Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(124)

Side by Side Diff: base/memory/scoped_ptr.h

Issue 9021032: Redo r113722 - Add Pass(), which implements move semantics, to scoped_ptr, scoped_array.... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Created 9 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « base/callback_internal.h ('k') | base/memory/scoped_ptr_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 // Scopers help you manage ownership of a pointer, helping you easily manage the 5 // Scopers help you manage ownership of a pointer, helping you easily manage the
6 // a pointer within a scope, and automatically destroying the pointer at the 6 // a pointer within a scope, and automatically destroying the pointer at the
7 // end of a scope. There are two main classes you will use, which correspond 7 // end of a scope. There are two main classes you will use, which correspond
8 // to the operators new/delete and new[]/delete[]. 8 // to the operators new/delete and new[]/delete[].
9 // 9 //
10 // Example usage (scoped_ptr): 10 // Example usage (scoped_ptr):
(...skipping 14 matching lines...) Expand all
25 // foo.reset(); // Foo("wee4") destroyed, foo no longer 25 // foo.reset(); // Foo("wee4") destroyed, foo no longer
26 // // manages a pointer. 26 // // manages a pointer.
27 // } // foo wasn't managing a pointer, so nothing was destroyed. 27 // } // foo wasn't managing a pointer, so nothing was destroyed.
28 // 28 //
29 // Example usage (scoped_array): 29 // Example usage (scoped_array):
30 // { 30 // {
31 // scoped_array<Foo> foo(new Foo[100]); 31 // scoped_array<Foo> foo(new Foo[100]);
32 // foo.get()->Method(); // Foo::Method on the 0th element. 32 // foo.get()->Method(); // Foo::Method on the 0th element.
33 // foo[10].Method(); // Foo::Method on the 10th element. 33 // foo[10].Method(); // Foo::Method on the 10th element.
34 // } 34 // }
35 //
36 // These scopers also implement part of the functionality of C++11 unique_ptr
37 // in that they are "movable but not copyable." You can use the scopers in
38 // the parameter and return types of functions to signify ownership transfer
39 // in to and out of a function. When calling a function that has a scoper
40 // as the argument type, it must be called with the result of an analogous
41 // scoper's Pass() function or another function that generates a temporary;
42 // passing by copy will NOT work. Here is an example using scoped_ptr:
43 //
44 // void TakesOwnership(scoped_ptr<Foo> arg) {
45 // // Do something with arg
46 // }
47 // scoped_ptr<Foo> CreateFoo() {
48 // // No need for calling Pass() because we are constructing a temporary
49 // // for the return value.
50 // return scoped_ptr<Foo>(new Foo("new"));
51 // }
52 // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
53 // return arg.Pass();
54 // }
55 //
56 // {
57 // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay)"
58 // TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
59 // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
60 // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
61 // PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL.
62 // }
63 //
64 // Notice that if you do not call Pass() when returning from PassThru(), or
65 // when invoking TakesOwnership(), the code will not compile because scopers
66 // are not copyable; they only implement move semantics which require calling
67 // the Pass() function to signify a destructive transfer of state. CreateFoo()
68 // is different though because we are constructing a temporary on the return
69 // line and thus can avoid needing to call Pass().
35 70
36 #ifndef BASE_MEMORY_SCOPED_PTR_H_ 71 #ifndef BASE_MEMORY_SCOPED_PTR_H_
37 #define BASE_MEMORY_SCOPED_PTR_H_ 72 #define BASE_MEMORY_SCOPED_PTR_H_
38 #pragma once 73 #pragma once
39 74
40 // This is an implementation designed to match the anticipated future TR2 75 // This is an implementation designed to match the anticipated future TR2
41 // implementation of the scoped_ptr class, and its closely-related brethren, 76 // implementation of the scoped_ptr class, and its closely-related brethren,
42 // scoped_array, scoped_ptr_malloc. 77 // scoped_array, scoped_ptr_malloc.
43 78
44 #include <assert.h> 79 #include <assert.h>
45 #include <stddef.h> 80 #include <stddef.h>
46 #include <stdlib.h> 81 #include <stdlib.h>
47 82
48 #include "base/compiler_specific.h" 83 #include "base/compiler_specific.h"
49 84
85 // Macro with the boilerplate C++03 move emulation for a class.
86 //
87 // In C++11, this is done via rvalue references. Here, we use C++03 move
88 // emulation to fake an rvalue reference. For a more thorough explanation
89 // of the technique, see:
90 //
91 // http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
92 //
93 #define CPP_03_MOVE_EMULATION(scoper, field) \
94 private: \
95 struct RValue { \
96 explicit RValue(scoper& obj) : obj_(obj) {} \
97 scoper& obj_; \
98 }; \
99 public: \
100 operator RValue() { return RValue(*this); } \
101 scoper(RValue proxy) : field(proxy.obj_.release()) { } \
102 scoper& operator=(RValue proxy) { \
103 swap(proxy.obj_); \
104 return *this; \
105 } \
106 scoper Pass() { return scoper(RValue(*this)); }
107
50 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> 108 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
51 // automatically deletes the pointer it holds (if any). 109 // automatically deletes the pointer it holds (if any).
