| Index: runtime/third_party/double-conversion/src/double-conversion.cc
|
| diff --git a/runtime/third_party/double-conversion/src/double-conversion.cc b/runtime/third_party/double-conversion/src/double-conversion.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..944ddf798eaef829742ff94e6d6f09731913453f
|
| --- /dev/null
|
| +++ b/runtime/third_party/double-conversion/src/double-conversion.cc
|
| @@ -0,0 +1,869 @@
|
| +// Copyright 2010 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#include <limits.h>
|
| +#include <math.h>
|
| +
|
| +#include "double-conversion.h"
|
| +
|
| +#include "bignum-dtoa.h"
|
| +#include "double.h"
|
| +#include "fast-dtoa.h"
|
| +#include "fixed-dtoa.h"
|
| +#include "strtod.h"
|
| +#include "utils.h"
|
| +
|
| +namespace double_conversion {
|
| +
|
| +const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() {
|
| + int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN;
|
| + static DoubleToStringConverter converter(flags,
|
| + "Infinity",
|
| + "NaN",
|
| + 'e',
|
| + -6, 21,
|
| + 6, 0);
|
| + return converter;
|
| +}
|
| +
|
| +
|
| +bool DoubleToStringConverter::HandleSpecialValues(
|
| + double value,
|
| + StringBuilder* result_builder) const {
|
| + Double double_inspect(value);
|
| + if (double_inspect.IsInfinite()) {
|
| + if (infinity_symbol_ == NULL) return false;
|
| + if (value < 0) {
|
| + result_builder->AddCharacter('-');
|
| + }
|
| + result_builder->AddString(infinity_symbol_);
|
| + return true;
|
| + }
|
| + if (double_inspect.IsNan()) {
|
| + if (nan_symbol_ == NULL) return false;
|
| + result_builder->AddString(nan_symbol_);
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +void DoubleToStringConverter::CreateExponentialRepresentation(
|
| + const char* decimal_digits,
|
| + int length,
|
| + int exponent,
|
| + StringBuilder* result_builder) const {
|
| + ASSERT(length != 0);
|
| + result_builder->AddCharacter(decimal_digits[0]);
|
| + if (length != 1) {
|
| + result_builder->AddCharacter('.');
|
| + result_builder->AddSubstring(&decimal_digits[1], length-1);
|
| + }
|
| + result_builder->AddCharacter(exponent_character_);
|
| + if (exponent < 0) {
|
| + result_builder->AddCharacter('-');
|
| + exponent = -exponent;
|
| + } else {
|
| + if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) {
|
| + result_builder->AddCharacter('+');
|
| + }
|
| + }
|
| + if (exponent == 0) {
|
| + result_builder->AddCharacter('0');
|
| + return;
|
| + }
|
| + ASSERT(exponent < 1e4);
|
| + const int kMaxExponentLength = 5;
|
| + char buffer[kMaxExponentLength];
|
| + int first_char_pos = kMaxExponentLength;
|
| + while (exponent > 0) {
|
| + buffer[--first_char_pos] = '0' + (exponent % 10);
|
| + exponent /= 10;
|
| + }
|
| + result_builder->AddSubstring(&buffer[first_char_pos],
|
| + kMaxExponentLength - first_char_pos);
|
| +}
|
| +
|
| +
|
| +void DoubleToStringConverter::CreateDecimalRepresentation(
|
| + const char* decimal_digits,
|
| + int length,
|
| + int decimal_point,
|
| + int digits_after_point,
|
| + StringBuilder* result_builder) const {
|
| + // Create a representation that is padded with zeros if needed.
|
| + if (decimal_point <= 0) {
|
| + // "0.00000decimal_rep".
