| Index: src/conversions-inl.h
|
| diff --git a/src/conversions-inl.h b/src/conversions-inl.h
|
| index cb7dbf88d2a32d7f132fcc5e9e76da60102b461e..bb24a9c2b76e9b06054c89ca47e2de6f6ec26c06 100644
|
| --- a/src/conversions-inl.h
|
| +++ b/src/conversions-inl.h
|
| @@ -1,4 +1,4 @@
|
| -// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
| +// Copyright 2011 the V8 project authors. All rights reserved.
|
| // Redistribution and use in source and binary forms, with or without
|
| // modification, are permitted provided that the following conditions are
|
| // met:
|
| @@ -28,14 +28,16 @@
|
| #ifndef V8_CONVERSIONS_INL_H_
|
| #define V8_CONVERSIONS_INL_H_
|
|
|
| +#include <limits.h> // Required for INT_MAX etc.
|
| #include <math.h>
|
| -#include <float.h> // required for DBL_MAX and on Win32 for finite()
|
| +#include <float.h> // Required for DBL_MAX and on Win32 for finite()
|
| #include <stdarg.h>
|
|
|
| // ----------------------------------------------------------------------------
|
| // Extra POSIX/ANSI functions for Win32/MSVC.
|
|
|
| #include "conversions.h"
|
| +#include "strtod.h"
|
| #include "platform.h"
|
|
|
| namespace v8 {
|
| @@ -77,18 +79,6 @@ static inline double DoubleToInteger(double x) {
|
| }
|
|
|
|
|
| -int32_t NumberToInt32(Object* number) {
|
| - if (number->IsSmi()) return Smi::cast(number)->value();
|
| - return DoubleToInt32(number->Number());
|
| -}
|
| -
|
| -
|
| -uint32_t NumberToUint32(Object* number) {
|
| - if (number->IsSmi()) return Smi::cast(number)->value();
|
| - return DoubleToUint32(number->Number());
|
| -}
|
| -
|
| -
|
| int32_t DoubleToInt32(double x) {
|
| int32_t i = FastD2I(x);
|
| if (FastI2D(i) == x) return i;
|
| @@ -101,6 +91,572 @@ int32_t DoubleToInt32(double x) {
|
| }
|
|
|
|
|
| +template <class Iterator, class EndMark>
|
| +static bool SubStringEquals(Iterator* current,
|
| + EndMark end,
|
| + const char* substring) {
|
| + ASSERT(**current == *substring);
|
| + for (substring++; *substring != '\0'; substring++) {
|
| + ++*current;
|
| + if (*current == end || **current != *substring) return false;
|
| + }
|
| + ++*current;
|
| + return true;
|
| +}
|
| +
|
| +
|
| +// Returns true if a nonspace character has been found and false if the
|
| +// end was been reached before finding a nonspace character.
|
| +template <class Iterator, class EndMark>
|
| +static inline bool AdvanceToNonspace(UnicodeCache* unicode_cache,
|
| + Iterator* current,
|
| + EndMark end) {
|
| + while (*current != end) {
|
| + if (!unicode_cache->IsWhiteSpace(**current)) return true;
|
| + ++*current;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
|
| +template <int radix_log_2, class Iterator, class EndMark>
|
| +static double InternalStringToIntDouble(UnicodeCache* unicode_cache,
|
| + Iterator current,
|
| + EndMark end,
|
| + bool negative,
|
| + bool allow_trailing_junk) {
|
| + ASSERT(current != end);
|
| +
|
| + // Skip leading 0s.
|
| + while (*current == '0') {
|
| + ++current;
|
| + if (current == end) return SignedZero(negative);
|
| + }
|
| +
|
| + int64_t number = 0;
|
| + int exponent = 0;
|
| + const int radix = (1 << radix_log_2);
|
| +
|
| + do {
|
| + int digit;
|
| + if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
|
| + digit = static_cast<char>(*current) - '0';
|
| + } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
|
| + digit = static_cast<char>(*current) - 'a' + 10;
|
| + } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
|
| + digit = static_cast<char>(*current) - 'A' + 10;
|
| + } else {
|
| + if (allow_trailing_junk ||
|
| + !AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
| + break;
|
| + } else {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| + }
|
| +
|
| + number = number * radix + digit;
|
| + int overflow = static_cast<int>(number >> 53);
|
| + if (overflow != 0) {
|
| + // Overflow occurred. Need to determine which direction to round the
|
| + // result.
