Index: src/conversions-inl.h |
diff --git a/src/conversions-inl.h b/src/conversions-inl.h |
index cb7dbf88d2a32d7f132fcc5e9e76da60102b461e..bb24a9c2b76e9b06054c89ca47e2de6f6ec26c06 100644 |
--- a/src/conversions-inl.h |
+++ b/src/conversions-inl.h |
@@ -1,4 +1,4 @@ |
-// Copyright 2006-2008 the V8 project authors. All rights reserved. |
+// Copyright 2011 the V8 project authors. All rights reserved. |
// Redistribution and use in source and binary forms, with or without |
// modification, are permitted provided that the following conditions are |
// met: |
@@ -28,14 +28,16 @@ |
#ifndef V8_CONVERSIONS_INL_H_ |
#define V8_CONVERSIONS_INL_H_ |
+#include <limits.h> // Required for INT_MAX etc. |
#include <math.h> |
-#include <float.h> // required for DBL_MAX and on Win32 for finite() |
+#include <float.h> // Required for DBL_MAX and on Win32 for finite() |
#include <stdarg.h> |
// ---------------------------------------------------------------------------- |
// Extra POSIX/ANSI functions for Win32/MSVC. |
#include "conversions.h" |
+#include "strtod.h" |
#include "platform.h" |
namespace v8 { |
@@ -77,18 +79,6 @@ static inline double DoubleToInteger(double x) { |
} |
-int32_t NumberToInt32(Object* number) { |
- if (number->IsSmi()) return Smi::cast(number)->value(); |
- return DoubleToInt32(number->Number()); |
-} |
- |
- |
-uint32_t NumberToUint32(Object* number) { |
- if (number->IsSmi()) return Smi::cast(number)->value(); |
- return DoubleToUint32(number->Number()); |
-} |
- |
- |
int32_t DoubleToInt32(double x) { |
int32_t i = FastD2I(x); |
if (FastI2D(i) == x) return i; |
@@ -101,6 +91,572 @@ int32_t DoubleToInt32(double x) { |
} |
+template <class Iterator, class EndMark> |
+static bool SubStringEquals(Iterator* current, |
+ EndMark end, |
+ const char* substring) { |
+ ASSERT(**current == *substring); |
+ for (substring++; *substring != '\0'; substring++) { |
+ ++*current; |
+ if (*current == end || **current != *substring) return false; |
+ } |
+ ++*current; |
+ return true; |
+} |
+ |
+ |
+// Returns true if a nonspace character has been found and false if the |
+// end was been reached before finding a nonspace character. |
+template <class Iterator, class EndMark> |
+static inline bool AdvanceToNonspace(UnicodeCache* unicode_cache, |
+ Iterator* current, |
+ EndMark end) { |
+ while (*current != end) { |
+ if (!unicode_cache->IsWhiteSpace(**current)) return true; |
+ ++*current; |
+ } |
+ return false; |
+} |
+ |
+ |
+// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. |
+template <int radix_log_2, class Iterator, class EndMark> |
+static double InternalStringToIntDouble(UnicodeCache* unicode_cache, |
+ Iterator current, |
+ EndMark end, |
+ bool negative, |
+ bool allow_trailing_junk) { |
+ ASSERT(current != end); |
+ |
+ // Skip leading 0s. |
+ while (*current == '0') { |
+ ++current; |
+ if (current == end) return SignedZero(negative); |
+ } |
+ |
+ int64_t number = 0; |
+ int exponent = 0; |
+ const int radix = (1 << radix_log_2); |
+ |
+ do { |
+ int digit; |
+ if (*current >= '0' && *current <= '9' && *current < '0' + radix) { |
+ digit = static_cast<char>(*current) - '0'; |
+ } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) { |
+ digit = static_cast<char>(*current) - 'a' + 10; |
+ } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) { |
+ digit = static_cast<char>(*current) - 'A' + 10; |
+ } else { |
+ if (allow_trailing_junk || |
+ !AdvanceToNonspace(unicode_cache, ¤t, end)) { |
+ break; |
+ } else { |
+ return JUNK_STRING_VALUE; |
+ } |
+ } |
+ |
+ number = number * radix + digit; |
+ int overflow = static_cast<int>(number >> 53); |
