax)) {
+ EMIT(0xA8);
+ EMIT(imm8);
+ } else {
+ emit_arith_b(0xF6, 0xC0, reg, imm8);
+ }
+ } else {
+ // This is not using emit_arith because test doesn't support
+ // sign-extension of 8-bit operands.
+ if (reg.is(eax)) {
+ EMIT(0xA9);
+ } else {
+ EMIT(0xF7);
+ EMIT(0xC0 | reg.code());
+ }
+ emit(imm);
+ }
+}
+
+
+void Assembler::test(Register reg, const Operand& op) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x85);
+ emit_operand(reg, op);
+}
+
+
+void Assembler::test(const Operand& op, const Immediate& imm) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF7);
+ emit_operand(eax, op);
+ emit(imm);
+}
+
+
+void Assembler::xor_(Register dst, int32_t imm32) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(6, Operand(dst), Immediate(imm32));
+}
+
+
+void Assembler::xor_(Register dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x33);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::xor_(const Operand& src, Register dst) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x31);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::xor_(const Operand& dst, const Immediate& x) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_arith(6, dst, x);
+}
+
+
+void Assembler::bt(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0xA3);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::bts(const Operand& dst, Register src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0xAB);
+ emit_operand(src, dst);
+}
+
+
+void Assembler::hlt() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF4);
+}
+
+
+void Assembler::int3() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xCC);
+}
+
+
+void Assembler::nop() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x90);
+}
+
+
+void Assembler::rdtsc() {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::RDTSC));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0x31);
+}
+
+
+void Assembler::ret(int imm16) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ ASSERT(is_uint16(imm16));
+ if (imm16 == 0) {
+ EMIT(0xC3);
+ } else {
+ EMIT(0xC2);
+ EMIT(imm16 & 0xFF);
+ EMIT((imm16 >> 8) & 0xFF);
+ }
+}
+
+
+// Labels refer to positions in the (to be) generated code.
+// There are bound, linked, and unused labels.
+//
+// Bound labels refer to known positions in the already
+// generated code. pos() is the position the label refers to.
+//
+// Linked labels refer to unknown positions in the code
+// to be generated; pos() is the position of the 32bit
+// Displacement of the last instruction using the label.
+
+
+void Assembler::print(Label* L) {
+ if (L->is_unused()) {
+ PrintF("unused label\n");
+ } else if (L->is_bound()) {
+ PrintF("bound label to %d\n", L->pos());
+ } else if (L->is_linked()) {
+ Label l = *L;
+ PrintF("unbound label");
+ while (l.is_linked()) {
+ Displacement disp = disp_at(&l);
+ PrintF("@ %d ", l.pos());
+ disp.print();
+ PrintF("\n");
+ disp.next(&l);
+ }
+ } else {
+ PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
+ }
+}
+
+
+void Assembler::bind_to(Label* L, int pos) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = NULL;
+ ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
+ while (L->is_linked()) {
+ Displacement disp = disp_at(L);
+ int fixup_pos = L->pos();
+ if (disp.type() == Displacement::CODE_RELATIVE) {
+ // Relative to Code* heap object pointer.
+ long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
+ } else {
+ if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
+ ASSERT(byte_at(fixup_pos - 1) == 0xE9); // jmp expected
+ }
+ // relative address, relative to point after address
+ int imm32 = pos - (fixup_pos + sizeof(int32_t));
+ long_at_put(fixup_pos, imm32);
+ }
+ disp.next(L);
+ }
+ L->bind_to(pos);
+}
+
+
+void Assembler::link_to(Label* L, Label* appendix) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = NULL;
+ if (appendix->is_linked()) {
+ if (L->is_linked()) {
+ // append appendix to L's list
+ Label p;
+ Label q = *L;
+ do {
+ p = q;
+ Displacement disp = disp_at(&q);
+ disp.next(&q);
+ } while (q.is_linked());
+ Displacement disp = disp_at(&p);
+ disp.link_to(appendix);
+ disp_at_put(&p, disp);
+ p.Unuse(); // to avoid assertion failure in ~Label
+ } else {
+ // L is empty, simply use appendix
+ *L = *appendix;
+ }
+ }
+ appendix->Unuse(); // appendix should not be used anymore
+}
+
+
+void Assembler::bind(Label* L) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = NULL;
+ ASSERT(!L->is_bound()); // label can only be bound once
