OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include <limits.h> |
| 29 #include <math.h> |
| 30 |
| 31 #include "double-conversion.h" |
| 32 |
| 33 #include "bignum-dtoa.h" |
| 34 #include "double.h" |
| 35 #include "fast-dtoa.h" |
| 36 #include "fixed-dtoa.h" |
| 37 #include "strtod.h" |
| 38 #include "utils.h" |
| 39 |
| 40 namespace double_conversion { |
| 41 |
| 42 const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() { |
| 43 int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN; |
| 44 static DoubleToStringConverter converter(flags, |
| 45 "Infinity", |
| 46 "NaN", |
| 47 'e', |
| 48 -6, 21, |
| 49 6, 0); |
| 50 return converter; |
| 51 } |
| 52 |
| 53 |
| 54 bool DoubleToStringConverter::HandleSpecialValues( |
| 55 double value, |
| 56 StringBuilder* result_builder) const { |
| 57 Double double_inspect(value); |
| 58 if (double_inspect.IsInfinite()) { |
| 59 if (infinity_symbol_ == NULL) return false; |
| 60 if (value < 0) { |
| 61 result_builder->AddCharacter('-'); |
| 62 } |
| 63 result_builder->AddString(infinity_symbol_); |
| 64 return true; |
| 65 } |
| 66 if (double_inspect.IsNan()) { |
| 67 if (nan_symbol_ == NULL) return false; |
| 68 result_builder->AddString(nan_symbol_); |
| 69 return true; |
| 70 } |
| 71 return false; |
| 72 } |
| 73 |
| 74 |
| 75 void DoubleToStringConverter::CreateExponentialRepresentation( |
| 76 const char* decimal_digits, |
| 77 int length, |
| 78 int exponent, |
| 79 StringBuilder* result_builder) const { |
| 80 ASSERT(length != 0); |
| 81 result_builder->AddCharacter(decimal_digits[0]); |
| 82 if (length != 1) { |
| 83 result_builder->AddCharacter('.'); |
| 84 result_builder->AddSubstring(&decimal_digits[1], length-1); |
| 85 } |
| 86 result_builder->AddCharacter(exponent_character_); |
| 87 if (exponent < 0) { |
| 88 result_builder->AddCharacter('-'); |
| 89 exponent = -exponent; |
| 90 } else { |
| 91 if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) { |
| 92 result_builder->AddCharacter('+'); |
| 93 } |
| 94 } |
| 95 if (exponent == 0) { |
| 96 result_builder->AddCharacter('0'); |
| 97 return; |
| 98 } |
| 99 ASSERT(exponent < 1e4); |
| 100 const int kMaxExponentLength = 5; |
| 101 char buffer[kMaxExponentLength]; |
| 102 int first_char_pos = kMaxExponentLength; |
| 103 while (exponent > 0) { |
| 104 buffer[--first_char_pos] = '0' + (exponent % 10); |
| 105 exponent /= 10; |
| 106 } |
| 107 result_builder->AddSubstring(&buffer[first_char_pos], |
| 108 kMaxExponentLength - first_char_pos); |
| 109 } |
| 110 |
| 111 |
| 112 void DoubleToStringConverter::CreateDecimalRepresentation( |
| 113 const char* decimal_digits, |
| 114 int length, |
| 115 int decimal_point, |
| 116 int digits_after_point, |
| 117 StringBuilder* result_builder) const { |
| 118 // Create a representation that is padded with zeros if needed. |
| 119 if (decimal_point <= 0) { |
| 120 // "0.00000decimal_rep". |
| 121 result_builder->AddCharacter('0'); |
| 122 if (digits_after_point > 0) { |
| 123 result_builder->AddCharacter('.'); |
| 124 result_builder->AddPadding('0', -decimal_point); |
| 125 ASSERT(length <= digits_after_point - (-decimal_point)); |
| 126 result_builder->AddSubstring(decimal_digits, length); |
| 127 int remaining_digits = digits_after_point - (-decimal_point) - length; |
| 128 result_builder->AddPadding('0', remaining_digits); |
| 129 } |
| 130 } else if (decimal_point >= length) { |
| 131 // "decimal_rep0000.00000" or "decimal_rep.0000" |
| 132 result_builder->AddSubstring(decimal_digits, length); |