+ if (overflow != 0) { |
+ // Overflow occurred. Need to determine which direction to round the |
+ // result. |
+ int overflow_bits_count = 1; |
+ while (overflow > 1) { |
+ overflow_bits_count++; |
+ overflow >>= 1; |
+ } |
+ |
+ int dropped_bits_mask = ((1 << overflow_bits_count) - 1); |
+ int dropped_bits = static_cast<int>(number) & dropped_bits_mask; |
+ number >>= overflow_bits_count; |
+ exponent = overflow_bits_count; |
+ |
+ bool zero_tail = true; |
+ while (true) { |
+ ++current; |
+ if (current == end || !isDigit(*current, radix)) break; |
+ zero_tail = zero_tail && *current == '0'; |
+ exponent += radix_log_2; |
+ } |
+ |
+ if (!allow_trailing_junk && |
+ AdvanceToNonspace(unicode_cache, ¤t, end)) { |
+ return JUNK_STRING_VALUE; |
+ } |
+ |
+ int middle_value = (1 << (overflow_bits_count - 1)); |
+ if (dropped_bits > middle_value) { |
+ number++; // Rounding up. |
+ } else if (dropped_bits == middle_value) { |
+ // Rounding to even to consistency with decimals: half-way case rounds |
+ // up if significant part is odd and down otherwise. |
+ if ((number & 1) != 0 || !zero_tail) { |
+ number++; // Rounding up. |
+ } |
+ } |
+ |
+ // Rounding up may cause overflow. |
+ if ((number & ((int64_t)1 << 53)) != 0) { |
+ exponent++; |
+ number >>= 1; |
+ } |
+ break; |
+ } |
+ ++current; |
+ } while (current != end); |
+ |
+ ASSERT(number < ((int64_t)1 << 53)); |
+ ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); |
+ |
+ if (exponent == 0) { |
+ if (negative) { |
+ if (number == 0) return -0.0; |
+ number = -number; |
+ } |
+ return static_cast<double>(number); |
+ } |
+ |
+ ASSERT(number != 0); |
+ // The double could be constructed faster from number (mantissa), exponent |
+ // and sign. Assuming it's a rare case more simple code is used. |
+ return static_cast<double>(negative ? -number : number) * pow(2.0, exponent); |
+} |
+ |
+ |
+template <class Iterator, class EndMark> |
+static double InternalStringToInt(UnicodeCache* unicode_cache, |
+ Iterator current, |
+ EndMark end, |
+ int radix) { |
+ const bool allow_trailing_junk = true; |
+ const double empty_string_val = JUNK_STRING_VALUE; |
+ |
+ if (!AdvanceToNonspace(unicode_cache, ¤t, end)) { |
+ return empty_string_val; |
+ } |
+ |
+ bool negative = false; |
+ bool leading_zero = false; |
+ |
+ if (*current == '+') { |
+ // Ignore leading sign; skip following spaces. |
+ ++current; |
+ if (current == end) { |
+ return JUNK_STRING_VALUE; |
+ } |
+ } else if (*current == '-') { |
+ ++current; |
+ if (current == end) { |
+ return JUNK_STRING_VALUE; |
+ } |
+ negative = true; |
+ } |
+ |
+ if (radix == 0) { |
+ // Radix detection. |
+ if (*current == '0') { |
+ ++current; |
+ if (current == end) return SignedZero(negative); |
+ if (*current == 'x' || *current == 'X') { |
+ radix = 16; |
+ ++current; |
+ if (current == end) return JUNK_STRING_VALUE; |
+ } else { |
+ radix = 8; |
+ leading_zero = true; |
+ } |
+ } else { |
+ radix = 10; |
+ } |
+ } else if (radix == 16) { |
+ if (*current == '0') { |
+ // Allow "0x" prefix. |
+ ++current; |
+ if (current == end) return SignedZero(negative); |
+ if (*current == 'x' || *current == 'X') { |
+ ++current; |
+ if (current == end) return JUNK_STRING_VALUE; |
+ } else { |
+ leading_zero = true; |
+ } |
+ } |
+ } |
+ |
+ if (radix < 2 || radix > 36) return JUNK_STRING_VALUE; |
+ |
+ // Skip leading zeros. |
+ while (*current == '0') { |
+ leading_zero = true; |
+ ++current; |
+ if (current == end) return SignedZero(negative); |
+ } |
+ |
+ if (!leading_zero && !isDigit(*current, radix)) { |
+ return JUNK_STRING_VALUE; |
+ } |
+ |