+ bind_to(L, pc_offset());
+}
+
+
+void Assembler::call(Label* L) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ if (L->is_bound()) {
+ const int long_size = 5;
+ int offs = L->pos() - pc_offset();
+ ASSERT(offs <= 0);
+ // 1110 1000 #32-bit disp
+ EMIT(0xE8);
+ emit(offs - long_size);
+ } else {
+ // 1110 1000 #32-bit disp
+ EMIT(0xE8);
+ emit_disp(L, Displacement::OTHER);
+ }
+}
+
+
+void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ ASSERT(!RelocInfo::IsCodeTarget(rmode));
+ EMIT(0xE8);
+ emit(entry - (pc_ + sizeof(int32_t)), rmode);
+}
+
+
+void Assembler::call(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xFF);
+ emit_operand(edx, adr);
+}
+
+
+void Assembler::call(Handle<Code> code, RelocInfo::Mode rmode) {
+ WriteRecordedPositions();
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ ASSERT(RelocInfo::IsCodeTarget(rmode));
+ EMIT(0xE8);
+ emit(reinterpret_cast<intptr_t>(code.location()), rmode);
+}
+
+
+void Assembler::jmp(Label* L) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ if (L->is_bound()) {
+ const int short_size = 2;
+ const int long_size = 5;
+ int offs = L->pos() - pc_offset();
+ ASSERT(offs <= 0);
+ if (is_int8(offs - short_size)) {
+ // 1110 1011 #8-bit disp
+ EMIT(0xEB);
+ EMIT((offs - short_size) & 0xFF);
+ } else {
+ // 1110 1001 #32-bit disp
+ EMIT(0xE9);
+ emit(offs - long_size);
+ }
+ } else {
+ // 1110 1001 #32-bit disp
+ EMIT(0xE9);
+ emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
+ }
+}
+
+
+void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ ASSERT(!RelocInfo::IsCodeTarget(rmode));
+ EMIT(0xE9);
+ emit(entry - (pc_ + sizeof(int32_t)), rmode);
+}
+
+
+void Assembler::jmp(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xFF);
+ emit_operand(esp, adr);
+}
+
+
+void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ ASSERT(RelocInfo::IsCodeTarget(rmode));
+ EMIT(0xE9);
+ emit(reinterpret_cast<intptr_t>(code.location()), rmode);
+}
+
+
+
+void Assembler::j(Condition cc, Label* L, Hint hint) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ ASSERT(0 <= cc && cc < 16);
+ if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint);
+ if (L->is_bound()) {
+ const int short_size = 2;
+ const int long_size = 6;
+ int offs = L->pos() - pc_offset();
+ ASSERT(offs <= 0);
+ if (is_int8(offs - short_size)) {
+ // 0111 tttn #8-bit disp
+ EMIT(0x70 | cc);
+ EMIT((offs - short_size) & 0xFF);
+ } else {
+ // 0000 1111 1000 tttn #32-bit disp
+ EMIT(0x0F);
+ EMIT(0x80 | cc);
+ emit(offs - long_size);
+ }
+ } else {
+ // 0000 1111 1000 tttn #32-bit disp
+ // Note: could eliminate cond. jumps to this jump if condition
+ // is the same however, seems to be rather unlikely case.
+ EMIT(0x0F);
+ EMIT(0x80 | cc);
+ emit_disp(L, Displacement::OTHER);
+ }
+}
+
+
+void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ ASSERT((0 <= cc) && (cc < 16));
+ if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint);
+ // 0000 1111 1000 tttn #32-bit disp
+ EMIT(0x0F);
+ EMIT(0x80 | cc);
+ emit(entry - (pc_ + sizeof(int32_t)), rmode);
+}
+
+
+void Assembler::j(Condition cc, Handle<Code> code, Hint hint) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint);
+ // 0000 1111 1000 tttn #32-bit disp
+ EMIT(0x0F);
+ EMIT(0x80 | cc);
+ emit(reinterpret_cast<intptr_t>(code.location()), RelocInfo::CODE_TARGET);
+}
+
+
+// FPU instructions
+
+
+void Assembler::fld(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xD9, 0xC0, i);
+}
+
+
+void Assembler::fld1() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD9);
+ EMIT(0xE8);
+}
+
+
+void Assembler::fldz() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD9);
+ EMIT(0xEE);
+}
+
+
+void Assembler::fld_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD9);
+ emit_operand(eax, adr);
+}
+
+
+void Assembler::fld_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDD);
+ emit_operand(eax, adr);
+}
+
+
+void Assembler::fstp_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD9);
+ emit_operand(ebx, adr);
+}
+
+
+void Assembler::fstp_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDD);
+ emit_operand(ebx, adr);
+}
+
+
+void Assembler::fild_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDB);
+ emit_operand(eax, adr);
+}
+
+
+void Assembler::fild_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDF);
+ emit_operand(ebp, adr);
+}
+
+
+void Assembler::fistp_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDB);
+ emit_operand(ebx, adr);
+}
+
+