| 133 result_builder->AddPadding('0', decimal_point - length); |
| 134 if (digits_after_point > 0) { |
| 135 result_builder->AddCharacter('.'); |
| 136 result_builder->AddPadding('0', digits_after_point); |
| 137 } |
| 138 } else { |
| 139 // "decima.l_rep000" |
| 140 ASSERT(digits_after_point > 0); |
| 141 result_builder->AddSubstring(decimal_digits, decimal_point); |
| 142 result_builder->AddCharacter('.'); |
| 143 ASSERT(length - decimal_point <= digits_after_point); |
| 144 result_builder->AddSubstring(&decimal_digits[decimal_point], |
| 145 length - decimal_point); |
| 146 int remaining_digits = digits_after_point - (length - decimal_point); |
| 147 result_builder->AddPadding('0', remaining_digits); |
| 148 } |
| 149 if (digits_after_point == 0) { |
| 150 if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) { |
| 151 result_builder->AddCharacter('.'); |
| 152 } |
| 153 if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) { |
| 154 result_builder->AddCharacter('0'); |
| 155 } |
| 156 } |
| 157 } |
| 158 |
| 159 |
| 160 bool DoubleToStringConverter::ToShortest(double value, |
| 161 StringBuilder* result_builder) const { |
| 162 if (Double(value).IsSpecial()) { |
| 163 return HandleSpecialValues(value, result_builder); |
| 164 } |
| 165 |
| 166 int decimal_point; |
| 167 bool sign; |
| 168 const int kDecimalRepCapacity = kBase10MaximalLength + 1; |
| 169 char decimal_rep[kDecimalRepCapacity]; |
| 170 int decimal_rep_length; |
| 171 |
| 172 DoubleToAscii(value, SHORTEST, 0, decimal_rep, kDecimalRepCapacity, |
| 173 &sign, &decimal_rep_length, &decimal_point); |
| 174 |
| 175 bool unique_zero = (flags_ & UNIQUE_ZERO) != 0; |
| 176 if (sign && (value != 0.0 || !unique_zero)) { |
| 177 result_builder->AddCharacter('-'); |
| 178 } |
| 179 |
| 180 int exponent = decimal_point - 1; |
| 181 if ((decimal_in_shortest_low_ <= exponent) && |
| 182 (exponent < decimal_in_shortest_high_)) { |
| 183 CreateDecimalRepresentation(decimal_rep, decimal_rep_length, |
| 184 decimal_point, |
| 185 Max(0, decimal_rep_length - decimal_point), |
| 186 result_builder); |
| 187 } else { |
| 188 CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent, |
| 189 result_builder); |
| 190 } |
| 191 return true; |
| 192 } |
| 193 |
| 194 |
| 195 bool DoubleToStringConverter::ToFixed(double value, |
| 196 int requested_digits, |
| 197 StringBuilder* result_builder) const { |
| 198 ASSERT(kMaxFixedDigitsBeforePoint == 60); |
| 199 const double kFirstNonFixed = 1e60; |
| 200 |
| 201 if (Double(value).IsSpecial()) { |
| 202 return HandleSpecialValues(value, result_builder); |
| 203 } |
| 204 |
| 205 if (requested_digits > kMaxFixedDigitsAfterPoint) return false; |
| 206 if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false; |
| 207 |
| 208 // Find a sufficiently precise decimal representation of n. |
| 209 int decimal_point; |
| 210 bool sign; |
| 211 // Add space for the '\0' byte. |
| 212 const int kDecimalRepCapacity = |
| 213 kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1; |
| 214 char decimal_rep[kDecimalRepCapacity]; |
| 215 int decimal_rep_length; |
| 216 DoubleToAscii(value, FIXED, requested_digits, |
| 217 decimal_rep, kDecimalRepCapacity, |
| 218 &sign, &decimal_rep_length, &decimal_point); |
| 219 |
| 220 bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 221 if (sign && (value != 0.0 || !unique_zero)) { |
| 222 result_builder->AddCharacter('-'); |
| 223 } |
| 224 |
| 225 CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
| 226 requested_digits, result_builder); |
| 227 return true; |
| 228 } |
| 229 |