|
| + int overflow_bits_count = 1;
|
| + while (overflow > 1) {
|
| + overflow_bits_count++;
|
| + overflow >>= 1;
|
| + }
|
| +
|
| + int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
|
| + int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
|
| + number >>= overflow_bits_count;
|
| + exponent = overflow_bits_count;
|
| +
|
| + bool zero_tail = true;
|
| + while (true) {
|
| + ++current;
|
| + if (current == end || !isDigit(*current, radix)) break;
|
| + zero_tail = zero_tail && *current == '0';
|
| + exponent += radix_log_2;
|
| + }
|
| +
|
| + if (!allow_trailing_junk &&
|
| + AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| +
|
| + int middle_value = (1 << (overflow_bits_count - 1));
|
| + if (dropped_bits > middle_value) {
|
| + number++; // Rounding up.
|
| + } else if (dropped_bits == middle_value) {
|
| + // Rounding to even to consistency with decimals: half-way case rounds
|
| + // up if significant part is odd and down otherwise.
|
| + if ((number & 1) != 0 || !zero_tail) {
|
| + number++; // Rounding up.
|
| + }
|
| + }
|
| +
|
| + // Rounding up may cause overflow.
|
| + if ((number & ((int64_t)1 << 53)) != 0) {
|
| + exponent++;
|
| + number >>= 1;
|
| + }
|
| + break;
|
| + }
|
| + ++current;
|
| + } while (current != end);
|
| +
|
| + ASSERT(number < ((int64_t)1 << 53));
|
| + ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
|
| +
|
| + if (exponent == 0) {
|
| + if (negative) {
|
| + if (number == 0) return -0.0;
|
| + number = -number;
|
| + }
|
| + return static_cast<double>(number);
|
| + }
|
| +
|
| + ASSERT(number != 0);
|
| + // The double could be constructed faster from number (mantissa), exponent
|
| + // and sign. Assuming it's a rare case more simple code is used.
|
| + return static_cast<double>(negative ? -number : number) * pow(2.0, exponent);
|
| +}
|
| +
|
| +
|
| +template <class Iterator, class EndMark>
|
| +static double InternalStringToInt(UnicodeCache* unicode_cache,
|
| + Iterator current,
|
| + EndMark end,
|
| + int radix) {
|
| + const bool allow_trailing_junk = true;
|
| + const double empty_string_val = JUNK_STRING_VALUE;
|
| +
|
| + if (!AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
| + return empty_string_val;
|
| + }
|
| +
|
| + bool negative = false;
|
| + bool leading_zero = false;
|
| +
|
| + if (*current == '+') {
|
| + // Ignore leading sign; skip following spaces.
|
| + ++current;
|
| + if (current == end) {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| + } else if (*current == '-') {
|
| + ++current;
|
| + if (current == end) {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| + negative = true;
|
| + }
|
| +
|
| + if (radix == 0) {
|
| + // Radix detection.
|
| + if (*current == '0') {
|
| + ++current;
|
| + if (current == end) return SignedZero(negative);
|
| + if (*current == 'x' || *current == 'X') {
|
| + radix = 16;
|
| + ++current;
|
| + if (current == end) return JUNK_STRING_VALUE;
|
| + } else {
|
| + radix = 8;
|
| + leading_zero = true;
|
| + }
|
| + } else {
|
| + radix = 10;
|
| + }
|
| + } else if (radix == 16) {
|
| + if (*current == '0') {
|
| + // Allow "0x" prefix.
|
| + ++current;
|
| + if (current == end) return SignedZero(negative);
|
| + if (*current == 'x' || *current == 'X') {
|
| + ++current;
|
| + if (current == end) return JUNK_STRING_VALUE;
|
| + } else {
|
| + leading_zero = true;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if (radix < 2 || radix > 36) return JUNK_STRING_VALUE;
|
| +
|
| + // Skip leading zeros.