|
| + result_builder->AddCharacter('0');
|
| + if (digits_after_point > 0) {
|
| + result_builder->AddCharacter('.');
|
| + result_builder->AddPadding('0', -decimal_point);
|
| + ASSERT(length <= digits_after_point - (-decimal_point));
|
| + result_builder->AddSubstring(decimal_digits, length);
|
| + int remaining_digits = digits_after_point - (-decimal_point) - length;
|
| + result_builder->AddPadding('0', remaining_digits);
|
| + }
|
| + } else if (decimal_point >= length) {
|
| + // "decimal_rep0000.00000" or "decimal_rep.0000"
|
| + result_builder->AddSubstring(decimal_digits, length);
|
| + result_builder->AddPadding('0', decimal_point - length);
|
| + if (digits_after_point > 0) {
|
| + result_builder->AddCharacter('.');
|
| + result_builder->AddPadding('0', digits_after_point);
|
| + }
|
| + } else {
|
| + // "decima.l_rep000"
|
| + ASSERT(digits_after_point > 0);
|
| + result_builder->AddSubstring(decimal_digits, decimal_point);
|
| + result_builder->AddCharacter('.');
|
| + ASSERT(length - decimal_point <= digits_after_point);
|
| + result_builder->AddSubstring(&decimal_digits[decimal_point],
|
| + length - decimal_point);
|
| + int remaining_digits = digits_after_point - (length - decimal_point);
|
| + result_builder->AddPadding('0', remaining_digits);
|
| + }
|
| + if (digits_after_point == 0) {
|
| + if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) {
|
| + result_builder->AddCharacter('.');
|
| + }
|
| + if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) {
|
| + result_builder->AddCharacter('0');
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +bool DoubleToStringConverter::ToShortest(double value,
|
| + StringBuilder* result_builder) const {
|
| + if (Double(value).IsSpecial()) {
|
| + return HandleSpecialValues(value, result_builder);
|
| + }
|
| +
|
| + int decimal_point;
|
| + bool sign;
|
| + const int kDecimalRepCapacity = kBase10MaximalLength + 1;
|
| + char decimal_rep[kDecimalRepCapacity];
|
| + int decimal_rep_length;
|
| +
|
| + DoubleToAscii(value, SHORTEST, 0, decimal_rep, kDecimalRepCapacity,
|
| + &sign, &decimal_rep_length, &decimal_point);
|
| +
|
| + bool unique_zero = (flags_ & UNIQUE_ZERO) != 0;
|
| + if (sign && (value != 0.0 || !unique_zero)) {
|
| + result_builder->AddCharacter('-');
|
| + }
|
| +
|
| + int exponent = decimal_point - 1;
|
| + if ((decimal_in_shortest_low_ <= exponent) &&
|
| + (exponent < decimal_in_shortest_high_)) {
|
| + CreateDecimalRepresentation(decimal_rep, decimal_rep_length,
|
| + decimal_point,
|
| + Max(0, decimal_rep_length - decimal_point),
|
| + result_builder);
|
| + } else {
|
| + CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent,
|
| + result_builder);
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +
|
| +bool DoubleToStringConverter::ToFixed(double value,
|
| + int requested_digits,
|
| + StringBuilder* result_builder) const {
|
| + ASSERT(kMaxFixedDigitsBeforePoint == 60);
|
| + const double kFirstNonFixed = 1e60;
|
| +
|
| + if (Double(value).IsSpecial()) {
|
| + return HandleSpecialValues(value, result_builder);
|
| + }
|
| +
|
| + if (requested_digits > kMaxFixedDigitsAfterPoint) return false;
|
| + if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false;
|
| +
|
| + // Find a sufficiently precise decimal representation of n.
|
| + int decimal_point;
|
| + bool sign;
|
| + // Add space for the '\0' byte.
|
| + const int kDecimalRepCapacity =
|
| + kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1;
|
| + char decimal_rep[kDecimalRepCapacity];
|
| + int decimal_rep_length;
|
| + DoubleToAscii(value, FIXED, requested_digits,
|
| + decimal_rep, kDecimalRepCapacity,
|
| + &sign, &decimal_rep_length, &decimal_point);
|
| +
|
| + bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
|
| + if (sign && (value != 0.0 || !unique_zero)) {
|
| + result_builder->AddCharacter('-');
|
| + }
|
| +
|
| + CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
|
| + requested_digits, result_builder);
|
| + return true;
|
| +}
|
| +
|
| +
|
| +bool DoubleToStringConverter::ToExponential(
|
| + double value,
|
| + int requested_digits,
|
| + StringBuilder* result_builder) const {
|
| + if (Double(value).IsSpecial()) {
|
| + return HandleSpecialValues(value, result_builder);
|
| + }
|
| +
|
| + if (requested_digits < -1) return false;
|
| + if (requested_digits > kMaxExponentialDigits) return false;
|
| +
|
| + int decimal_point;
|
| + bool sign;
|
| + // Add space for digit before the decimal point and the '\0' character.