+ if (IsPowerOf2(radix)) { |
+ switch (radix) { |
+ case 2: |
+ return InternalStringToIntDouble<1>( |
+ unicode_cache, current, end, negative, allow_trailing_junk); |
+ case 4: |
+ return InternalStringToIntDouble<2>( |
+ unicode_cache, current, end, negative, allow_trailing_junk); |
+ case 8: |
+ return InternalStringToIntDouble<3>( |
+ unicode_cache, current, end, negative, allow_trailing_junk); |
+ |
+ case 16: |
+ return InternalStringToIntDouble<4>( |
+ unicode_cache, current, end, negative, allow_trailing_junk); |
+ |
+ case 32: |
+ return InternalStringToIntDouble<5>( |
+ unicode_cache, current, end, negative, allow_trailing_junk); |
+ default: |
+ UNREACHABLE(); |
+ } |
+ } |
+ |
+ if (radix == 10) { |
+ // Parsing with strtod. |
+ const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308. |
+ // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero |
+ // end. |
+ const int kBufferSize = kMaxSignificantDigits + 2; |
+ char buffer[kBufferSize]; |
+ int buffer_pos = 0; |
+ while (*current >= '0' && *current <= '9') { |
+ if (buffer_pos <= kMaxSignificantDigits) { |
+ // If the number has more than kMaxSignificantDigits it will be parsed |
+ // as infinity. |
+ ASSERT(buffer_pos < kBufferSize); |
+ buffer[buffer_pos++] = static_cast<char>(*current); |
+ } |
+ ++current; |
+ if (current == end) break; |
+ } |
+ |
+ if (!allow_trailing_junk && |
+ AdvanceToNonspace(unicode_cache, ¤t, end)) { |
+ return JUNK_STRING_VALUE; |
+ } |
+ |
+ ASSERT(buffer_pos < kBufferSize); |
+ buffer[buffer_pos] = '\0'; |
+ Vector<const char> buffer_vector(buffer, buffer_pos); |
+ return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0); |
+ } |
+ |
+ // The following code causes accumulating rounding error for numbers greater |
+ // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10, |
+ // 16, or 32, then mathInt may be an implementation-dependent approximation to |
+ // the mathematical integer value" (15.1.2.2). |
+ |
+ int lim_0 = '0' + (radix < 10 ? radix : 10); |
+ int lim_a = 'a' + (radix - 10); |
+ int lim_A = 'A' + (radix - 10); |
+ |
+ // NOTE: The code for computing the value may seem a bit complex at |
+ // first glance. It is structured to use 32-bit multiply-and-add |
+ // loops as long as possible to avoid loosing precision. |
+ |
+ double v = 0.0; |
+ bool done = false; |
+ do { |
+ // Parse the longest part of the string starting at index j |
+ // possible while keeping the multiplier, and thus the part |
+ // itself, within 32 bits. |
+ unsigned int part = 0, multiplier = 1; |
+ while (true) { |
+ int d; |
+ if (*current >= '0' && *current < lim_0) { |
+ d = *current - '0'; |
+ } else if (*current >= 'a' && *current < lim_a) { |
+ d = *current - 'a' + 10; |
+ } else if (*current >= 'A' && *current < lim_A) { |
+ d = *current - 'A' + 10; |
+ } else { |
+ done = true; |
+ break; |
+ } |
+ |
+ // Update the value of the part as long as the multiplier fits |
+ // in 32 bits. When we can't guarantee that the next iteration |
+ // will not overflow the multiplier, we stop parsing the part |
+ // by leaving the loop. |
+ const unsigned int kMaximumMultiplier = 0xffffffffU / 36; |
+ uint32_t m = multiplier * radix; |
+ if (m > kMaximumMultiplier) break; |
+ part = part * radix + d; |
+ multiplier = m; |
+ ASSERT(multiplier > part); |
+ |
+ ++current; |
+ if (current == end) { |
+ done = true; |
+ break; |
+ } |
+ } |
+ |
+ // Update the value and skip the part in the string. |
+ v = v * multiplier + part; |
+ } while (!done); |
+ |
+ if (!allow_trailing_junk && |
+ AdvanceToNonspace(unicode_cache, ¤t, end)) { |
+ return JUNK_STRING_VALUE; |
+ } |
+ |