+void Assembler::fisttp_s(const Operand& adr) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE3));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDB);
+ emit_operand(ecx, adr);
+}
+
+
+void Assembler::fist_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDB);
+ emit_operand(edx, adr);
+}
+
+
+void Assembler::fistp_d(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDF);
+ emit_operand(edi, adr);
+}
+
+
+void Assembler::fabs() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD9);
+ EMIT(0xE1);
+}
+
+
+void Assembler::fchs() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD9);
+ EMIT(0xE0);
+}
+
+
+void Assembler::fadd(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xDC, 0xC0, i);
+}
+
+
+void Assembler::fsub(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xDC, 0xE8, i);
+}
+
+
+void Assembler::fisub_s(const Operand& adr) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDA);
+ emit_operand(esp, adr);
+}
+
+
+void Assembler::fmul(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xDC, 0xC8, i);
+}
+
+
+void Assembler::fdiv(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xDC, 0xF8, i);
+}
+
+
+void Assembler::faddp(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xDE, 0xC0, i);
+}
+
+
+void Assembler::fsubp(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xDE, 0xE8, i);
+}
+
+
+void Assembler::fsubrp(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xDE, 0xE0, i);
+}
+
+
+void Assembler::fmulp(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xDE, 0xC8, i);
+}
+
+
+void Assembler::fdivp(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xDE, 0xF8, i);
+}
+
+
+void Assembler::fprem() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD9);
+ EMIT(0xF8);
+}
+
+
+void Assembler::fprem1() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD9);
+ EMIT(0xF5);
+}
+
+
+void Assembler::fxch(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xD9, 0xC8, i);
+}
+
+
+void Assembler::fincstp() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD9);
+ EMIT(0xF7);
+}
+
+
+void Assembler::ffree(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xDD, 0xC0, i);
+}
+
+
+void Assembler::ftst() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD9);
+ EMIT(0xE4);
+}
+
+
+void Assembler::fucomp(int i) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ emit_farith(0xDD, 0xE8, i);
+}
+
+
+void Assembler::fucompp() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDA);
+ EMIT(0xE9);
+}
+
+
+void Assembler::fcompp() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDE);
+ EMIT(0xD9);
+}
+
+
+void Assembler::fnstsw_ax() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xdF);
+ EMIT(0xE0);
+}
+
+
+void Assembler::fwait() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x9B);
+}
+
+
+void Assembler::frndint() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xD9);
+ EMIT(0xFC);
+}
+
+
+void Assembler::fnclex() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xDB);
+ EMIT(0xE2);
+}
+
+
+void Assembler::sahf() {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x9E);
+}
+
+
+void Assembler::setcc(Condition cc, Register reg) {
+ ASSERT(reg.is_byte_register());
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0x0F);
+ EMIT(0x90 | cc);
+ EMIT(0xC0 | reg.code());
+}
+
+
+void Assembler::cvttss2si(Register dst, const Operand& src) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF3);
+ EMIT(0x0F);
+ EMIT(0x2C);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::cvttsd2si(Register dst, const Operand& src) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF2);
+ EMIT(0x0F);
+ EMIT(0x2C);
+ emit_operand(dst, src);
+}
+
+
+void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF2);
+ EMIT(0x0F);
+ EMIT(0x2A);
+ emit_sse_operand(dst, src);
+}
+
+
+void Assembler::addsd(XMMRegister dst, XMMRegister src) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF2);
+ EMIT(0x0F);
+ EMIT(0x58);
+ emit_sse_operand(dst, src);
+}
+
+
+void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF2);
+ EMIT(0x0F);
+ EMIT(0x59);
+ emit_sse_operand(dst, src);
+}
+
+
+void Assembler::subsd(XMMRegister dst, XMMRegister src) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF2);
+ EMIT(0x0F);
+ EMIT(0x5C);
+ emit_sse_operand(dst, src);
+}
+
+
+void Assembler::divsd(XMMRegister dst, XMMRegister src) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF2);
+ EMIT(0x0F);
+ EMIT(0x5E);
+ emit_sse_operand(dst, src);
+}
+
+