|
| + const int kDecimalRepCapacity = kMaxExponentialDigits + 2;
|
| + ASSERT(kDecimalRepCapacity > kBase10MaximalLength);
|
| + char decimal_rep[kDecimalRepCapacity];
|
| + int decimal_rep_length;
|
| +
|
| + if (requested_digits == -1) {
|
| + DoubleToAscii(value, SHORTEST, 0,
|
| + decimal_rep, kDecimalRepCapacity,
|
| + &sign, &decimal_rep_length, &decimal_point);
|
| + } else {
|
| + DoubleToAscii(value, PRECISION, requested_digits + 1,
|
| + decimal_rep, kDecimalRepCapacity,
|
| + &sign, &decimal_rep_length, &decimal_point);
|
| + ASSERT(decimal_rep_length <= requested_digits + 1);
|
| +
|
| + for (int i = decimal_rep_length; i < requested_digits + 1; ++i) {
|
| + decimal_rep[i] = '0';
|
| + }
|
| + decimal_rep_length = requested_digits + 1;
|
| + }
|
| +
|
| + bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
|
| + if (sign && (value != 0.0 || !unique_zero)) {
|
| + result_builder->AddCharacter('-');
|
| + }
|
| +
|
| + int exponent = decimal_point - 1;
|
| + CreateExponentialRepresentation(decimal_rep,
|
| + decimal_rep_length,
|
| + exponent,
|
| + result_builder);
|
| + return true;
|
| +}
|
| +
|
| +
|
| +bool DoubleToStringConverter::ToPrecision(double value,
|
| + int precision,
|
| + StringBuilder* result_builder) const {
|
| + if (Double(value).IsSpecial()) {
|
| + return HandleSpecialValues(value, result_builder);
|
| + }
|
| +
|
| + if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) {
|
| + return false;
|
| + }
|
| +
|
| + // Find a sufficiently precise decimal representation of n.
|
| + int decimal_point;
|
| + bool sign;
|
| + // Add one for the terminating null character.
|
| + const int kDecimalRepCapacity = kMaxPrecisionDigits + 1;
|
| + char decimal_rep[kDecimalRepCapacity];
|
| + int decimal_rep_length;
|
| +
|
| + DoubleToAscii(value, PRECISION, precision,
|
| + decimal_rep, kDecimalRepCapacity,
|
| + &sign, &decimal_rep_length, &decimal_point);
|
| + ASSERT(decimal_rep_length <= precision);
|
| +
|
| + bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
|
| + if (sign && (value != 0.0 || !unique_zero)) {
|
| + result_builder->AddCharacter('-');
|
| + }
|
| +
|
| + // The exponent if we print the number as x.xxeyyy. That is with the
|
| + // decimal point after the first digit.
|
| + int exponent = decimal_point - 1;
|
| +
|
| + int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0;
|
| + if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) ||
|
| + (decimal_point - precision + extra_zero >
|
| + max_trailing_padding_zeroes_in_precision_mode_)) {
|
| + // Fill buffer to contain 'precision' digits.
|
| + // Usually the buffer is already at the correct length, but 'DoubleToAscii'
|
| + // is allowed to return less characters.
|
| + for (int i = decimal_rep_length; i < precision; ++i) {
|
| + decimal_rep[i] = '0';
|
| + }
|
| +
|
| + CreateExponentialRepresentation(decimal_rep,
|
| + precision,
|
| + exponent,
|
| + result_builder);
|
| + } else {
|
| + CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
|
| + Max(0, precision - decimal_point),
|
| + result_builder);
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +
|
| +static BignumDtoaMode DtoaToBignumDtoaMode(
|
| + DoubleToStringConverter::DtoaMode dtoa_mode) {
|
| + switch (dtoa_mode) {
|
| + case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST;
|
| + case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED;
|
| + case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION;
|
| + default:
|
| + UNREACHABLE();
|
| + return BIGNUM_DTOA_SHORTEST; // To silence compiler.