+ return negative ? -v : v; |
+} |
+ |
+ |
+// Converts a string to a double value. Assumes the Iterator supports |
+// the following operations: |
+// 1. current == end (other ops are not allowed), current != end. |
+// 2. *current - gets the current character in the sequence. |
+// 3. ++current (advances the position). |
+template <class Iterator, class EndMark> |
+static double InternalStringToDouble(UnicodeCache* unicode_cache, |
+ Iterator current, |
+ EndMark end, |
+ int flags, |
+ double empty_string_val) { |
+ // To make sure that iterator dereferencing is valid the following |
+ // convention is used: |
+ // 1. Each '++current' statement is followed by check for equality to 'end'. |
+ // 2. If AdvanceToNonspace returned false then current == end. |
+ // 3. If 'current' becomes be equal to 'end' the function returns or goes to |
+ // 'parsing_done'. |
+ // 4. 'current' is not dereferenced after the 'parsing_done' label. |
+ // 5. Code before 'parsing_done' may rely on 'current != end'. |
+ if (!AdvanceToNonspace(unicode_cache, ¤t, end)) { |
+ return empty_string_val; |
+ } |
+ |
+ const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0; |
+ |
+ // The longest form of simplified number is: "-<significant digits>'.1eXXX\0". |
+ const int kBufferSize = kMaxSignificantDigits + 10; |
+ char buffer[kBufferSize]; // NOLINT: size is known at compile time. |
+ int buffer_pos = 0; |
+ |
+ // Exponent will be adjusted if insignificant digits of the integer part |
+ // or insignificant leading zeros of the fractional part are dropped. |
+ int exponent = 0; |
+ int significant_digits = 0; |
+ int insignificant_digits = 0; |
+ bool nonzero_digit_dropped = false; |
+ bool fractional_part = false; |
+ |
+ bool negative = false; |
+ |
+ if (*current == '+') { |
+ // Ignore leading sign. |
+ ++current; |
+ if (current == end) return JUNK_STRING_VALUE; |
+ } else if (*current == '-') { |
+ ++current; |
+ if (current == end) return JUNK_STRING_VALUE; |
+ negative = true; |
+ } |
+ |
+ static const char kInfinitySymbol[] = "Infinity"; |
+ if (*current == kInfinitySymbol[0]) { |
+ if (!SubStringEquals(¤t, end, kInfinitySymbol)) { |
+ return JUNK_STRING_VALUE; |
+ } |
+ |
+ if (!allow_trailing_junk && |
+ AdvanceToNonspace(unicode_cache, ¤t, end)) { |
+ return JUNK_STRING_VALUE; |
+ } |
+ |
+ ASSERT(buffer_pos == 0); |
+ return negative ? -V8_INFINITY : V8_INFINITY; |
+ } |
+ |
+ bool leading_zero = false; |
+ if (*current == '0') { |
+ ++current; |
+ if (current == end) return SignedZero(negative); |
+ |
+ leading_zero = true; |
+ |
+ // It could be hexadecimal value. |
+ if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { |
+ ++current; |
+ if (current == end || !isDigit(*current, 16)) { |
+ return JUNK_STRING_VALUE; // "0x". |
+ } |
+ |
+ return InternalStringToIntDouble<4>(unicode_cache, |
+ current, |
+ end, |
+ negative, |
+ allow_trailing_junk); |
+ } |
+ |
+ // Ignore leading zeros in the integer part. |
+ while (*current == '0') { |
+ ++current; |
+ if (current == end) return SignedZero(negative); |
+ } |
+ } |
+ |
+ bool octal = leading_zero && (flags & ALLOW_OCTALS) != 0; |
+ |
+ // Copy significant digits of the integer part (if any) to the buffer. |
+ while (*current >= '0' && *current <= '9') { |
+ if (significant_digits < kMaxSignificantDigits) { |
+ ASSERT(buffer_pos < kBufferSize); |
+ buffer[buffer_pos++] = static_cast<char>(*current); |
+ significant_digits++; |
+ // Will later check if it's an octal in the buffer. |
+ } else { |
+ insignificant_digits++; // Move the digit into the exponential part. |
+ nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
