Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(933)

Side by Side Diff: runtime/third_party/double-conversion/src/strtod.cc

Issue 8632010: double-conversion drop. (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: Updated to latest double-conversion version. Created 9 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <stdarg.h>
29 #include <limits.h>
30
31 #include "strtod.h"
32 #include "bignum.h"
33 #include "cached-powers.h"
34 #include "double.h"
35
36 namespace double_conversion {
37
38 // 2^53 = 9007199254740992.
39 // Any integer with at most 15 decimal digits will hence fit into a double
40 // (which has a 53bit significand) without loss of precision.
41 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
42 // 2^64 = 18446744073709551616 > 10^19
43 static const int kMaxUint64DecimalDigits = 19;
44
45 // Max double: 1.7976931348623157 x 10^308
46 // Min non-zero double: 4.9406564584124654 x 10^-324
47 // Any x >= 10^309 is interpreted as +infinity.
48 // Any x <= 10^-324 is interpreted as 0.
49 // Note that 2.5e-324 (despite being smaller than the min double) will be read
50 // as non-zero (equal to the min non-zero double).
51 static const int kMaxDecimalPower = 309;
52 static const int kMinDecimalPower = -324;
53
54 // 2^64 = 18446744073709551616
55 static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
56
57
58 static const double exact_powers_of_ten[] = {
59 1.0, // 10^0
60 10.0,
61 100.0,
62 1000.0,
63 10000.0,
64 100000.0,
65 1000000.0,
66 10000000.0,
67 100000000.0,
68 1000000000.0,
69 10000000000.0, // 10^10
70 100000000000.0,
71 1000000000000.0,
72 10000000000000.0,
73 100000000000000.0,
74 1000000000000000.0,
75 10000000000000000.0,
76 100000000000000000.0,
77 1000000000000000000.0,
78 10000000000000000000.0,
79 100000000000000000000.0, // 10^20
80 1000000000000000000000.0,
81 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
82 10000000000000000000000.0
83 };
84 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
85
86 // Maximum number of significant digits in the decimal representation.
87 // In fact the value is 772 (see conversions.cc), but to give us some margin
88 // we round up to 780.
89 static const int kMaxSignificantDecimalDigits = 780;
90
91 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
92 for (int i = 0; i < buffer.length(); i++) {
93 if (buffer[i] != '0') {
94 return buffer.SubVector(i, buffer.length());
95 }
96 }
97 return Vector<const char>(buffer.start(), 0);
98 }
99
100
101 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
102 for (int i = buffer.length() - 1; i >= 0; --i) {
103 if (buffer[i] != '0') {
104 return buffer.SubVector(0, i + 1);
105 }
106 }
107 return Vector<const char>(buffer.start(), 0);
108 }
109
110
111 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
112 int exponent,
113 char* significant_buffer,
114 int* significant_exponent) {
115 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
116 significant_buffer[i] = buffer[i];
117 }
118 // The input buffer has been trimmed. Therefore the last digit must be
119 // different from '0'.
120 ASSERT(buffer[buffer.length() - 1] != '0');
121 // Set the last digit to be non-zero. This is sufficient to guarantee
122 // correct rounding.
123 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
124 *significant_exponent =
125 exponent + (buffer.length() - kMaxSignificantDecimalDigits);
126 }
127
128 // Reads digits from the buffer and converts them to a uint64.
129 // Reads in as many digits as fit into a uint64.
130 // When the string starts with "1844674407370955161" no further digit is read.
131 // Since 2^64 = 18446744073709551616 it would still be possible read another
132 // digit if it was less or equal than 6, but this would complicate the code.
133 static uint64_t ReadUint64(Vector<const char> buffer,
134 int* number_of_read_digits) {
135 uint64_t result = 0;
136 int i = 0;
137 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
138 int digit = buffer[i++] - '0';
139 ASSERT(0 <= digit && digit <= 9);
140 result = 10 * result + digit;
141 }
142 *number_of_read_digits = i;
143 return result;
144 }
145
146
147 // Reads a DiyFp from the buffer.
148 // The returned DiyFp is not necessarily normalized.
149 // If remaining_decimals is zero then the returned DiyFp is accurate.
150 // Otherwise it has been rounded and has error of at most 1/2 ulp.
151 static void ReadDiyFp(Vector<const char> buffer,
152 DiyFp* result,
153 int* remaining_decimals) {
154 int read_digits;
155 uint64_t significand = ReadUint64(buffer, &read_digits);
156 if (buffer.length() == read_digits) {
157 *result = DiyFp(significand, 0);
158 *remaining_decimals = 0;
159 } else {
160 // Round the significand.
161 if (buffer[read_digits] >= '5') {
162 significand++;
163 }
164 // Compute the binary exponent.