|
| + }
|
| +}
|
| +
|
| +
|
| +void DoubleToStringConverter::DoubleToAscii(double v,
|
| + DtoaMode mode,
|
| + int requested_digits,
|
| + char* buffer,
|
| + int buffer_length,
|
| + bool* sign,
|
| + int* length,
|
| + int* point) {
|
| + Vector<char> vector(buffer, buffer_length);
|
| + ASSERT(!Double(v).IsSpecial());
|
| + ASSERT(mode == SHORTEST || requested_digits >= 0);
|
| +
|
| + if (Double(v).Sign() < 0) {
|
| + *sign = true;
|
| + v = -v;
|
| + } else {
|
| + *sign = false;
|
| + }
|
| +
|
| + if (mode == PRECISION && requested_digits == 0) {
|
| + vector[0] = '\0';
|
| + *length = 0;
|
| + return;
|
| + }
|
| +
|
| + if (v == 0) {
|
| + vector[0] = '0';
|
| + vector[1] = '\0';
|
| + *length = 1;
|
| + *point = 1;
|
| + return;
|
| + }
|
| +
|
| + bool fast_worked;
|
| + switch (mode) {
|
| + case SHORTEST:
|
| + fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point);
|
| + break;
|
| + case FIXED:
|
| + fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point);
|
| + break;
|
| + case PRECISION:
|
| + fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits,
|
| + vector, length, point);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + fast_worked = false;
|
| + }
|
| + if (fast_worked) return;
|
| +
|
| + // If the fast dtoa didn't succeed use the slower bignum version.
|
| + BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode);
|
| + BignumDtoa(v, bignum_mode, requested_digits, vector, length, point);
|
| + vector[*length] = '\0';
|
| +}
|
| +
|
| +
|
| +// Consumes the given substring from the iterator.
|
| +// Returns false, if the substring does not match.
|
| +static bool ConsumeSubString(const char** current,
|
| + const char* end,
|
| + const char* substring) {
|
| + ASSERT(**current == *substring);
|
| + for (substring++; *substring != '\0'; substring++) {
|
| + ++*current;
|
| + if (*current == end || **current != *substring) return false;
|
| + }
|
| + ++*current;
|
| + return true;
|
| +}
|
| +
|
| +
|
| +// Maximum number of significant digits in decimal representation.
|
| +// The longest possible double in decimal representation is
|
| +// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
|
| +// (768 digits). If we parse a number whose first digits are equal to a
|
| +// mean of 2 adjacent doubles (that could have up to 769 digits) the result
|
| +// must be rounded to the bigger one unless the tail consists of zeros, so
|
| +// we don't need to preserve all the digits.
|
| +const int kMaxSignificantDigits = 772;
|
| +
|
| +
|
| +// Returns true if a nonspace found and false if the end has reached.
|
| +static inline bool AdvanceToNonspace(const char** current, const char* end) {
|
| + while (*current != end) {
|
| + if (**current != ' ') return true;
|
| + ++*current;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +static bool isDigit(int x, int radix) {
|
| + return (x >= '0' && x <= '9' && x < '0' + radix)
|
| + || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
|
| + || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
|
| +}
|
| +
|
| +
|
| +static double SignedZero(bool sign) {
|
| + return sign ? -0.0 : 0.0;
|
| +}
|
| +
|
| +
|
| +// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
|
| +template <int radix_log_2>
|
| +static double RadixStringToDouble(const char* current,
|
| + const char* end,
|
| + bool sign,
|
| + bool allow_trailing_junk,
|
| + double junk_string_value,
|
| + const char** trailing_pointer) {
|
| + ASSERT(current != end);
|
| +
|
| + // Skip leading 0s.
|
| + while (*current == '0') {
|
| + ++current;
|
| + if (current == end) {
|
| + *trailing_pointer = end;
|
| + return SignedZero(sign);
|
| + }
|
| + }
|
| +
|
| + int64_t number = 0;
|
| + int exponent = 0;
|
| + const int radix = (1 << radix_log_2);
|
| +
|
| + do {
|
| + int digit;
|
| + if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
|
| + digit = static_cast<char>(*current) - '0';
|
| + } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
|
| + digit = static_cast<char>(*current) - 'a' + 10;
|
| + } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
|
| + digit = static_cast<char>(*current) - 'A' + 10;
|
| + } else {
|
| + if (allow_trailing_junk || !AdvanceToNonspace(¤t, end)) {
|
| + break;
|
| + } else {
|
| + return junk_string_value;
|
| + }
|
| + }
|
| +
|
| + number = number * radix + digit;
|
| + int overflow = static_cast<int>(number >> 53);
|
| + if (overflow != 0) {
|
| + // Overflow occurred. Need to determine which direction to round the
|
| + // result.