+void Assembler::movdbl(XMMRegister dst, const Operand& src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ movsd(dst, src);
+}
+
+
+void Assembler::movdbl(const Operand& dst, XMMRegister src) {
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ movsd(dst, src);
+}
+
+
+void Assembler::movsd(const Operand& dst, XMMRegister src ) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF2); // double
+ EMIT(0x0F);
+ EMIT(0x11); // store
+ emit_sse_operand(src, dst);
+}
+
+
+void Assembler::movsd(XMMRegister dst, const Operand& src) {
+ ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2));
+ EnsureSpace ensure_space(this);
+ last_pc_ = pc_;
+ EMIT(0xF2); // double
+ EMIT(0x0F);
+ EMIT(0x10); // load
+ emit_sse_operand(dst, src);
+}
+
+
+void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
+ Register ireg = { reg.code() };
+ emit_operand(ireg, adr);
+}
+
+
+void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
+ EMIT(0xC0 | dst.code() << 3 | src.code());
+}
+
+
+void Assembler::Print() {
+ Disassembler::Decode(stdout, buffer_, pc_);
+}
+
+
+void Assembler::RecordJSReturn() {
+ WriteRecordedPositions();
+ EnsureSpace ensure_space(this);
+ RecordRelocInfo(RelocInfo::JS_RETURN);
+}
+
+
+void Assembler::RecordComment(const char* msg) {
+ if (FLAG_debug_code) {
+ EnsureSpace ensure_space(this);
+ RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
+ }
+}
+
+
+void Assembler::RecordPosition(int pos) {
+ ASSERT(pos != RelocInfo::kNoPosition);
+ ASSERT(pos >= 0);
+ current_position_ = pos;
+}
+
+
+void Assembler::RecordStatementPosition(int pos) {
+ ASSERT(pos != RelocInfo::kNoPosition);
+ ASSERT(pos >= 0);
+ current_statement_position_ = pos;
+}
+
+
+void Assembler::WriteRecordedPositions() {
+ // Write the statement position if it is different from what was written last
+ // time.
+ if (current_statement_position_ != written_statement_position_) {
+ EnsureSpace ensure_space(this);
+ RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_);
+ written_statement_position_ = current_statement_position_;
+ }
+
+ // Write the position if it is different from what was written last time and
+ // also different from the written statement position.
+ if (current_position_ != written_position_ &&
+ current_position_ != written_statement_position_) {
+ EnsureSpace ensure_space(this);
+ RecordRelocInfo(RelocInfo::POSITION, current_position_);
+ written_position_ = current_position_;
+ }
+}
+
+
+void Assembler::GrowBuffer() {
+ ASSERT(overflow()); // should not call this otherwise
+ if (!own_buffer_) FATAL("external code buffer is too small");
+
+ // compute new buffer size
+ CodeDesc desc; // the new buffer
+ if (buffer_size_ < 4*KB) {
+ desc.buffer_size = 4*KB;
+ } else {
+ desc.buffer_size = 2*buffer_size_;
+ }
+ // Some internal data structures overflow for very large buffers,
+ // they must ensure that kMaximalBufferSize is not too large.
+ if ((desc.buffer_size > kMaximalBufferSize) ||
+ (desc.buffer_size > Heap::OldGenerationSize())) {
+ V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
+ }
+
+ // setup new buffer
+ desc.buffer = NewArray<byte>(desc.buffer_size);
+ desc.instr_size = pc_offset();
+ desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
+
+ // Clear the buffer in debug mode. Use 'int3' instructions to make
+ // sure to get into problems if we ever run uninitialized code.
+#ifdef DEBUG
+ memset(desc.buffer, 0xCC, desc.buffer_size);
+#endif
+
+ // copy the data
+ int pc_delta = desc.buffer - buffer_;
+ int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
+ memmove(desc.buffer, buffer_, desc.instr_size);
+ memmove(rc_delta + reloc_info_writer.pos(),
+ reloc_info_writer.pos(), desc.reloc_size);
+
+ // switch buffers
+ if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
+ spare_buffer_ = buffer_;
+ } else {
+ DeleteArray(buffer_);
+ }
+ buffer_ = desc.buffer;
+ buffer_size_ = desc.buffer_size;
+ pc_ += pc_delta;
+ if (last_pc_ != NULL) {
+ last_pc_ += pc_delta;
+ }
+ reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
+ reloc_info_writer.last_pc() + pc_delta);
+
+ // relocate runtime entries
+ for (RelocIterator it(desc); !it.done(); it.next()) {
+ RelocInfo::Mode rmode = it.rinfo()->rmode();
+ if (rmode == RelocInfo::RUNTIME_ENTRY) {
+ int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc());
+ *p -= pc_delta; // relocate entry
+ } else if (rmode == RelocInfo::INTERNAL_REFERENCE) {
+ int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc());
+ if (*p != 0) { // 0 means uninitialized.
