| Index: runtime/third_party/double-conversion/src/strtod.cc
|
| diff --git a/runtime/third_party/double-conversion/src/strtod.cc b/runtime/third_party/double-conversion/src/strtod.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..5055788b420e346f0bd197d6a10ef1462dedacaf
|
| --- /dev/null
|
| +++ b/runtime/third_party/double-conversion/src/strtod.cc
|
| @@ -0,0 +1,441 @@
|
| +// Copyright 2010 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#include <stdarg.h>
|
| +#include <limits.h>
|
| +
|
| +#include "strtod.h"
|
| +#include "bignum.h"
|
| +#include "cached-powers.h"
|
| +#include "double.h"
|
| +
|
| +namespace double_conversion {
|
| +
|
| +// 2^53 = 9007199254740992.
|
| +// Any integer with at most 15 decimal digits will hence fit into a double
|
| +// (which has a 53bit significand) without loss of precision.
|
| +static const int kMaxExactDoubleIntegerDecimalDigits = 15;
|
| +// 2^64 = 18446744073709551616 > 10^19
|
| +static const int kMaxUint64DecimalDigits = 19;
|
| +
|
| +// Max double: 1.7976931348623157 x 10^308
|
| +// Min non-zero double: 4.9406564584124654 x 10^-324
|
| +// Any x >= 10^309 is interpreted as +infinity.
|
| +// Any x <= 10^-324 is interpreted as 0.
|
| +// Note that 2.5e-324 (despite being smaller than the min double) will be read
|
| +// as non-zero (equal to the min non-zero double).
|
| +static const int kMaxDecimalPower = 309;
|
| +static const int kMinDecimalPower = -324;
|
| +
|
| +// 2^64 = 18446744073709551616
|
| +static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
|
| +
|
| +
|
| +static const double exact_powers_of_ten[] = {
|
| + 1.0, // 10^0
|
| + 10.0,
|
| + 100.0,
|
| + 1000.0,
|
| + 10000.0,
|
| + 100000.0,
|
| + 1000000.0,
|
| + 10000000.0,
|
| + 100000000.0,
|
| + 1000000000.0,
|
| + 10000000000.0, // 10^10
|
| + 100000000000.0,
|
| + 1000000000000.0,
|
| + 10000000000000.0,
|
| + 100000000000000.0,
|
| + 1000000000000000.0,
|
| + 10000000000000000.0,
|
| + 100000000000000000.0,
|
| + 1000000000000000000.0,
|
| + 10000000000000000000.0,
|
| + 100000000000000000000.0, // 10^20
|
| + 1000000000000000000000.0,
|
| + // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
|
| + 10000000000000000000000.0
|
| +};
|
| +static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
|
| +
|
| +// Maximum number of significant digits in the decimal representation.
|
| +// In fact the value is 772 (see conversions.cc), but to give us some margin
|
| +// we round up to 780.
|
| +static const int kMaxSignificantDecimalDigits = 780;
|
| +
|
| +static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
|
| + for (int i = 0; i < buffer.length(); i++) {
|
| + if (buffer[i] != '0') {
|
| + return buffer.SubVector(i, buffer.length());
|
| + }
|
| + }
|
| + return Vector<const char>(buffer.start(), 0);
|
| +}
|
| +
|
| +
|
| +static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
|
| + for (int i = buffer.length() - 1; i >= 0; --i) {
|
| + if (buffer[i] != '0') {
|
| + return buffer.SubVector(0, i + 1);
|
| + }
|
| + }
|
| + return Vector<const char>(buffer.start(), 0);
|
| +}
|
| +
|
| +
|
| +static void TrimToMaxSignificantDigits(Vector<const char> buffer,
|
| + int exponent,
|
| + char* significant_buffer,
|
| + int* significant_exponent) {
|
| + for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
|
| + significant_buffer[i] = buffer[i];
|
| + }
|
| + // The input buffer has been trimmed. Therefore the last digit must be
|
| + // different from '0'.
|
| + ASSERT(buffer[buffer.length() - 1] != '0');
|
| + // Set the last digit to be non-zero. This is sufficient to guarantee
|
| + // correct rounding.