|
| + int overflow_bits_count = 1;
|
| + while (overflow > 1) {
|
| + overflow_bits_count++;
|
| + overflow >>= 1;
|
| + }
|
| +
|
| + int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
|
| + int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
|
| + number >>= overflow_bits_count;
|
| + exponent = overflow_bits_count;
|
| +
|
| + bool zero_tail = true;
|
| + while (true) {
|
| + ++current;
|
| + if (current == end || !isDigit(*current, radix)) break;
|
| + zero_tail = zero_tail && *current == '0';
|
| + exponent += radix_log_2;
|
| + }
|
| +
|
| + if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
|
| + return junk_string_value;
|
| + }
|
| +
|
| + int middle_value = (1 << (overflow_bits_count - 1));
|
| + if (dropped_bits > middle_value) {
|
| + number++; // Rounding up.
|
| + } else if (dropped_bits == middle_value) {
|
| + // Rounding to even to consistency with decimals: half-way case rounds
|
| + // up if significant part is odd and down otherwise.
|
| + if ((number & 1) != 0 || !zero_tail) {
|
| + number++; // Rounding up.
|
| + }
|
| + }
|
| +
|
| + // Rounding up may cause overflow.
|
| + if ((number & ((int64_t)1 << 53)) != 0) {
|
| + exponent++;
|
| + number >>= 1;
|
| + }
|
| + break;
|
| + }
|
| + ++current;
|
| + } while (current != end);
|
| +
|
| + ASSERT(number < ((int64_t)1 << 53));
|
| + ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
|
| +
|
| + *trailing_pointer = current;
|
| +
|
| + if (exponent == 0) {
|
| + if (sign) {
|
| + if (number == 0) return -0.0;
|
| + number = -number;
|
| + }
|
| + return static_cast<double>(number);
|
| + }
|
| +
|
| + ASSERT(number != 0);
|
| + return Double(DiyFp(number, exponent)).value();
|
| +}
|
| +
|
| +
|
| +double StringToDoubleConverter::StringToDouble(
|
| + const char* input,
|
| + int length,
|
| + int* processed_characters_count) {
|
| + const char* current = input;
|
| + const char* end = input + length;
|
| +
|
| + *processed_characters_count = 0;
|
| +
|
| + const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
|
| + const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
|
| + const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
|
| + const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
|
| +
|
| + // To make sure that iterator dereferencing is valid the following
|
| + // convention is used:
|
| + // 1. Each '++current' statement is followed by check for equality to 'end'.
|
| + // 2. If AdvanceToNonspace returned false then current == end.
|
| + // 3. If 'current' becomes equal to 'end' the function returns or goes to
|
| + // 'parsing_done'.
|
| + // 4. 'current' is not dereferenced after the 'parsing_done' label.
|
| + // 5. Code before 'parsing_done' may rely on 'current != end'.
|
| + if (current == end) return empty_string_value_;
|
| +
|
| + if (allow_leading_spaces || allow_trailing_spaces) {
|
| + if (!AdvanceToNonspace(¤t, end)) {
|
| + *processed_characters_count = current - input;
|
| + return empty_string_value_;
|
| + }
|
| + if (!allow_leading_spaces && (input != current)) {
|
| + // No leading spaces allowed, but AdvanceToNonspace moved forward.
|
| + return junk_string_value_;
|
| + }
|
| + }
|
| +
|
| + // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
|
| + const int kBufferSize = kMaxSignificantDigits + 10;
|
| + char buffer[kBufferSize]; // NOLINT: size is known at compile time.
|
| + int buffer_pos = 0;
|
| +
|
| + // Exponent will be adjusted if insignificant digits of the integer part
|
| + // or insignificant leading zeros of the fractional part are dropped.