165 int exponent = 0;
166 *result = DiyFp(significand, exponent);
167 *remaining_decimals = buffer.length() - read_digits;
168 }
169 }
170
171
172 static bool DoubleStrtod(Vector<const char> trimmed,
173 int exponent,
174 double* result) {
175 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
176 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
177 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
178 // result is not accurate.
179 // We know that Windows32 uses 64 bits and is therefore accurate.
180 // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
181 // the same problem.
182 return false;
183 #endif
184 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
185 int read_digits;
186 // The trimmed input fits into a double.
187 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
188 // can compute the result-double simply by multiplying (resp. dividing) the
189 // two numbers.
190 // This is possible because IEEE guarantees that floating-point operations
191 // return the best possible approximation.
192 if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
193 // 10^-exponent fits into a double.
194 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
195 ASSERT(read_digits == trimmed.length());
196 *result /= exact_powers_of_ten[-exponent];
197 return true;
198 }
199 if (0 <= exponent && exponent < kExactPowersOfTenSize) {
200 // 10^exponent fits into a double.
201 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
202 ASSERT(read_digits == trimmed.length());
203 *result *= exact_powers_of_ten[exponent];
204 return true;
205 }
206 int remaining_digits =
207 kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
208 if ((0 <= exponent) &&
209 (exponent - remaining_digits < kExactPowersOfTenSize)) {
210 // The trimmed string was short and we can multiply it with
211 // 10^remaining_digits. As a result the remaining exponent now fits
212 // into a double too.
213 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
214 ASSERT(read_digits == trimmed.length());
215 *result *= exact_powers_of_ten[remaining_digits];
216 *result *= exact_powers_of_ten[exponent - remaining_digits];
217 return true;
218 }
219 }
220 return false;
221 }
222
223
224 // Returns 10^exponent as an exact DiyFp.
225 // The given exponent must be in the range [1; kDecimalExponentDistance[.
226 static DiyFp AdjustmentPowerOfTen(int exponent) {
227 ASSERT(0 < exponent);
228 ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
229 // Simply hardcode the remaining powers for the given decimal exponent
230 // distance.
231 ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
232 switch (exponent) {
233 case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
234 case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
235 case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
236 case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
237 case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
238 case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
239 case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
240 default:
241 UNREACHABLE();
242 return DiyFp(0, 0);
243 }
244 }
245
246
247 // If the function returns true then the result is the correct double.
248 // Otherwise it is either the correct double or the double that is just below
249 // the correct double.
250 static bool DiyFpStrtod(Vector<const char> buffer,
251 int exponent,
252 double* result) {
253 DiyFp input;
254 int remaining_decimals;
255 ReadDiyFp(buffer, &input, &remaining_decimals);
256 // Since we may have dropped some digits the input is not accurate.
257 // If remaining_decimals is different than 0 than the error is at most
258 // .5 ulp (unit in the last place).
259 // We don't want to deal with fractions and therefore keep a common
260 // denominator.
261 const int kDenominatorLog = 3;
262 const int kDenominator = 1 << kDenominatorLog;
263 // Move the remaining decimals into the exponent.
264 exponent += remaining_decimals;
265 int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
266
267 int old_e = input.e();
268 input.Normalize();
269 error <<= old_e - input.e();
270
271 ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
272 if (exponent < PowersOfTenCache::kMinDecimalExponent) {
273 *result = 0.0;
274 return true;
275 }
276 DiyFp cached_power;
277 int cached_decimal_exponent;
278 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
279 &cached_power,
280 &cached_decimal_exponent);
281
282 if (cached_decimal_exponent != exponent) {
283 int adjustment_exponent = exponent - cached_decimal_exponent;
284 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
285 input.Multiply(adjustment_power);
286 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
287 // The product of input with the adjustment power fits into a 64 bit
288 // integer.
289 ASSERT(DiyFp::kSignificandSize == 64);
290 } else {
291 // The adjustment power is exact. There is hence only an error of 0.5.
292 error += kDenominator / 2;
293 }
294 }
295
296 input.Multiply(cached_power);
297 // The error introduced by a multiplication of a*b equals
298 // error_a + error_b + error_a*error_b/2^64 + 0.5
299 // Substituting a with 'input' and b with 'cached_power' we have
300 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
301 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
302 int error_b = kDenominator / 2;
303 int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
304 int fixed_error = kDenominator / 2;
305 error += error_b + error_ab + fixed_error;
306
307 old_e = input.e();
308 input.Normalize();
309 error <<= old_e - input.e();
310
311 // See if the double's significand changes if we add/subtract the error.
312 int order_of_magnitude = DiyFp::kSignificandSize + input.e();
313 int effective_significand_size =
314 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
315 int precision_digits_count =
316 DiyFp::kSignificandSize - effective_significand_size;
317 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
318 // This can only happen for very small denormals. In this case the
319 // half-way multiplied by the denominator exceeds the range of an uint64.