|
| + significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
|
| + *significant_exponent =
|
| + exponent + (buffer.length() - kMaxSignificantDecimalDigits);
|
| +}
|
| +
|
| +// Reads digits from the buffer and converts them to a uint64.
|
| +// Reads in as many digits as fit into a uint64.
|
| +// When the string starts with "1844674407370955161" no further digit is read.
|
| +// Since 2^64 = 18446744073709551616 it would still be possible read another
|
| +// digit if it was less or equal than 6, but this would complicate the code.
|
| +static uint64_t ReadUint64(Vector<const char> buffer,
|
| + int* number_of_read_digits) {
|
| + uint64_t result = 0;
|
| + int i = 0;
|
| + while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
|
| + int digit = buffer[i++] - '0';
|
| + ASSERT(0 <= digit && digit <= 9);
|
| + result = 10 * result + digit;
|
| + }
|
| + *number_of_read_digits = i;
|
| + return result;
|
| +}
|
| +
|
| +
|
| +// Reads a DiyFp from the buffer.
|
| +// The returned DiyFp is not necessarily normalized.
|
| +// If remaining_decimals is zero then the returned DiyFp is accurate.
|
| +// Otherwise it has been rounded and has error of at most 1/2 ulp.
|
| +static void ReadDiyFp(Vector<const char> buffer,
|
| + DiyFp* result,
|
| + int* remaining_decimals) {
|
| + int read_digits;
|
| + uint64_t significand = ReadUint64(buffer, &read_digits);
|
| + if (buffer.length() == read_digits) {
|
| + *result = DiyFp(significand, 0);
|
| + *remaining_decimals = 0;
|
| + } else {
|
| + // Round the significand.
|
| + if (buffer[read_digits] >= '5') {
|
| + significand++;
|
| + }
|
| + // Compute the binary exponent.
|
| + int exponent = 0;
|
| + *result = DiyFp(significand, exponent);
|
| + *remaining_decimals = buffer.length() - read_digits;
|
| + }
|
| +}
|
| +
|
| +
|
| +static bool DoubleStrtod(Vector<const char> trimmed,
|
| + int exponent,
|
| + double* result) {
|
| +#if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
|
| + // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
|
| + // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
|
| + // result is not accurate.
|
| + // We know that Windows32 uses 64 bits and is therefore accurate.
|
| + // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
|
| + // the same problem.
|
| + return false;
|
| +#endif
|
| + if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
|
| + int read_digits;
|
| + // The trimmed input fits into a double.
|
| + // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
|
| + // can compute the result-double simply by multiplying (resp. dividing) the
|
| + // two numbers.
|
| + // This is possible because IEEE guarantees that floating-point operations
|
| + // return the best possible approximation.
|
| + if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
|
| + // 10^-exponent fits into a double.
|
| + *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
| + ASSERT(read_digits == trimmed.length());
|
| + *result /= exact_powers_of_ten[-exponent];
|
| + return true;
|
| + }
|
| + if (0 <= exponent && exponent < kExactPowersOfTenSize) {
|
| + // 10^exponent fits into a double.
|
| + *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
| + ASSERT(read_digits == trimmed.length());
|
| + *result *= exact_powers_of_ten[exponent];
|
| + return true;
|
| + }
|
| + int remaining_digits =
|
| + kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
|
| + if ((0 <= exponent) &&
|
| + (exponent - remaining_digits < kExactPowersOfTenSize)) {
|
| + // The trimmed string was short and we can multiply it with
|
| + // 10^remaining_digits. As a result the remaining exponent now fits
|
| + // into a double too.
|
| + *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
| + ASSERT(read_digits == trimmed.length());
|
| + *result *= exact_powers_of_ten[remaining_digits];
|
| + *result *= exact_powers_of_ten[exponent - remaining_digits];
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +// Returns 10^exponent as an exact DiyFp.
|
| +// The given exponent must be in the range [1; kDecimalExponentDistance[.
|
| +static DiyFp AdjustmentPowerOfTen(int exponent) {
|
| + ASSERT(0 < exponent);
|
| + ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
|
| + // Simply hardcode the remaining powers for the given decimal exponent
|
| + // distance.