|
| + int exponent = 0;
|
| + int significant_digits = 0;
|
| + int insignificant_digits = 0;
|
| + bool nonzero_digit_dropped = false;
|
| + bool fractional_part = false;
|
| +
|
| + bool sign = false;
|
| +
|
| + if (*current == '+' || *current == '-') {
|
| + sign = (*current == '-');
|
| + ++current;
|
| + const char* next_non_space = current;
|
| + // Skip following spaces (if allowed).
|
| + if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
|
| + if (!allow_spaces_after_sign && (current != next_non_space)) {
|
| + return junk_string_value_;
|
| + }
|
| + current = next_non_space;
|
| + }
|
| +
|
| + if (infinity_symbol_ != NULL) {
|
| + if (*current == infinity_symbol_[0]) {
|
| + if (!ConsumeSubString(¤t, end, infinity_symbol_)) {
|
| + return junk_string_value_;
|
| + }
|
| +
|
| + if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
|
| + return junk_string_value_;
|
| + }
|
| + if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
|
| + return junk_string_value_;
|
| + }
|
| +
|
| + ASSERT(buffer_pos == 0);
|
| + *processed_characters_count = current - input;
|
| + return sign ? -Double::Infinity() : Double::Infinity();
|
| + }
|
| + }
|
| +
|
| + if (nan_symbol_ != NULL) {
|
| + if (*current == nan_symbol_[0]) {
|
| + if (!ConsumeSubString(¤t, end, nan_symbol_)) {
|
| + return junk_string_value_;
|
| + }
|
| +
|
| + if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
|
| + return junk_string_value_;
|
| + }
|
| + if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
|
| + return junk_string_value_;
|
| + }
|
| +
|
| + ASSERT(buffer_pos == 0);
|
| + *processed_characters_count = current - input;
|
| + return sign ? -Double::NaN() : Double::NaN();
|
| + }
|
| + }
|
| +
|
| + bool leading_zero = false;
|
| + if (*current == '0') {
|
| + ++current;
|
| + if (current == end) {
|
| + *processed_characters_count = current - input;
|
| + return SignedZero(sign);
|
| + }
|
| +
|
| + leading_zero = true;
|
| +
|
| + // It could be hexadecimal value.
|
| + if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
|
| + ++current;
|
| + if (current == end || !isDigit(*current, 16)) {
|
| + return junk_string_value_; // "0x".
|
| + }
|
| +
|
| + const char* tail_pointer = NULL;
|
| + double result = RadixStringToDouble<4>(current,
|
| + end,
|
| + sign,
|
| + allow_trailing_junk,
|
| + junk_string_value_,
|
| + &tail_pointer);
|
| + if (tail_pointer != NULL) {
|
| + if (allow_trailing_spaces) AdvanceToNonspace(&tail_pointer, end);
|
| + *processed_characters_count = tail_pointer - input;
|
| + }
|
| + return result;
|
| + }
|
| +
|
| + // Ignore leading zeros in the integer part.
|
| + while (*current == '0') {
|
| + ++current;
|
| + if (current == end) {
|
| + *processed_characters_count = current - input;
|
| + return SignedZero(sign);
|
| + }
|
| + }
|
| + }
|
| +
|
| + bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
|
| +
|
| + // Copy significant digits of the integer part (if any) to the buffer.
|
| + while (*current >= '0' && *current <= '9') {
|
| + if (significant_digits < kMaxSignificantDigits) {
|
| + ASSERT(buffer_pos < kBufferSize);
|
| + buffer[buffer_pos++] = static_cast<char>(*current);
|
| + significant_digits++;
|
| + // Will later check if it's an octal in the buffer.
|
| + } else {
|
| + insignificant_digits++; // Move the digit into the exponential part.
|
| + nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
|
| + }
|
| + octal = octal && *current < '8';
|
| + ++current;
|
| + if (current == end) goto parsing_done;
|
| + }
|
| +
|
| + if (significant_digits == 0) {
|
| + octal = false;
|
| + }
|
| +
|
| + if (*current == '.') {
|
| + if (octal && !allow_trailing_junk) return junk_string_value_;
|
| + if (octal) goto parsing_done;
|
| +
|
| + ++current;
|
| + if (current == end) {
|
| + if (significant_digits == 0 && !leading_zero) {
|
| + return junk_string_value_;
|
| + } else {
|
| + goto parsing_done;
|
| + }
|
| + }
|
| +
|
| + if (significant_digits == 0) {
|
| + // octal = false;
|
| + // Integer part consists of 0 or is absent. Significant digits start after
|
| + // leading zeros (if any).