| 230 |
| 231 bool DoubleToStringConverter::ToExponential( |
| 232 double value, |
| 233 int requested_digits, |
| 234 StringBuilder* result_builder) const { |
| 235 if (Double(value).IsSpecial()) { |
| 236 return HandleSpecialValues(value, result_builder); |
| 237 } |
| 238 |
| 239 if (requested_digits < -1) return false; |
| 240 if (requested_digits > kMaxExponentialDigits) return false; |
| 241 |
| 242 int decimal_point; |
| 243 bool sign; |
| 244 // Add space for digit before the decimal point and the '\0' character. |
| 245 const int kDecimalRepCapacity = kMaxExponentialDigits + 2; |
| 246 ASSERT(kDecimalRepCapacity > kBase10MaximalLength); |
| 247 char decimal_rep[kDecimalRepCapacity]; |
| 248 int decimal_rep_length; |
| 249 |
| 250 if (requested_digits == -1) { |
| 251 DoubleToAscii(value, SHORTEST, 0, |
| 252 decimal_rep, kDecimalRepCapacity, |
| 253 &sign, &decimal_rep_length, &decimal_point); |
| 254 } else { |
| 255 DoubleToAscii(value, PRECISION, requested_digits + 1, |
| 256 decimal_rep, kDecimalRepCapacity, |
| 257 &sign, &decimal_rep_length, &decimal_point); |
| 258 ASSERT(decimal_rep_length <= requested_digits + 1); |
| 259 |
| 260 for (int i = decimal_rep_length; i < requested_digits + 1; ++i) { |
| 261 decimal_rep[i] = '0'; |
| 262 } |
| 263 decimal_rep_length = requested_digits + 1; |
| 264 } |
| 265 |
| 266 bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 267 if (sign && (value != 0.0 || !unique_zero)) { |
| 268 result_builder->AddCharacter('-'); |
| 269 } |
| 270 |
| 271 int exponent = decimal_point - 1; |
| 272 CreateExponentialRepresentation(decimal_rep, |
| 273 decimal_rep_length, |
| 274 exponent, |
| 275 result_builder); |
| 276 return true; |
| 277 } |
| 278 |
| 279 |
| 280 bool DoubleToStringConverter::ToPrecision(double value, |
| 281 int precision, |
| 282 StringBuilder* result_builder) const { |
| 283 if (Double(value).IsSpecial()) { |
| 284 return HandleSpecialValues(value, result_builder); |
| 285 } |
| 286 |
| 287 if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) { |
| 288 return false; |
| 289 } |
| 290 |
| 291 // Find a sufficiently precise decimal representation of n. |
| 292 int decimal_point; |
| 293 bool sign; |
| 294 // Add one for the terminating null character. |
| 295 const int kDecimalRepCapacity = kMaxPrecisionDigits + 1; |
| 296 char decimal_rep[kDecimalRepCapacity]; |
| 297 int decimal_rep_length; |
| 298 |
| 299 DoubleToAscii(value, PRECISION, precision, |
| 300 decimal_rep, kDecimalRepCapacity, |
| 301 &sign, &decimal_rep_length, &decimal_point); |
| 302 ASSERT(decimal_rep_length <= precision); |
| 303 |
| 304 bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 305 if (sign && (value != 0.0 || !unique_zero)) { |
| 306 result_builder->AddCharacter('-'); |
| 307 } |
| 308 |
| 309 // The exponent if we print the number as x.xxeyyy. That is with the |
| 310 // decimal point after the first digit. |
| 311 int exponent = decimal_point - 1; |
| 312 |
| 313 int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0; |
| 314 if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) || |
| 315 (decimal_point - precision + extra_zero > |
| 316 max_trailing_padding_zeroes_in_precision_mode_)) { |
| 317 // Fill buffer to contain 'precision' digits. |
| 318 // Usually the buffer is already at the correct length, but 'DoubleToAscii' |
| 319 // is allowed to return less characters. |
| 320 for (int i = decimal_rep_length; i < precision; ++i) { |
| 321 decimal_rep[i] = '0'; |
| 322 } |
| 323 |
| 324 CreateExponentialRepresentation(decimal_rep, |