|
| + ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
|
| + switch (exponent) {
|
| + case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
|
| + case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
|
| + case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
|
| + case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
|
| + case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
|
| + case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
|
| + case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
|
| + default:
|
| + UNREACHABLE();
|
| + return DiyFp(0, 0);
|
| + }
|
| +}
|
| +
|
| +
|
| +// If the function returns true then the result is the correct double.
|
| +// Otherwise it is either the correct double or the double that is just below
|
| +// the correct double.
|
| +static bool DiyFpStrtod(Vector<const char> buffer,
|
| + int exponent,
|
| + double* result) {
|
| + DiyFp input;
|
| + int remaining_decimals;
|
| + ReadDiyFp(buffer, &input, &remaining_decimals);
|
| + // Since we may have dropped some digits the input is not accurate.
|
| + // If remaining_decimals is different than 0 than the error is at most
|
| + // .5 ulp (unit in the last place).
|
| + // We don't want to deal with fractions and therefore keep a common
|
| + // denominator.
|
| + const int kDenominatorLog = 3;
|
| + const int kDenominator = 1 << kDenominatorLog;
|
| + // Move the remaining decimals into the exponent.
|
| + exponent += remaining_decimals;
|
| + int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
|
| +
|
| + int old_e = input.e();
|
| + input.Normalize();
|
| + error <<= old_e - input.e();
|
| +
|
| + ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
|
| + if (exponent < PowersOfTenCache::kMinDecimalExponent) {
|
| + *result = 0.0;
|
| + return true;
|
| + }
|
| + DiyFp cached_power;
|
| + int cached_decimal_exponent;
|
| + PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
|
| + &cached_power,
|
| + &cached_decimal_exponent);
|
| +
|
| + if (cached_decimal_exponent != exponent) {
|
| + int adjustment_exponent = exponent - cached_decimal_exponent;
|
| + DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
|
| + input.Multiply(adjustment_power);
|
| + if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
|
| + // The product of input with the adjustment power fits into a 64 bit
|
| + // integer.
|
| + ASSERT(DiyFp::kSignificandSize == 64);
|
| + } else {
|
| + // The adjustment power is exact. There is hence only an error of 0.5.
|
| + error += kDenominator / 2;
|
| + }
|
| + }
|
| +
|
| + input.Multiply(cached_power);
|
| + // The error introduced by a multiplication of a*b equals
|
| + // error_a + error_b + error_a*error_b/2^64 + 0.5
|
| + // Substituting a with 'input' and b with 'cached_power' we have
|
| + // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
|
| + // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
|
| + int error_b = kDenominator / 2;
|
| + int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
|
| + int fixed_error = kDenominator / 2;
|
| + error += error_b + error_ab + fixed_error;
|
| +
|
| + old_e = input.e();
|
| + input.Normalize();
|
| + error <<= old_e - input.e();
|
| +
|
| + // See if the double's significand changes if we add/subtract the error.
|
| + int order_of_magnitude = DiyFp::kSignificandSize + input.e();
|
| + int effective_significand_size =
|
| + Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
|
| + int precision_digits_count =
|
| + DiyFp::kSignificandSize - effective_significand_size;
|
| + if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
|
| + // This can only happen for very small denormals. In this case the
|
| + // half-way multiplied by the denominator exceeds the range of an uint64.
|
| + // Simply shift everything to the right.
|
| + int shift_amount = (precision_digits_count + kDenominatorLog) -
|
| + DiyFp::kSignificandSize + 1;
|
| + input.set_f(input.f() >> shift_amount);
|
| + input.set_e(input.e() + shift_amount);
|
| + // We add 1 for the lost precision of error, and kDenominator for
|
| + // the lost precision of input.f().
|
| + error = (error >> shift_amount) + 1 + kDenominator;
|
| + precision_digits_count -= shift_amount;
|
| + }
|
| + // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
|
| + ASSERT(DiyFp::kSignificandSize == 64);
|
| + ASSERT(precision_digits_count < 64);
|
| + uint64_t one64 = 1;
|
| + uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
|
| + uint64_t precision_bits = input.f() & precision_bits_mask;
|
| + uint64_t half_way = one64 << (precision_digits_count - 1);
|
| + precision_bits *= kDenominator;
|
| + half_way *= kDenominator;
|
| + DiyFp rounded_input(input.f() >> precision_digits_count,
|
| + input.e() + precision_digits_count);
|
| + if (precision_bits >= half_way + error) {
|
| + rounded_input.set_f(rounded_input.f() + 1);
|
| + }
|
| + // If the last_bits are too close to the half-way case than we are too
|
| + // inaccurate and round down. In this case we return false so that we can
|
| + // fall back to a more precise algorithm.