52 // That is, scoped_ptr<T> owns the T object that it points to. 110 // That is, scoped_ptr<T> owns the T object that it points to.
53 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. 111 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
54 // Also like T*, scoped_ptr<T> is thread-compatible, and once you 112 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
55 // dereference it, you get the threadsafety guarantees of T. 113 // dereference it, you get the thread safety guarantees of T.
56 // 114 //
57 // The size of a scoped_ptr is small: 115 // The size of a scoped_ptr is small:
58 // sizeof(scoped_ptr<C>) == sizeof(C*) 116 // sizeof(scoped_ptr<C>) == sizeof(C*)
59 template <class C> 117 template <class C>
60 class scoped_ptr { 118 class scoped_ptr {
61 public: 119 public:
62 120
63 // The element type 121 // The element type
64 typedef C element_type; 122 typedef C element_type;
65 123
(...skipping 49 matching lines...) Expand 10 before | Expand all | Expand 10 after
115 // The return value is the current pointer held by this object. 173 // The return value is the current pointer held by this object.
116 // If this object holds a NULL pointer, the return value is NULL. 174 // If this object holds a NULL pointer, the return value is NULL.
117 // After this operation, this object will hold a NULL pointer, 175 // After this operation, this object will hold a NULL pointer,
118 // and will not own the object any more. 176 // and will not own the object any more.
119 C* release() WARN_UNUSED_RESULT { 177 C* release() WARN_UNUSED_RESULT {
120 C* retVal = ptr_; 178 C* retVal = ptr_;
121 ptr_ = NULL; 179 ptr_ = NULL;
122 return retVal; 180 return retVal;
123 } 181 }
124 182
183 CPP_03_MOVE_EMULATION(scoped_ptr, ptr_);
184
125 private: 185 private:
126 C* ptr_; 186 C* ptr_;
127 187
128 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't 188 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't
129 // make sense, and if C2 == C, it still doesn't make sense because you should 189 // make sense, and if C2 == C, it still doesn't make sense because you should
130 // never have the same object owned by two different scoped_ptrs. 190 // never have the same object owned by two different scoped_ptrs.
131 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; 191 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
132 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; 192 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
133 193
134 // Disallow evil constructors 194 // Disallow evil constructors. Note that MUST NOT take a const& because we
135 scoped_ptr(const scoped_ptr&); 195 // are implementing move semantics. See the CPP_03_MOVE_EMULATION macro.
136 void operator=(const scoped_ptr&); 196 scoped_ptr(scoped_ptr&);
197 void operator=(scoped_ptr&);
137 }; 198 };
138 199
139 // Free functions 200 // Free functions
140 template <class C> 201 template <class C>
141 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { 202 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
142 p1.swap(p2); 203 p1.swap(p2);
143 } 204 }
144 205
145 template <class C> 206 template <class C>
146 bool operator==(C* p1, const scoped_ptr<C>& p2) { 207 bool operator==(C* p1, const scoped_ptr<C>& p2) {
147 return p1 == p2.get(); 208 return p1 == p2.get();
148 } 209 }
149 210
150 template <class C> 211 template <class C>
151 bool operator!=(C* p1, const scoped_ptr<C>& p2) { 212 bool operator!=(C* p1, const scoped_ptr<C>& p2) {
152 return p1 != p2.get(); 213 return p1 != p2.get();
153 } 214 }
154 215
155 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate 216 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
156 // with new [] and the destructor deletes objects with delete []. 217 // with new [] and the destructor deletes objects with delete [].
157 // 218 //
158 // As with scoped_ptr<C>, a scoped_array<C> either points to an object 219 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
159 // or is NULL. A scoped_array<C> owns the object that it points to. 220 // or is NULL. A scoped_array<C> owns the object that it points to.
160 // scoped_array<T> is thread-compatible, and once you index into it, 221 // scoped_array<T> is thread-compatible, and once you index into it,
161 // the returned objects have only the threadsafety guarantees of T. 222 // the returned objects have only the thread safety guarantees of T.
162 // 223 //
163 // Size: sizeof(scoped_array<C>) == sizeof(C*) 224 // Size: sizeof(scoped_array<C>) == sizeof(C*)
164 template <class C> 225 template <class C>
165 class scoped_array { 226 class scoped_array {
166 public: 227 public:
167 228
168 // The element type 229 // The element type
169 typedef C element_type; 230 typedef C element_type;
170 231
171 // Constructor. Defaults to intializing with NULL. 232 // Constructor. Defaults to initializing with NULL.
172 // There is no way to create an uninitialized scoped_array. 233 // There is no way to create an uninitialized scoped_array.
173 // The input parameter must be allocated with new []. 234 // The input parameter must be allocated with new [].
174 explicit scoped_array(C* p = NULL) : array_(p) { } 235 explicit scoped_array(C* p = NULL) : array_(p) { }
175 236
176 // Destructor. If there is a C object, delete it. 237 // Destructor. If there is a C object, delete it.