|
| + while (*current == '0') {
|
| + leading_zero = true;
|
| + ++current;
|
| + if (current == end) return SignedZero(negative);
|
| + }
|
| +
|
| + if (!leading_zero && !isDigit(*current, radix)) {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| +
|
| + if (IsPowerOf2(radix)) {
|
| + switch (radix) {
|
| + case 2:
|
| + return InternalStringToIntDouble<1>(
|
| + unicode_cache, current, end, negative, allow_trailing_junk);
|
| + case 4:
|
| + return InternalStringToIntDouble<2>(
|
| + unicode_cache, current, end, negative, allow_trailing_junk);
|
| + case 8:
|
| + return InternalStringToIntDouble<3>(
|
| + unicode_cache, current, end, negative, allow_trailing_junk);
|
| +
|
| + case 16:
|
| + return InternalStringToIntDouble<4>(
|
| + unicode_cache, current, end, negative, allow_trailing_junk);
|
| +
|
| + case 32:
|
| + return InternalStringToIntDouble<5>(
|
| + unicode_cache, current, end, negative, allow_trailing_junk);
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + }
|
| +
|
| + if (radix == 10) {
|
| + // Parsing with strtod.
|
| + const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308.
|
| + // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
|
| + // end.
|
| + const int kBufferSize = kMaxSignificantDigits + 2;
|
| + char buffer[kBufferSize];
|
| + int buffer_pos = 0;
|
| + while (*current >= '0' && *current <= '9') {
|
| + if (buffer_pos <= kMaxSignificantDigits) {
|
| + // If the number has more than kMaxSignificantDigits it will be parsed
|
| + // as infinity.
|
| + ASSERT(buffer_pos < kBufferSize);
|
| + buffer[buffer_pos++] = static_cast<char>(*current);
|
| + }
|
| + ++current;
|
| + if (current == end) break;
|
| + }
|
| +
|
| + if (!allow_trailing_junk &&
|
| + AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| +
|
| + ASSERT(buffer_pos < kBufferSize);
|
| + buffer[buffer_pos] = '\0';
|
| + Vector<const char> buffer_vector(buffer, buffer_pos);
|
| + return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0);
|
| + }
|
| +
|
| + // The following code causes accumulating rounding error for numbers greater
|
| + // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
|
| + // 16, or 32, then mathInt may be an implementation-dependent approximation to
|
| + // the mathematical integer value" (15.1.2.2).
|
| +
|
| + int lim_0 = '0' + (radix < 10 ? radix : 10);
|
| + int lim_a = 'a' + (radix - 10);
|
| + int lim_A = 'A' + (radix - 10);
|
| +
|
| + // NOTE: The code for computing the value may seem a bit complex at
|
| + // first glance. It is structured to use 32-bit multiply-and-add
|
| + // loops as long as possible to avoid loosing precision.
|
| +
|
| + double v = 0.0;
|
| + bool done = false;
|
| + do {
|
| + // Parse the longest part of the string starting at index j
|
| + // possible while keeping the multiplier, and thus the part
|
| + // itself, within 32 bits.
|
| + unsigned int part = 0, multiplier = 1;
|
| + while (true) {
|
| + int d;
|
| + if (*current >= '0' && *current < lim_0) {
|
| + d = *current - '0';
|
| + } else if (*current >= 'a' && *current < lim_a) {
|
| + d = *current - 'a' + 10;
|
| + } else if (*current >= 'A' && *current < lim_A) {
|
| + d = *current - 'A' + 10;
|
| + } else {
|
| + done = true;
|
| + break;
|
| + }
|
| +
|
| + // Update the value of the part as long as the multiplier fits
|
| + // in 32 bits. When we can't guarantee that the next iteration
|
| + // will not overflow the multiplier, we stop parsing the part
|
| + // by leaving the loop.
|
| + const unsigned int kMaximumMultiplier = 0xffffffffU / 36;
|
| + uint32_t m = multiplier * radix;
|
| + if (m > kMaximumMultiplier) break;
|
| + part = part * radix + d;
|
| + multiplier = m;
|
| + ASSERT(multiplier > part);
|
| +
|
| + ++current;
|
| + if (current == end) {
|
| + done = true;
|
| + break;
|
| + }
|
| + }
|
| +
|
| + // Update the value and skip the part in the string.