+ *p += pc_delta;
+ }
+ }
+ }
+
+ ASSERT(!overflow());
+}
+
+
+void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
+ ASSERT(is_uint8(op1) && is_uint8(op2)); // wrong opcode
+ ASSERT(is_uint8(imm8));
+ ASSERT((op1 & 0x01) == 0); // should be 8bit operation
+ EMIT(op1);
+ EMIT(op2 | dst.code());
+ EMIT(imm8);
+}
+
+
+void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
+ ASSERT((0 <= sel) && (sel <= 7));
+ Register ireg = { sel };
+ if (x.is_int8()) {
+ EMIT(0x83); // using a sign-extended 8-bit immediate.
+ emit_operand(ireg, dst);
+ EMIT(x.x_ & 0xFF);
+ } else if (dst.is_reg(eax)) {
+ EMIT((sel << 3) | 0x05); // short form if the destination is eax.
+ emit(x);
+ } else {
+ EMIT(0x81); // using a literal 32-bit immediate.
+ emit_operand(ireg, dst);
+ emit(x);
+ }
+}
+
+
+void Assembler::emit_operand(Register reg, const Operand& adr) {
+ const unsigned length = adr.len_;
+ ASSERT(length > 0);
+
+ // Emit updated ModRM byte containing the given register.
+ pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
+
+ // Emit the rest of the encoded operand.
+ for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
+ pc_ += length;
+
+ // Emit relocation information if necessary.
+ if (length >= sizeof(int32_t) && adr.rmode_ != RelocInfo::NONE) {
+ pc_ -= sizeof(int32_t); // pc_ must be *at* disp32
+ RecordRelocInfo(adr.rmode_);
+ pc_ += sizeof(int32_t);
+ }
+}
+
+
+void Assembler::emit_farith(int b1, int b2, int i) {
+ ASSERT(is_uint8(b1) && is_uint8(b2)); // wrong opcode
+ ASSERT(0 <= i && i < 8); // illegal stack offset
+ EMIT(b1);
+ EMIT(b2 + i);
+}
+
+
+void Assembler::dd(uint32_t data, RelocInfo::Mode reloc_info) {
+ EnsureSpace ensure_space(this);
+ emit(data, reloc_info);
+}
+
+
+void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
+ ASSERT(rmode != RelocInfo::NONE);
+ // Don't record external references unless the heap will be serialized.
+ if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
+ !Serializer::enabled() &&
+ !FLAG_debug_code) {
+ return;
+ }
+ RelocInfo rinfo(pc_, rmode, data);
+ reloc_info_writer.Write(&rinfo);
+}
+
+
+void Assembler::WriteInternalReference(int position, const Label& bound_label) {
+ ASSERT(bound_label.is_bound());
+ ASSERT(0 <= position);
+ ASSERT(position + static_cast<int>(sizeof(uint32_t)) <= pc_offset());
+ ASSERT(long_at(position) == 0); // only initialize once!
+
+ uint32_t label_loc = reinterpret_cast<uint32_t>(addr_at(bound_label.pos()));
+ long_at_put(position, label_loc);
+}
+
+
+#ifdef GENERATED_CODE_COVERAGE
+static FILE* coverage_log = NULL;
+
+
+static void InitCoverageLog() {
+ char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
+ if (file_name != NULL) {
+ coverage_log = fopen(file_name, "aw+");
+ }
+}
+
+
+void LogGeneratedCodeCoverage(const char* file_line) {
+ const char* return_address = (&file_line)[-1];
+ char* push_insn = const_cast<char*>(return_address - 12);
+ push_insn[0] = 0xeb; // Relative branch insn.
+ push_insn[1] = 13; // Skip over coverage insns.
+ if (coverage_log != NULL) {
+ fprintf(coverage_log, "%s\n", file_line);
+ fflush(coverage_log);
+ }
+}
+
+#endif
+
+} } // namespace v8::internal
« no previous file with comments | « src/ia32/assembler-ia32.h ('k') | src/ia32/assembler-ia32-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698