+ } |
+ octal = octal && *current < '8'; |
+ ++current; |
+ if (current == end) goto parsing_done; |
+ } |
+ |
+ if (significant_digits == 0) { |
+ octal = false; |
+ } |
+ |
+ if (*current == '.') { |
+ if (octal && !allow_trailing_junk) return JUNK_STRING_VALUE; |
+ if (octal) goto parsing_done; |
+ |
+ ++current; |
+ if (current == end) { |
+ if (significant_digits == 0 && !leading_zero) { |
+ return JUNK_STRING_VALUE; |
+ } else { |
+ goto parsing_done; |
+ } |
+ } |
+ |
+ if (significant_digits == 0) { |
+ // octal = false; |
+ // Integer part consists of 0 or is absent. Significant digits start after |
+ // leading zeros (if any). |
+ while (*current == '0') { |
+ ++current; |
+ if (current == end) return SignedZero(negative); |
+ exponent--; // Move this 0 into the exponent. |
+ } |
+ } |
+ |
+ // We don't emit a '.', but adjust the exponent instead. |
+ fractional_part = true; |
+ |
+ // There is a fractional part. |
+ while (*current >= '0' && *current <= '9') { |
+ if (significant_digits < kMaxSignificantDigits) { |
+ ASSERT(buffer_pos < kBufferSize); |
+ buffer[buffer_pos++] = static_cast<char>(*current); |
+ significant_digits++; |
+ exponent--; |
+ } else { |
+ // Ignore insignificant digits in the fractional part. |
+ nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
+ } |
+ ++current; |
+ if (current == end) goto parsing_done; |
+ } |
+ } |
+ |
+ if (!leading_zero && exponent == 0 && significant_digits == 0) { |
+ // If leading_zeros is true then the string contains zeros. |
+ // If exponent < 0 then string was [+-]\.0*... |
+ // If significant_digits != 0 the string is not equal to 0. |
+ // Otherwise there are no digits in the string. |
+ return JUNK_STRING_VALUE; |
+ } |
+ |
+ // Parse exponential part. |
+ if (*current == 'e' || *current == 'E') { |
+ if (octal) return JUNK_STRING_VALUE; |
+ ++current; |
+ if (current == end) { |
+ if (allow_trailing_junk) { |
+ goto parsing_done; |
+ } else { |
+ return JUNK_STRING_VALUE; |
+ } |
+ } |
+ char sign = '+'; |
+ if (*current == '+' || *current == '-') { |
+ sign = static_cast<char>(*current); |
+ ++current; |
+ if (current == end) { |
+ if (allow_trailing_junk) { |
+ goto parsing_done; |
+ } else { |
+ return JUNK_STRING_VALUE; |
+ } |
+ } |
+ } |
+ |
+ if (current == end || *current < '0' || *current > '9') { |
+ if (allow_trailing_junk) { |
+ goto parsing_done; |
+ } else { |
+ return JUNK_STRING_VALUE; |
+ } |
+ } |
+ |
+ const int max_exponent = INT_MAX / 2; |
+ ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); |
+ int num = 0; |
+ do { |
+ // Check overflow. |
+ int digit = *current - '0'; |
+ if (num >= max_exponent / 10 |
+ && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { |
+ num = max_exponent; |
+ } else { |
+ num = num * 10 + digit; |
+ } |
+ ++current; |
+ } while (current != end && *current >= '0' && *current <= '9'); |
+ |
+ exponent += (sign == '-' ? -num : num); |
+ } |
+ |
+ if (!allow_trailing_junk && |
+ AdvanceToNonspace(unicode_cache, ¤t, end)) { |
+ return JUNK_STRING_VALUE; |
+ } |
+ |
+ parsing_done: |
+ exponent += insignificant_digits; |
+ |
+ if (octal) { |
+ return InternalStringToIntDouble<3>(unicode_cache, |
+ buffer, |
+ buffer + buffer_pos, |
+ negative, |
+ allow_trailing_junk); |
+ } |
+ |
+ if (nonzero_digit_dropped) { |
+ buffer[buffer_pos++] = '1'; |
+ exponent--; |
+ } |
+ |
+ ASSERT(buffer_pos < kBufferSize); |
+ buffer[buffer_pos] = '\0'; |
+ |
+ double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); |
+ return negative ? -converted : converted; |
+} |
+ |
} } // namespace v8::internal |
#endif // V8_CONVERSIONS_INL_H_ |