320 // Simply shift everything to the right.
321 int shift_amount = (precision_digits_count + kDenominatorLog) -
322 DiyFp::kSignificandSize + 1;
323 input.set_f(input.f() >> shift_amount);
324 input.set_e(input.e() + shift_amount);
325 // We add 1 for the lost precision of error, and kDenominator for
326 // the lost precision of input.f().
327 error = (error >> shift_amount) + 1 + kDenominator;
328 precision_digits_count -= shift_amount;
329 }
330 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
331 ASSERT(DiyFp::kSignificandSize == 64);
332 ASSERT(precision_digits_count < 64);
333 uint64_t one64 = 1;
334 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
335 uint64_t precision_bits = input.f() & precision_bits_mask;
336 uint64_t half_way = one64 << (precision_digits_count - 1);
337 precision_bits *= kDenominator;
338 half_way *= kDenominator;
339 DiyFp rounded_input(input.f() >> precision_digits_count,
340 input.e() + precision_digits_count);
341 if (precision_bits >= half_way + error) {
342 rounded_input.set_f(rounded_input.f() + 1);
343 }
344 // If the last_bits are too close to the half-way case than we are too
345 // inaccurate and round down. In this case we return false so that we can
346 // fall back to a more precise algorithm.
347
348 *result = Double(rounded_input).value();
349 if (half_way - error < precision_bits && precision_bits < half_way + error) {
350 // Too imprecise. The caller will have to fall back to a slower version.
351 // However the returned number is guaranteed to be either the correct
352 // double, or the next-lower double.
353 return false;
354 } else {
355 return true;
356 }
357 }
358
359
360 // Returns the correct double for the buffer*10^exponent.
361 // The variable guess should be a close guess that is either the correct double
362 // or its lower neighbor (the nearest double less than the correct one).
363 // Preconditions:
364 // buffer.length() + exponent <= kMaxDecimalPower + 1
365 // buffer.length() + exponent > kMinDecimalPower
366 // buffer.length() <= kMaxDecimalSignificantDigits
367 static double BignumStrtod(Vector<const char> buffer,
368 int exponent,
369 double guess) {
370 if (guess == Double::Infinity()) {
371 return guess;
372 }
373
374 DiyFp upper_boundary = Double(guess).UpperBoundary();
375
376 ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
377 ASSERT(buffer.length() + exponent > kMinDecimalPower);
378 ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
379 // Make sure that the Bignum will be able to hold all our numbers.
380 // Our Bignum implementation has a separate field for exponents. Shifts will
381 // consume at most one bigit (< 64 bits).
382 // ln(10) == 3.3219...
383 ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
384 Bignum input;
385 Bignum boundary;
386 input.AssignDecimalString(buffer);
387 boundary.AssignUInt64(upper_boundary.f());
388 if (exponent >= 0) {
389 input.MultiplyByPowerOfTen(exponent);
390 } else {
391 boundary.MultiplyByPowerOfTen(-exponent);
392 }
393 if (upper_boundary.e() > 0) {
394 boundary.ShiftLeft(upper_boundary.e());
395 } else {
396 input.ShiftLeft(-upper_boundary.e());
397 }
398 int comparison = Bignum::Compare(input, boundary);
399 if (comparison < 0) {
400 return guess;
401 } else if (comparison > 0) {
402 return Double(guess).NextDouble();
403 } else if ((Double(guess).Significand() & 1) == 0) {
404 // Round towards even.
405 return guess;
406 } else {
407 return Double(guess).NextDouble();
408 }
409 }
410
411
412 double Strtod(Vector<const char> buffer, int exponent) {
413 Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
414 Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
415 exponent += left_trimmed.length() - trimmed.length();
416 if (trimmed.length() == 0) return 0.0;
417 if (trimmed.length() > kMaxSignificantDecimalDigits) {
418 char significant_buffer[kMaxSignificantDecimalDigits];
419 int significant_exponent;
420 TrimToMaxSignificantDigits(trimmed, exponent,
421 significant_buffer, &significant_exponent);
422 return Strtod(Vector<const char>(significant_buffer,
423 kMaxSignificantDecimalDigits),
424 significant_exponent);
425 }
426 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
427 return Double::Infinity();
428 }
429 if (exponent + trimmed.length() <= kMinDecimalPower) {
430 return 0.0;
431 }
432
433 double guess;
434 if (DoubleStrtod(trimmed, exponent, &guess) ||
435 DiyFpStrtod(trimmed, exponent, &guess)) {
436 return guess;
437 }
438 return BignumStrtod(trimmed, exponent, guess);
439 }
440
441 } // namespace double_conversion
OLDNEW
« no previous file with comments | « runtime/third_party/double-conversion/src/strtod.h ('k') | runtime/third_party/double-conversion/src/utils.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698