|
| + while (*current == '0') {
|
| + ++current;
|
| + if (current == end) {
|
| + *processed_characters_count = current - input;
|
| + return SignedZero(sign);
|
| + }
|
| + exponent--; // Move this 0 into the exponent.
|
| + }
|
| + }
|
| +
|
| + // We don't emit a '.', but adjust the exponent instead.
|
| + fractional_part = true;
|
| +
|
| + // There is a fractional part.
|
| + while (*current >= '0' && *current <= '9') {
|
| + if (significant_digits < kMaxSignificantDigits) {
|
| + ASSERT(buffer_pos < kBufferSize);
|
| + buffer[buffer_pos++] = static_cast<char>(*current);
|
| + significant_digits++;
|
| + exponent--;
|
| + } else {
|
| + // Ignore insignificant digits in the fractional part.
|
| + nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
|
| + }
|
| + ++current;
|
| + if (current == end) goto parsing_done;
|
| + }
|
| + }
|
| +
|
| + if (!leading_zero && exponent == 0 && significant_digits == 0) {
|
| + // If leading_zeros is true then the string contains zeros.
|
| + // If exponent < 0 then string was [+-]\.0*...
|
| + // If significant_digits != 0 the string is not equal to 0.
|
| + // Otherwise there are no digits in the string.
|
| + return junk_string_value_;
|
| + }
|
| +
|
| + // Parse exponential part.
|
| + if (*current == 'e' || *current == 'E') {
|
| + if (octal && !allow_trailing_junk) return junk_string_value_;
|
| + if (octal) goto parsing_done;
|
| + ++current;
|
| + if (current == end) {
|
| + if (allow_trailing_junk) {
|
| + goto parsing_done;
|
| + } else {
|
| + return junk_string_value_;
|
| + }
|
| + }
|
| + char sign = '+';
|
| + if (*current == '+' || *current == '-') {
|
| + sign = static_cast<char>(*current);
|
| + ++current;
|
| + if (current == end) {
|
| + if (allow_trailing_junk) {
|
| + goto parsing_done;
|
| + } else {
|
| + return junk_string_value_;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if (current == end || *current < '0' || *current > '9') {
|
| + if (allow_trailing_junk) {
|
| + goto parsing_done;
|
| + } else {
|
| + return junk_string_value_;
|
| + }
|
| + }
|
| +
|
| + const int max_exponent = INT_MAX / 2;
|
| + ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
|
| + int num = 0;
|
| + do {
|
| + // Check overflow.
|
| + int digit = *current - '0';
|
| + if (num >= max_exponent / 10
|
| + && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
|
| + num = max_exponent;
|
| + } else {
|
| + num = num * 10 + digit;
|
| + }
|
| + ++current;
|
| + } while (current != end && *current >= '0' && *current <= '9');
|
| +
|
| + exponent += (sign == '-' ? -num : num);
|
| + }
|
| +
|
| + if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
|
| + return junk_string_value_;
|
| + }
|
| + if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
|
| + return junk_string_value_;
|
| + }
|
| + if (allow_trailing_spaces) {
|
| + AdvanceToNonspace(¤t, end);
|
| + }
|
| +
|
| + parsing_done:
|
| + exponent += insignificant_digits;
|
| +
|
| + if (octal) {
|
| + double result;
|
| + const char* tail_pointer = NULL;
|
| + result = RadixStringToDouble<3>(buffer,
|
| + buffer + buffer_pos,
|
| + sign,
|
| + allow_trailing_junk,
|
| + junk_string_value_,
|
| + &tail_pointer);
|
| + ASSERT(tail_pointer != NULL);
|
| + *processed_characters_count = current - input;
|
| + return result;
|
| + }
|
| +
|
| + if (nonzero_digit_dropped) {
|
| + buffer[buffer_pos++] = '1';
|
| + exponent--;
|
| + }
|
| +
|
| + ASSERT(buffer_pos < kBufferSize);
|
| + buffer[buffer_pos] = '\0';
|
| +
|
| + double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
|
| + *processed_characters_count = current - input;
|
| + return sign? -converted: converted;
|
| +}
|
| +
|
| +} // namespace double_conversion
|
|
|