| 325 precision, |
| 326 exponent, |
| 327 result_builder); |
| 328 } else { |
| 329 CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
| 330 Max(0, precision - decimal_point), |
| 331 result_builder); |
| 332 } |
| 333 return true; |
| 334 } |
| 335 |
| 336 |
| 337 static BignumDtoaMode DtoaToBignumDtoaMode( |
| 338 DoubleToStringConverter::DtoaMode dtoa_mode) { |
| 339 switch (dtoa_mode) { |
| 340 case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST; |
| 341 case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED; |
| 342 case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION; |
| 343 default: |
| 344 UNREACHABLE(); |
| 345 return BIGNUM_DTOA_SHORTEST; // To silence compiler. |
| 346 } |
| 347 } |
| 348 |
| 349 |
| 350 void DoubleToStringConverter::DoubleToAscii(double v, |
| 351 DtoaMode mode, |
| 352 int requested_digits, |
| 353 char* buffer, |
| 354 int buffer_length, |
| 355 bool* sign, |
| 356 int* length, |
| 357 int* point) { |
| 358 Vector<char> vector(buffer, buffer_length); |
| 359 ASSERT(!Double(v).IsSpecial()); |
| 360 ASSERT(mode == SHORTEST || requested_digits >= 0); |
| 361 |
| 362 if (Double(v).Sign() < 0) { |
| 363 *sign = true; |
| 364 v = -v; |
| 365 } else { |
| 366 *sign = false; |
| 367 } |
| 368 |
| 369 if (mode == PRECISION && requested_digits == 0) { |
| 370 vector[0] = '\0'; |
| 371 *length = 0; |
| 372 return; |
| 373 } |
| 374 |
| 375 if (v == 0) { |
| 376 vector[0] = '0'; |
| 377 vector[1] = '\0'; |
| 378 *length = 1; |
| 379 *point = 1; |
| 380 return; |
| 381 } |
| 382 |
| 383 bool fast_worked; |
| 384 switch (mode) { |
| 385 case SHORTEST: |
| 386 fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point); |
| 387 break; |
| 388 case FIXED: |
| 389 fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point); |
| 390 break; |
| 391 case PRECISION: |
| 392 fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits, |
| 393 vector, length, point); |
| 394 break; |
| 395 default: |
| 396 UNREACHABLE(); |
| 397 fast_worked = false; |
| 398 } |
| 399 if (fast_worked) return; |
| 400 |
| 401 // If the fast dtoa didn't succeed use the slower bignum version. |
| 402 BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode); |
| 403 BignumDtoa(v, bignum_mode, requested_digits, vector, length, point); |
| 404 vector[*length] = '\0'; |
| 405 } |
| 406 |
| 407 |
| 408 // Consumes the given substring from the iterator. |
| 409 // Returns false, if the substring does not match. |
| 410 static bool ConsumeSubString(const char** current, |
| 411 const char* end, |
| 412 const char* substring) { |
| 413 ASSERT(**current == *substring); |
| 414 for (substring++; *substring != '\0'; substring++) { |
| 415 ++*current; |
| 416 if (*current == end || **current != *substring) return false; |
| 417 } |
| 418 ++*current; |
| 419 return true; |
| 420 } |
| 421 |
| 422 |
| 423 // Maximum number of significant digits in decimal representation. |
| 424 // The longest possible double in decimal representation is |
| 425 // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 |
| 426 // (768 digits). If we parse a number whose first digits are equal to a |
| 427 // mean of 2 adjacent doubles (that could have up to 769 digits) the result |
| 428 // must be rounded to the bigger one unless the tail consists of zeros, so |
| 429 // we don't need to preserve all the digits. |
| 430 const int kMaxSignificantDigits = 772; |
| 431 |
| 432 |
| 433 // Returns true if a nonspace found and false if the end has reached. |