|
| + v = v * multiplier + part;
|
| + } while (!done);
|
| +
|
| + if (!allow_trailing_junk &&
|
| + AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| +
|
| + return negative ? -v : v;
|
| +}
|
| +
|
| +
|
| +// Converts a string to a double value. Assumes the Iterator supports
|
| +// the following operations:
|
| +// 1. current == end (other ops are not allowed), current != end.
|
| +// 2. *current - gets the current character in the sequence.
|
| +// 3. ++current (advances the position).
|
| +template <class Iterator, class EndMark>
|
| +static double InternalStringToDouble(UnicodeCache* unicode_cache,
|
| + Iterator current,
|
| + EndMark end,
|
| + int flags,
|
| + double empty_string_val) {
|
| + // To make sure that iterator dereferencing is valid the following
|
| + // convention is used:
|
| + // 1. Each '++current' statement is followed by check for equality to 'end'.
|
| + // 2. If AdvanceToNonspace returned false then current == end.
|
| + // 3. If 'current' becomes be equal to 'end' the function returns or goes to
|
| + // 'parsing_done'.
|
| + // 4. 'current' is not dereferenced after the 'parsing_done' label.
|
| + // 5. Code before 'parsing_done' may rely on 'current != end'.
|
| + if (!AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
| + return empty_string_val;
|
| + }
|
| +
|
| + const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;
|
| +
|
| + // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
|
| + const int kBufferSize = kMaxSignificantDigits + 10;
|
| + char buffer[kBufferSize]; // NOLINT: size is known at compile time.
|
| + int buffer_pos = 0;
|
| +
|
| + // Exponent will be adjusted if insignificant digits of the integer part
|
| + // or insignificant leading zeros of the fractional part are dropped.
|
| + int exponent = 0;
|
| + int significant_digits = 0;
|
| + int insignificant_digits = 0;
|
| + bool nonzero_digit_dropped = false;
|
| + bool fractional_part = false;
|
| +
|
| + bool negative = false;
|
| +
|
| + if (*current == '+') {
|
| + // Ignore leading sign.
|
| + ++current;
|
| + if (current == end) return JUNK_STRING_VALUE;
|
| + } else if (*current == '-') {
|
| + ++current;
|
| + if (current == end) return JUNK_STRING_VALUE;
|
| + negative = true;
|
| + }
|
| +
|
| + static const char kInfinitySymbol[] = "Infinity";
|
| + if (*current == kInfinitySymbol[0]) {
|
| + if (!SubStringEquals(¤t, end, kInfinitySymbol)) {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| +
|
| + if (!allow_trailing_junk &&
|
| + AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| +
|
| + ASSERT(buffer_pos == 0);
|
| + return negative ? -V8_INFINITY : V8_INFINITY;
|
| + }
|
| +
|
| + bool leading_zero = false;
|
| + if (*current == '0') {
|
| + ++current;
|
| + if (current == end) return SignedZero(negative);
|
| +
|
| + leading_zero = true;
|
| +
|
| + // It could be hexadecimal value.
|
| + if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
|
| + ++current;
|
| + if (current == end || !isDigit(*current, 16)) {
|
| + return JUNK_STRING_VALUE; // "0x".
|
| + }
|
| +
|
| + return InternalStringToIntDouble<4>(unicode_cache,
|
| + current,
|
| + end,
|
| + negative,
|
| + allow_trailing_junk);
|
| + }
|
| +
|
| + // Ignore leading zeros in the integer part.
|
| + while (*current == '0') {
|
| + ++current;
|
| + if (current == end) return SignedZero(negative);
|
| + }
|
| + }
|
| +
|
| + bool octal = leading_zero && (flags & ALLOW_OCTALS) != 0;
|
| +
|
| + // Copy significant digits of the integer part (if any) to the buffer.
|
| + while (*current >= '0' && *current <= '9') {
|
| + if (significant_digits < kMaxSignificantDigits) {
|
| + ASSERT(buffer_pos < kBufferSize);
|
| + buffer[buffer_pos++] = static_cast<char>(*current);
|
| + significant_digits++;
|
| + // Will later check if it's an octal in the buffer.
|
| + } else {
|
| + insignificant_digits++; // Move the digit into the exponential part.