|
| +
|
| + *result = Double(rounded_input).value();
|
| + if (half_way - error < precision_bits && precision_bits < half_way + error) {
|
| + // Too imprecise. The caller will have to fall back to a slower version.
|
| + // However the returned number is guaranteed to be either the correct
|
| + // double, or the next-lower double.
|
| + return false;
|
| + } else {
|
| + return true;
|
| + }
|
| +}
|
| +
|
| +
|
| +// Returns the correct double for the buffer*10^exponent.
|
| +// The variable guess should be a close guess that is either the correct double
|
| +// or its lower neighbor (the nearest double less than the correct one).
|
| +// Preconditions:
|
| +// buffer.length() + exponent <= kMaxDecimalPower + 1
|
| +// buffer.length() + exponent > kMinDecimalPower
|
| +// buffer.length() <= kMaxDecimalSignificantDigits
|
| +static double BignumStrtod(Vector<const char> buffer,
|
| + int exponent,
|
| + double guess) {
|
| + if (guess == Double::Infinity()) {
|
| + return guess;
|
| + }
|
| +
|
| + DiyFp upper_boundary = Double(guess).UpperBoundary();
|
| +
|
| + ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
|
| + ASSERT(buffer.length() + exponent > kMinDecimalPower);
|
| + ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
|
| + // Make sure that the Bignum will be able to hold all our numbers.
|
| + // Our Bignum implementation has a separate field for exponents. Shifts will
|
| + // consume at most one bigit (< 64 bits).
|
| + // ln(10) == 3.3219...
|
| + ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
|
| + Bignum input;
|
| + Bignum boundary;
|
| + input.AssignDecimalString(buffer);
|
| + boundary.AssignUInt64(upper_boundary.f());
|
| + if (exponent >= 0) {
|
| + input.MultiplyByPowerOfTen(exponent);
|
| + } else {
|
| + boundary.MultiplyByPowerOfTen(-exponent);
|
| + }
|
| + if (upper_boundary.e() > 0) {
|
| + boundary.ShiftLeft(upper_boundary.e());
|
| + } else {
|
| + input.ShiftLeft(-upper_boundary.e());
|
| + }
|
| + int comparison = Bignum::Compare(input, boundary);
|
| + if (comparison < 0) {
|
| + return guess;
|
| + } else if (comparison > 0) {
|
| + return Double(guess).NextDouble();
|
| + } else if ((Double(guess).Significand() & 1) == 0) {
|
| + // Round towards even.
|
| + return guess;
|
| + } else {
|
| + return Double(guess).NextDouble();
|
| + }
|
| +}
|
| +
|
| +
|
| +double Strtod(Vector<const char> buffer, int exponent) {
|
| + Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
|
| + Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
|
| + exponent += left_trimmed.length() - trimmed.length();
|
| + if (trimmed.length() == 0) return 0.0;
|
| + if (trimmed.length() > kMaxSignificantDecimalDigits) {
|
| + char significant_buffer[kMaxSignificantDecimalDigits];
|
| + int significant_exponent;
|
| + TrimToMaxSignificantDigits(trimmed, exponent,
|
| + significant_buffer, &significant_exponent);
|
| + return Strtod(Vector<const char>(significant_buffer,
|
| + kMaxSignificantDecimalDigits),
|
| + significant_exponent);
|
| + }
|
| + if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
|
| + return Double::Infinity();
|
| + }
|
| + if (exponent + trimmed.length() <= kMinDecimalPower) {
|
| + return 0.0;
|
| + }
|
| +
|
| + double guess;
|
| + if (DoubleStrtod(trimmed, exponent, &guess) ||
|
| + DiyFpStrtod(trimmed, exponent, &guess)) {
|
| + return guess;
|
| + }
|
| + return BignumStrtod(trimmed, exponent, guess);
|
| +}
|
| +
|
| +} // namespace double_conversion
|
|
|