| 434 static inline bool AdvanceToNonspace(const char** current, const char* end) { |
| 435 while (*current != end) { |
| 436 if (**current != ' ') return true; |
| 437 ++*current; |
| 438 } |
| 439 return false; |
| 440 } |
| 441 |
| 442 |
| 443 static bool isDigit(int x, int radix) { |
| 444 return (x >= '0' && x <= '9' && x < '0' + radix) |
| 445 || (radix > 10 && x >= 'a' && x < 'a' + radix - 10) |
| 446 || (radix > 10 && x >= 'A' && x < 'A' + radix - 10); |
| 447 } |
| 448 |
| 449 |
| 450 static double SignedZero(bool sign) { |
| 451 return sign ? -0.0 : 0.0; |
| 452 } |
| 453 |
| 454 |
| 455 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. |
| 456 template <int radix_log_2> |
| 457 static double RadixStringToDouble(const char* current, |
| 458 const char* end, |
| 459 bool sign, |
| 460 bool allow_trailing_junk, |
| 461 double junk_string_value, |
| 462 const char** trailing_pointer) { |
| 463 ASSERT(current != end); |
| 464 |
| 465 // Skip leading 0s. |
| 466 while (*current == '0') { |
| 467 ++current; |
| 468 if (current == end) { |
| 469 *trailing_pointer = end; |
| 470 return SignedZero(sign); |
| 471 } |
| 472 } |
| 473 |
| 474 int64_t number = 0; |
| 475 int exponent = 0; |
| 476 const int radix = (1 << radix_log_2); |
| 477 |
| 478 do { |
| 479 int digit; |
| 480 if (*current >= '0' && *current <= '9' && *current < '0' + radix) { |
| 481 digit = static_cast<char>(*current) - '0'; |
| 482 } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) { |
| 483 digit = static_cast<char>(*current) - 'a' + 10; |
| 484 } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) { |
| 485 digit = static_cast<char>(*current) - 'A' + 10; |
| 486 } else { |
| 487 if (allow_trailing_junk || !AdvanceToNonspace(¤t, end)) { |
| 488 break; |
| 489 } else { |
| 490 return junk_string_value; |
| 491 } |
| 492 } |
| 493 |
| 494 number = number * radix + digit; |
| 495 int overflow = static_cast<int>(number >> 53); |
| 496 if (overflow != 0) { |
| 497 // Overflow occurred. Need to determine which direction to round the |
| 498 // result. |
| 499 int overflow_bits_count = 1; |
| 500 while (overflow > 1) { |
| 501 overflow_bits_count++; |
| 502 overflow >>= 1; |
| 503 } |
| 504 |
| 505 int dropped_bits_mask = ((1 << overflow_bits_count) - 1); |
| 506 int dropped_bits = static_cast<int>(number) & dropped_bits_mask; |
| 507 number >>= overflow_bits_count; |
| 508 exponent = overflow_bits_count; |
| 509 |
| 510 bool zero_tail = true; |
| 511 while (true) { |
| 512 ++current; |
| 513 if (current == end || !isDigit(*current, radix)) break; |
| 514 zero_tail = zero_tail && *current == '0'; |
| 515 exponent += radix_log_2; |
| 516 } |
| 517 |
| 518 if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| 519 return junk_string_value; |
| 520 } |
| 521 |
| 522 int middle_value = (1 << (overflow_bits_count - 1)); |
| 523 if (dropped_bits > middle_value) { |
| 524 number++; // Rounding up. |
| 525 } else if (dropped_bits == middle_value) { |
| 526 // Rounding to even to consistency with decimals: half-way case rounds |
| 527 // up if significant part is odd and down otherwise. |
| 528 if ((number & 1) != 0 || !zero_tail) { |
| 529 number++; // Rounding up. |
| 530 } |
| 531 } |
| 532 |
| 533 // Rounding up may cause overflow. |
| 534 if ((number & ((int64_t)1 << 53)) != 0) { |
| 535 exponent++; |
| 536 number >>= 1; |
| 537 } |
| 538 break; |
| 539 } |
| 540 ++current; |
| 541 } while (current != end); |
| 542 |
| 543 ASSERT(number < ((int64_t)1 << 53)); |
| 544 ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); |
| 545 |