|
| + nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
|
| + }
|
| + octal = octal && *current < '8';
|
| + ++current;
|
| + if (current == end) goto parsing_done;
|
| + }
|
| +
|
| + if (significant_digits == 0) {
|
| + octal = false;
|
| + }
|
| +
|
| + if (*current == '.') {
|
| + if (octal && !allow_trailing_junk) return JUNK_STRING_VALUE;
|
| + if (octal) goto parsing_done;
|
| +
|
| + ++current;
|
| + if (current == end) {
|
| + if (significant_digits == 0 && !leading_zero) {
|
| + return JUNK_STRING_VALUE;
|
| + } else {
|
| + goto parsing_done;
|
| + }
|
| + }
|
| +
|
| + if (significant_digits == 0) {
|
| + // octal = false;
|
| + // Integer part consists of 0 or is absent. Significant digits start after
|
| + // leading zeros (if any).
|
| + while (*current == '0') {
|
| + ++current;
|
| + if (current == end) return SignedZero(negative);
|
| + exponent--; // Move this 0 into the exponent.
|
| + }
|
| + }
|
| +
|
| + // We don't emit a '.', but adjust the exponent instead.
|
| + fractional_part = true;
|
| +
|
| + // There is a fractional part.
|
| + while (*current >= '0' && *current <= '9') {
|
| + if (significant_digits < kMaxSignificantDigits) {
|
| + ASSERT(buffer_pos < kBufferSize);
|
| + buffer[buffer_pos++] = static_cast<char>(*current);
|
| + significant_digits++;
|
| + exponent--;
|
| + } else {
|
| + // Ignore insignificant digits in the fractional part.
|
| + nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
|
| + }
|
| + ++current;
|
| + if (current == end) goto parsing_done;
|
| + }
|
| + }
|
| +
|
| + if (!leading_zero && exponent == 0 && significant_digits == 0) {
|
| + // If leading_zeros is true then the string contains zeros.
|
| + // If exponent < 0 then string was [+-]\.0*...
|
| + // If significant_digits != 0 the string is not equal to 0.
|
| + // Otherwise there are no digits in the string.
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| +
|
| + // Parse exponential part.
|
| + if (*current == 'e' || *current == 'E') {
|
| + if (octal) return JUNK_STRING_VALUE;
|
| + ++current;
|
| + if (current == end) {
|
| + if (allow_trailing_junk) {
|
| + goto parsing_done;
|
| + } else {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| + }
|
| + char sign = '+';
|
| + if (*current == '+' || *current == '-') {
|
| + sign = static_cast<char>(*current);
|
| + ++current;
|
| + if (current == end) {
|
| + if (allow_trailing_junk) {
|
| + goto parsing_done;
|
| + } else {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if (current == end || *current < '0' || *current > '9') {
|
| + if (allow_trailing_junk) {
|
| + goto parsing_done;
|
| + } else {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| + }
|
| +
|
| + const int max_exponent = INT_MAX / 2;
|
| + ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
|
| + int num = 0;
|
| + do {
|
| + // Check overflow.
|
| + int digit = *current - '0';
|
| + if (num >= max_exponent / 10
|
| + && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
|
| + num = max_exponent;
|
| + } else {
|
| + num = num * 10 + digit;
|
| + }
|
| + ++current;
|
| + } while (current != end && *current >= '0' && *current <= '9');
|
| +
|
| + exponent += (sign == '-' ? -num : num);
|
| + }
|
| +
|
| + if (!allow_trailing_junk &&
|
| + AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
| + return JUNK_STRING_VALUE;
|
| + }
|
| +
|
| + parsing_done:
|
| + exponent += insignificant_digits;
|
| +
|
| + if (octal) {
|
| + return InternalStringToIntDouble<3>(unicode_cache,
|
| + buffer,
|
| + buffer + buffer_pos,
|
| + negative,
|
| + allow_trailing_junk);
|
| + }
|
| +
|
| + if (nonzero_digit_dropped) {
|
| + buffer[buffer_pos++] = '1';
|
| + exponent--;
|
| + }
|
| +
|
| + ASSERT(buffer_pos < kBufferSize);
|
| + buffer[buffer_pos] = '\0';
|
| +
|
| + double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
|
| + return negative ? -converted : converted;
|
| +}
|
| +
|
| } } // namespace v8::internal
|
|
|
| #endif // V8_CONVERSIONS_INL_H_
|
|
|