| Index: base/memory/scoped_ptr.h
|
| diff --git a/base/memory/scoped_ptr.h b/base/memory/scoped_ptr.h
|
| index 5ac6846f3964e2ea929cef92d065454f23a64a4a..2d69a9db4489eb840ad65ad40087f08ecac7ff0d 100644
|
| --- a/base/memory/scoped_ptr.h
|
| +++ b/base/memory/scoped_ptr.h
|
| @@ -32,6 +32,41 @@
|
| // foo.get()->Method(); // Foo::Method on the 0th element.
|
| // foo[10].Method(); // Foo::Method on the 10th element.
|
| // }
|
| +//
|
| +// These scopers also implement part of the functionality of C++11 unique_ptr
|
| +// in that they are "movable but not copyable." You can use the scopers in
|
| +// the parameter and return types of functions to signify ownership transfer
|
| +// in to and out of a function. When calling a function that has a scoper
|
| +// as the argument type, it must be called with the result of an analogous
|
| +// scoper's Pass() function or another function that generates a temporary;
|
| +// passing by copy will NOT work. Here is an example using scoped_ptr:
|
| +//
|
| +// void TakesOwnership(scoped_ptr<Foo> arg) {
|
| +// // Do something with arg
|
| +// }
|
| +// scoped_ptr<Foo> CreateFoo() {
|
| +// // No need for calling Pass() because we are constructing a temporary
|
| +// // for the return value.
|
| +// return scoped_ptr<Foo>(new Foo("new"));
|
| +// }
|
| +// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
|
| +// return arg.Pass();
|
| +// }
|
| +//
|
| +// {
|
| +// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay)"
|
| +// TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
|
| +// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
|
| +// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
|
| +// PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL.
|
| +// }
|
| +//
|
| +// Notice that if you do not call Pass() when returning from PassThru(), or
|
| +// when invoking TakesOwnership(), the code will not compile because scopers
|
| +// are not copyable; they only implement move semantics which require calling
|
| +// the Pass() function to signify a destructive transfer of state. CreateFoo()
|
| +// is different though because we are constructing a temporary on the return
|
| +// line and thus can avoid needing to call Pass().
|
|
|
| #ifndef BASE_MEMORY_SCOPED_PTR_H_
|
| #define BASE_MEMORY_SCOPED_PTR_H_
|
| @@ -47,12 +82,35 @@
|
|
|
| #include "base/compiler_specific.h"
|
|
|
| +// Macro with the boilerplate C++03 move emulation for a class.
|
| +//
|
| +// In C++11, this is done via rvalue references. Here, we use C++03 move
|
| +// emulation to fake an rvalue reference. For a more thorough explanation
|
| +// of the technique, see:
|
| +//
|
| +// http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
|
| +//
|
| +#define CPP_03_MOVE_EMULATION(scoper, field) \
|
| + private: \
|
| + struct RValue { \
|
| + explicit RValue(scoper& obj) : obj_(obj) {} \
|
| + scoper& obj_; \
|
| + }; \
|
| + public: \
|
| + operator RValue() { return RValue(*this); } \
|
| + scoper(RValue proxy) : field(proxy.obj_.release()) { } \
|
| + scoper& operator=(RValue proxy) { \
|
| + swap(proxy.obj_); \
|
| + return *this; \
|
| + } \
|
| + scoper Pass() { return scoper(RValue(*this)); }
|
| +
|
| // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
|
| // automatically deletes the pointer it holds (if any).
|
| // That is, scoped_ptr<T> owns the T object that it points to.
|
| // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
|
| // Also like T*, scoped_ptr<T> is thread-compatible, and once you
|
| -// dereference it, you get the threadsafety guarantees of T.
|
| +// dereference it, you get the thread safety guarantees of T.
|
| //
|
| // The size of a scoped_ptr is small:
|
| // sizeof(scoped_ptr<C>) == sizeof(C*)
|
| @@ -122,6 +180,8 @@ class scoped_ptr {
|
| return retVal;
|
| }
|
|
|
| + CPP_03_MOVE_EMULATION(scoped_ptr, ptr_);
|
| +
|
| private:
|
| C* ptr_;
|
|
|
| @@ -131,9 +191,10 @@ class scoped_ptr {
|
| template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
|
| template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
|
|
|
| - // Disallow evil constructors
|
| - scoped_ptr(const scoped_ptr&);
|
| - void operator=(const scoped_ptr&);
|
| + // Disallow evil constructors. Note that MUST NOT take a const& because we
|
| + // are implementing move semantics. See the CPP_03_MOVE_EMULATION macro.
|
| + scoped_ptr(scoped_ptr&);
|
| + void operator=(scoped_ptr&);
|
| };
|
|
|
| // Free functions
|
| @@ -158,7 +219,7 @@ bool operator!=(C* p1, const scoped_ptr<C>& p2) {
|
| // As with scoped_ptr<C>, a scoped_array<C> either points to an object
|
| // or is NULL. A scoped_array<C> owns the object that it points to.
|
| // scoped_array<T> is thread-compatible, and once you index into it,
|
| -// the returned objects have only the threadsafety guarantees of T.
|
| +// the returned objects have only the thread safety guarantees of T.
|
| //
|
| // Size: sizeof(scoped_array<C>) == sizeof(C*)
|
| template <class C>
|
| @@ -168,7 +229,7 @@ class scoped_array {
|
| // The element type
|
| typedef C element_type;
|
|
|
| - // Constructor. Defaults to intializing with NULL.
|
| + // Constructor. Defaults to initializing with NULL.
|
| // There is no way to create an uninitialized scoped_array.
|
| // The input parameter must be allocated with new [].
|
| explicit scoped_array(C* p = NULL) : array_(p) { }
|
| @@ -229,6 +290,8 @@ class scoped_array {
|
| return retVal;
|
| }
|
|
|
| + CPP_03_MOVE_EMULATION(scoped_array, array_);
|
| +
|
| private:
|
| C* array_;
|
|
|
| @@ -236,9 +299,10 @@ class scoped_array {
|
| template <class C2> bool operator==(scoped_array<C2> const& p2) const;
|
| template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
|
|
|
| - // Disallow evil constructors
|
| - scoped_array(const scoped_array&);
|
| - void operator=(const scoped_array&);
|
| + // Disallow evil constructors. Note that MUST NOT take a const& because we
|
| + // are implementing move semantics. See the CPP_03_MOVE_EMULATION macro.
|
| + scoped_array(scoped_array&);
|
| + void operator=(scoped_array&);
|
| };
|
|
|
| // Free functions
|
| @@ -347,6 +411,8 @@ class scoped_ptr_malloc {
|
| return tmp;
|
| }
|
|
|
| + CPP_03_MOVE_EMULATION(scoped_ptr_malloc, ptr_);
|
| +
|
| private:
|
| C* ptr_;
|
|
|
| @@ -356,11 +422,14 @@ class scoped_ptr_malloc {
|
| template <class C2, class GP>
|
| bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
|
|
|
| - // Disallow evil constructors
|
| - scoped_ptr_malloc(const scoped_ptr_malloc&);
|
| - void operator=(const scoped_ptr_malloc&);
|
| + // Disallow evil constructors. Note that MUST NOT take a const& because we
|
| + // are implementing move semantics. See the CPP_03_MOVE_EMULATION macro.
|
| + scoped_ptr_malloc(scoped_ptr_malloc&);
|
| + void operator=(scoped_ptr_malloc&);
|
| };
|
|
|
| +#undef CPP_03_MOVE_EMULATION
|
| +
|
| template<class C, class FP> inline
|
| void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
|
| a.swap(b);
|
|
|