| 546 *trailing_pointer = current; |
| 547 |
| 548 if (exponent == 0) { |
| 549 if (sign) { |
| 550 if (number == 0) return -0.0; |
| 551 number = -number; |
| 552 } |
| 553 return static_cast<double>(number); |
| 554 } |
| 555 |
| 556 ASSERT(number != 0); |
| 557 return Double(DiyFp(number, exponent)).value(); |
| 558 } |
| 559 |
| 560 |
| 561 double StringToDoubleConverter::StringToDouble( |
| 562 const char* input, |
| 563 int length, |
| 564 int* processed_characters_count) { |
| 565 const char* current = input; |
| 566 const char* end = input + length; |
| 567 |
| 568 *processed_characters_count = 0; |
| 569 |
| 570 const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0; |
| 571 const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0; |
| 572 const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0; |
| 573 const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0; |
| 574 |
| 575 // To make sure that iterator dereferencing is valid the following |
| 576 // convention is used: |
| 577 // 1. Each '++current' statement is followed by check for equality to 'end'. |
| 578 // 2. If AdvanceToNonspace returned false then current == end. |
| 579 // 3. If 'current' becomes equal to 'end' the function returns or goes to |
| 580 // 'parsing_done'. |
| 581 // 4. 'current' is not dereferenced after the 'parsing_done' label. |
| 582 // 5. Code before 'parsing_done' may rely on 'current != end'. |
| 583 if (current == end) return empty_string_value_; |
| 584 |
| 585 if (allow_leading_spaces || allow_trailing_spaces) { |
| 586 if (!AdvanceToNonspace(¤t, end)) { |
| 587 *processed_characters_count = current - input; |
| 588 return empty_string_value_; |
| 589 } |
| 590 if (!allow_leading_spaces && (input != current)) { |
| 591 // No leading spaces allowed, but AdvanceToNonspace moved forward. |
| 592 return junk_string_value_; |
| 593 } |
| 594 } |
| 595 |
| 596 // The longest form of simplified number is: "-<significant digits>.1eXXX\0". |
| 597 const int kBufferSize = kMaxSignificantDigits + 10; |
| 598 char buffer[kBufferSize]; // NOLINT: size is known at compile time. |
| 599 int buffer_pos = 0; |
| 600 |
| 601 // Exponent will be adjusted if insignificant digits of the integer part |
| 602 // or insignificant leading zeros of the fractional part are dropped. |
| 603 int exponent = 0; |
| 604 int significant_digits = 0; |
| 605 int insignificant_digits = 0; |
| 606 bool nonzero_digit_dropped = false; |
| 607 bool fractional_part = false; |
| 608 |
| 609 bool sign = false; |
| 610 |
| 611 if (*current == '+' || *current == '-') { |
| 612 sign = (*current == '-'); |
| 613 ++current; |
| 614 const char* next_non_space = current; |
| 615 // Skip following spaces (if allowed). |
| 616 if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_; |
| 617 if (!allow_spaces_after_sign && (current != next_non_space)) { |
| 618 return junk_string_value_; |
| 619 } |
| 620 current = next_non_space; |
| 621 } |
| 622 |
| 623 if (infinity_symbol_ != NULL) { |
| 624 if (*current == infinity_symbol_[0]) { |
| 625 if (!ConsumeSubString(¤t, end, infinity_symbol_)) { |
| 626 return junk_string_value_; |
| 627 } |
| 628 |
| 629 if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| 630 return junk_string_value_; |
| 631 } |
| 632 if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| 633 return junk_string_value_; |
| 634 } |
| 635 |
| 636 ASSERT(buffer_pos == 0); |
| 637 *processed_characters_count = current - input; |
| 638 return sign ? -Double::Infinity() : Double::Infinity(); |
| 639 } |
| 640 } |