177 // We don't need to test ptr_ == NULL because C++ does that for us. 238 // We don't need to test ptr_ == NULL because C++ does that for us.
178 ~scoped_array() { 239 ~scoped_array() {
179 enum { type_must_be_complete = sizeof(C) }; 240 enum { type_must_be_complete = sizeof(C) };
180 delete[] array_; 241 delete[] array_;
181 } 242 }
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
222 // The return value is the current pointer held by this object. 283 // The return value is the current pointer held by this object.
223 // If this object holds a NULL pointer, the return value is NULL. 284 // If this object holds a NULL pointer, the return value is NULL.
224 // After this operation, this object will hold a NULL pointer, 285 // After this operation, this object will hold a NULL pointer,
225 // and will not own the object any more. 286 // and will not own the object any more.
226 C* release() WARN_UNUSED_RESULT { 287 C* release() WARN_UNUSED_RESULT {
227 C* retVal = array_; 288 C* retVal = array_;
228 array_ = NULL; 289 array_ = NULL;
229 return retVal; 290 return retVal;
230 } 291 }
231 292
293 CPP_03_MOVE_EMULATION(scoped_array, array_);
294
232 private: 295 private:
233 C* array_; 296 C* array_;
234 297
235 // Forbid comparison of different scoped_array types. 298 // Forbid comparison of different scoped_array types.
236 template <class C2> bool operator==(scoped_array<C2> const& p2) const; 299 template <class C2> bool operator==(scoped_array<C2> const& p2) const;
237 template <class C2> bool operator!=(scoped_array<C2> const& p2) const; 300 template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
238 301
239 // Disallow evil constructors 302 // Disallow evil constructors. Note that MUST NOT take a const& because we
240 scoped_array(const scoped_array&); 303 // are implementing move semantics. See the CPP_03_MOVE_EMULATION macro.
241 void operator=(const scoped_array&); 304 scoped_array(scoped_array&);
305 void operator=(scoped_array&);
242 }; 306 };
243 307
244 // Free functions 308 // Free functions
245 template <class C> 309 template <class C>
246 void swap(scoped_array<C>& p1, scoped_array<C>& p2) { 310 void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
247 p1.swap(p2); 311 p1.swap(p2);
248 } 312 }
249 313
250 template <class C> 314 template <class C>
251 bool operator==(C* p1, const scoped_array<C>& p2) { 315 bool operator==(C* p1, const scoped_array<C>& p2) {
(...skipping 88 matching lines...) Expand 10 before | Expand all | Expand 10 after
340 // The return value is the current pointer held by this object. 404 // The return value is the current pointer held by this object.
341 // If this object holds a NULL pointer, the return value is NULL. 405 // If this object holds a NULL pointer, the return value is NULL.
342 // After this operation, this object will hold a NULL pointer, 406 // After this operation, this object will hold a NULL pointer,
343 // and will not own the object any more. 407 // and will not own the object any more.
344 C* release() WARN_UNUSED_RESULT { 408 C* release() WARN_UNUSED_RESULT {
345 C* tmp = ptr_; 409 C* tmp = ptr_;
346 ptr_ = NULL; 410 ptr_ = NULL;
347 return tmp; 411 return tmp;
348 } 412 }
349 413
414 CPP_03_MOVE_EMULATION(scoped_ptr_malloc, ptr_);
415
350 private: 416 private:
351 C* ptr_; 417 C* ptr_;
352 418
353 // no reason to use these: each scoped_ptr_malloc should have its own object 419 // no reason to use these: each scoped_ptr_malloc should have its own object
354 template <class C2, class GP> 420 template <class C2, class GP>
355 bool operator==(scoped_ptr_malloc<C2, GP> const& p) const; 421 bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
356 template <class C2, class GP> 422 template <class C2, class GP>
357 bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const; 423 bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
358 424
359 // Disallow evil constructors 425 // Disallow evil constructors. Note that MUST NOT take a const& because we
360 scoped_ptr_malloc(const scoped_ptr_malloc&); 426 // are implementing move semantics. See the CPP_03_MOVE_EMULATION macro.
361 void operator=(const scoped_ptr_malloc&); 427 scoped_ptr_malloc(scoped_ptr_malloc&);
428 void operator=(scoped_ptr_malloc&);
362 }; 429 };
363 430
431 #undef CPP_03_MOVE_EMULATION
432
364 template<class C, class FP> inline 433 template<class C, class FP> inline
365 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) { 434 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
366 a.swap(b); 435 a.swap(b);
367 } 436 }
368 437
369 template<class C, class FP> inline 438 template<class C, class FP> inline
370 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) { 439 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
371 return p == b.get(); 440 return p == b.get();
372 } 441 }
373 442
374 template<class C, class FP> inline 443 template<class C, class FP> inline
375 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) { 444 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
376 return p != b.get(); 445 return p != b.get();
377 } 446 }
378 447
379 #endif // BASE_MEMORY_SCOPED_PTR_H_ 448 #endif // BASE_MEMORY_SCOPED_PTR_H_
OLDNEW
« no previous file with comments | « base/callback_internal.h ('k') | base/memory/scoped_ptr_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698