| 641 |
| 642 if (nan_symbol_ != NULL) { |
| 643 if (*current == nan_symbol_[0]) { |
| 644 if (!ConsumeSubString(¤t, end, nan_symbol_)) { |
| 645 return junk_string_value_; |
| 646 } |
| 647 |
| 648 if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| 649 return junk_string_value_; |
| 650 } |
| 651 if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| 652 return junk_string_value_; |
| 653 } |
| 654 |
| 655 ASSERT(buffer_pos == 0); |
| 656 *processed_characters_count = current - input; |
| 657 return sign ? -Double::NaN() : Double::NaN(); |
| 658 } |
| 659 } |
| 660 |
| 661 bool leading_zero = false; |
| 662 if (*current == '0') { |
| 663 ++current; |
| 664 if (current == end) { |
| 665 *processed_characters_count = current - input; |
| 666 return SignedZero(sign); |
| 667 } |
| 668 |
| 669 leading_zero = true; |
| 670 |
| 671 // It could be hexadecimal value. |
| 672 if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { |
| 673 ++current; |
| 674 if (current == end || !isDigit(*current, 16)) { |
| 675 return junk_string_value_; // "0x". |
| 676 } |
| 677 |
| 678 const char* tail_pointer = NULL; |
| 679 double result = RadixStringToDouble<4>(current, |
| 680 end, |
| 681 sign, |
| 682 allow_trailing_junk, |
| 683 junk_string_value_, |
| 684 &tail_pointer); |
| 685 if (tail_pointer != NULL) { |
| 686 if (allow_trailing_spaces) AdvanceToNonspace(&tail_pointer, end); |
| 687 *processed_characters_count = tail_pointer - input; |
| 688 } |
| 689 return result; |
| 690 } |
| 691 |
| 692 // Ignore leading zeros in the integer part. |
| 693 while (*current == '0') { |
| 694 ++current; |
| 695 if (current == end) { |
| 696 *processed_characters_count = current - input; |
| 697 return SignedZero(sign); |
| 698 } |
| 699 } |
| 700 } |
| 701 |
| 702 bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0; |
| 703 |
| 704 // Copy significant digits of the integer part (if any) to the buffer. |
| 705 while (*current >= '0' && *current <= '9') { |
| 706 if (significant_digits < kMaxSignificantDigits) { |
| 707 ASSERT(buffer_pos < kBufferSize); |
| 708 buffer[buffer_pos++] = static_cast<char>(*current); |
| 709 significant_digits++; |
| 710 // Will later check if it's an octal in the buffer. |
| 711 } else { |
| 712 insignificant_digits++; // Move the digit into the exponential part. |
| 713 nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 714 } |
| 715 octal = octal && *current < '8'; |
| 716 ++current; |
| 717 if (current == end) goto parsing_done; |
| 718 } |
| 719 |
| 720 if (significant_digits == 0) { |
| 721 octal = false; |
| 722 } |
| 723 |
| 724 if (*current == '.') { |
| 725 if (octal && !allow_trailing_junk) return junk_string_value_; |
| 726 if (octal) goto parsing_done; |
| 727 |
| 728 ++current; |
| 729 if (current == end) { |
| 730 if (significant_digits == 0 && !leading_zero) { |
| 731 return junk_string_value_; |
| 732 } else { |
| 733 goto parsing_done; |
| 734 } |
| 735 } |
| 736 |
| 737 if (significant_digits == 0) { |
| 738 // octal = false; |
| 739 // Integer part consists of 0 or is absent. Significant digits start after |
| 740 // leading zeros (if any). |
| 741 while (*current == '0') { |
| 742 ++current; |
| 743 if (current == end) { |
| 744 *processed_characters_count = current - input; |
| 745 return SignedZero(sign); |
| 746 } |
| 747 exponent--; // Move this 0 into the exponent. |
| 748 } |
| 749 } |
| 750 |
| 751 // We don't emit a '.', but adjust the exponent instead. |
| 752 fractional_part = true; |
| 753 |
| 754 // There is a fractional part. |
| 755 while (*current >= '0' && *current <= '9') { |
| 756 if (significant_digits < kMaxSignificantDigits) { |
| 757 ASSERT(buffer_pos < kBufferSize); |
| 758 buffer[buffer_pos++] = static_cast<char>(*current); |
| 759 significant_digits++; |
| 760 exponent--; |
| 761 } else { |
| 762 // Ignore insignificant digits in the fractional part. |
| 763 nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 764 } |
| 765 ++current; |
| 766 if (current == end) goto parsing_done; |
| 767 } |
| 768 } |
| 769 |
| 770 if (!leading_zero && exponent == 0 && significant_digits == 0) { |
| 771 // If leading_zeros is true then the string contains zeros. |
| 772 // If exponent < 0 then string was [+-]\.0*... |
| 773 // If significant_digits != 0 the string is not equal to 0. |
| 774 // Otherwise there are no digits in the string. |
| 775 return junk_string_value_; |
| 776 } |
| 777 |
| 778 // Parse exponential part. |
| 779 if (*current == 'e' || *current == 'E') { |
| 780 if (octal && !allow_trailing_junk) return junk_string_value_; |
| 781 if (octal) goto parsing_done; |
| 782 ++current; |
| 783 if (current == end) { |
| 784 if (allow_trailing_junk) { |
| 785 goto parsing_done; |
| 786 } else { |
| 787 return junk_string_value_; |
| 788 } |
| 789 } |
| 790 char sign = '+'; |
| 791 if (*current == '+' || *current == '-') { |
| 792 sign = static_cast<char>(*current); |
| 793 ++current; |
| 794 if (current == end) { |
| 795 if (allow_trailing_junk) { |
| 796 goto parsing_done; |
| 797 } else { |
| 798 return junk_string_value_; |
| 799 } |
| 800 } |
| 801 } |
| 802 |
| 803 if (current == end || *current < '0' || *current > '9') { |
| 804 if (allow_trailing_junk) { |
| 805 goto parsing_done; |
| 806 } else { |
| 807 return junk_string_value_; |
| 808 } |
| 809 } |
| 810 |
| 811 const int max_exponent = INT_MAX / 2; |
| 812 ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); |
| 813 int num = 0; |
| 814 do { |
| 815 // Check overflow. |
| 816 int digit = *current - '0'; |
| 817 if (num >= max_exponent / 10 |
| 818 && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { |
| 819 num = max_exponent; |
| 820 } else { |
| 821 num = num * 10 + digit; |
| 822 } |
| 823 ++current; |
| 824 } while (current != end && *current >= '0' && *current <= '9'); |
| 825 |
| 826 exponent += (sign == '-' ? -num : num); |
| 827 } |
| 828 |
| 829 if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { |
| 830 return junk_string_value_; |
| 831 } |
| 832 if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { |
| 833 return junk_string_value_; |
| 834 } |
| 835 if (allow_trailing_spaces) { |
| 836 AdvanceToNonspace(¤t, end); |
| 837 } |
| 838 |
| 839 parsing_done: |
| 840 exponent += insignificant_digits; |
| 841 |
| 842 if (octal) { |
| 843 double result; |
| 844 const char* tail_pointer = NULL; |
| 845 result = RadixStringToDouble<3>(buffer, |
| 846 buffer + buffer_pos, |
| 847 sign, |
| 848 allow_trailing_junk, |
| 849 junk_string_value_, |
| 850 &tail_pointer); |
| 851 ASSERT(tail_pointer != NULL); |
| 852 *processed_characters_count = current - input; |
| 853 return result; |
| 854 } |
| 855 |
| 856 if (nonzero_digit_dropped) { |
| 857 buffer[buffer_pos++] = '1'; |
| 858 exponent--; |
| 859 } |
| 860 |
| 861 ASSERT(buffer_pos < kBufferSize); |
| 862 buffer[buffer_pos] = '\0'; |
| 863 |
| 864 double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); |
| 865 *processed_characters_count = current - input; |
| 866 return sign? -converted: converted; |
| 867 } |
| 868 |
| 869 } // namespace double_conversion |
OLD | NEW |