OLD | NEW |
1 // Copyright 2006-2008 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
11 // with the distribution. | 11 // with the distribution. |
12 // * Neither the name of Google Inc. nor the names of its | 12 // * Neither the name of Google Inc. nor the names of its |
13 // contributors may be used to endorse or promote products derived | 13 // contributors may be used to endorse or promote products derived |
14 // from this software without specific prior written permission. | 14 // from this software without specific prior written permission. |
15 // | 15 // |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | 27 |
28 #ifndef V8_CONVERSIONS_INL_H_ | 28 #ifndef V8_CONVERSIONS_INL_H_ |
29 #define V8_CONVERSIONS_INL_H_ | 29 #define V8_CONVERSIONS_INL_H_ |
30 | 30 |
| 31 #include <limits.h> // Required for INT_MAX etc. |
31 #include <math.h> | 32 #include <math.h> |
32 #include <float.h> // required for DBL_MAX and on Win32 for finite() | 33 #include <float.h> // Required for DBL_MAX and on Win32 for finite() |
33 #include <stdarg.h> | 34 #include <stdarg.h> |
34 | 35 |
35 // ---------------------------------------------------------------------------- | 36 // ---------------------------------------------------------------------------- |
36 // Extra POSIX/ANSI functions for Win32/MSVC. | 37 // Extra POSIX/ANSI functions for Win32/MSVC. |
37 | 38 |
38 #include "conversions.h" | 39 #include "conversions.h" |
| 40 #include "strtod.h" |
39 #include "platform.h" | 41 #include "platform.h" |
40 | 42 |
41 namespace v8 { | 43 namespace v8 { |
42 namespace internal { | 44 namespace internal { |
43 | 45 |
44 // The fast double-to-unsigned-int conversion routine does not guarantee | 46 // The fast double-to-unsigned-int conversion routine does not guarantee |
45 // rounding towards zero, or any reasonable value if the argument is larger | 47 // rounding towards zero, or any reasonable value if the argument is larger |
46 // than what fits in an unsigned 32-bit integer. | 48 // than what fits in an unsigned 32-bit integer. |
47 static inline unsigned int FastD2UI(double x) { | 49 static inline unsigned int FastD2UI(double x) { |
48 // There is no unsigned version of lrint, so there is no fast path | 50 // There is no unsigned version of lrint, so there is no fast path |
(...skipping 21 matching lines...) Expand all Loading... |
70 } | 72 } |
71 | 73 |
72 | 74 |
73 static inline double DoubleToInteger(double x) { | 75 static inline double DoubleToInteger(double x) { |
74 if (isnan(x)) return 0; | 76 if (isnan(x)) return 0; |
75 if (!isfinite(x) || x == 0) return x; | 77 if (!isfinite(x) || x == 0) return x; |
76 return (x >= 0) ? floor(x) : ceil(x); | 78 return (x >= 0) ? floor(x) : ceil(x); |
77 } | 79 } |
78 | 80 |
79 | 81 |
80 int32_t NumberToInt32(Object* number) { | |
81 if (number->IsSmi()) return Smi::cast(number)->value(); | |
82 return DoubleToInt32(number->Number()); | |
83 } | |
84 | |
85 | |
86 uint32_t NumberToUint32(Object* number) { | |
87 if (number->IsSmi()) return Smi::cast(number)->value(); | |
88 return DoubleToUint32(number->Number()); | |
89 } | |
90 | |
91 | |
92 int32_t DoubleToInt32(double x) { | 82 int32_t DoubleToInt32(double x) { |
93 int32_t i = FastD2I(x); | 83 int32_t i = FastD2I(x); |
94 if (FastI2D(i) == x) return i; | 84 if (FastI2D(i) == x) return i; |
95 static const double two32 = 4294967296.0; | 85 static const double two32 = 4294967296.0; |
96 static const double two31 = 2147483648.0; | 86 static const double two31 = 2147483648.0; |
97 if (!isfinite(x) || x == 0) return 0; | 87 if (!isfinite(x) || x == 0) return 0; |
98 if (x < 0 || x >= two32) x = modulo(x, two32); | 88 if (x < 0 || x >= two32) x = modulo(x, two32); |
99 x = (x >= 0) ? floor(x) : ceil(x) + two32; | 89 x = (x >= 0) ? floor(x) : ceil(x) + two32; |
100 return (int32_t) ((x >= two31) ? x - two32 : x); | 90 return (int32_t) ((x >= two31) ? x - two32 : x); |
101 } | 91 } |
102 | 92 |
103 | 93 |
| 94 template <class Iterator, class EndMark> |
| 95 static bool SubStringEquals(Iterator* current, |
| 96 EndMark end, |
| 97 const char* substring) { |
| 98 ASSERT(**current == *substring); |
| 99 for (substring++; *substring != '\0'; substring++) { |
| 100 ++*current; |
| 101 if (*current == end || **current != *substring) return false; |
| 102 } |
| 103 ++*current; |
| 104 return true; |
| 105 } |
| 106 |
| 107 |
| 108 // Returns true if a nonspace character has been found and false if the |
| 109 // end was been reached before finding a nonspace character. |
| 110 template <class Iterator, class EndMark> |
| 111 static inline bool AdvanceToNonspace(UnicodeCache* unicode_cache, |
| 112 Iterator* current, |
| 113 EndMark end) { |
| 114 while (*current != end) { |
| 115 if (!unicode_cache->IsWhiteSpace(**current)) return true; |
| 116 ++*current; |
| 117 } |
| 118 return false; |
| 119 } |
| 120 |
| 121 |
| 122 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. |
| 123 template <int radix_log_2, class Iterator, class EndMark> |
| 124 static double InternalStringToIntDouble(UnicodeCache* unicode_cache, |
| 125 Iterator current, |
| 126 EndMark end, |
| 127 bool negative, |
| 128 bool allow_trailing_junk) { |
| 129 ASSERT(current != end); |
| 130 |
| 131 // Skip leading 0s. |
| 132 while (*current == '0') { |
| 133 ++current; |
| 134 if (current == end) return SignedZero(negative); |
| 135 } |
| 136 |
| 137 int64_t number = 0; |
| 138 int exponent = 0; |
| 139 const int radix = (1 << radix_log_2); |
| 140 |
| 141 do { |
| 142 int digit; |
| 143 if (*current >= '0' && *current <= '9' && *current < '0' + radix) { |
| 144 digit = static_cast<char>(*current) - '0'; |
| 145 } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) { |
| 146 digit = static_cast<char>(*current) - 'a' + 10; |
| 147 } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) { |
| 148 digit = static_cast<char>(*current) - 'A' + 10; |
| 149 } else { |
| 150 if (allow_trailing_junk || |
| 151 !AdvanceToNonspace(unicode_cache, ¤t, end)) { |
| 152 break; |
| 153 } else { |
| 154 return JUNK_STRING_VALUE; |
| 155 } |
| 156 } |
| 157 |
| 158 number = number * radix + digit; |
| 159 int overflow = static_cast<int>(number >> 53); |
| 160 if (overflow != 0) { |
| 161 // Overflow occurred. Need to determine which direction to round the |
| 162 // result. |
| 163 int overflow_bits_count = 1; |
| 164 while (overflow > 1) { |
| 165 overflow_bits_count++; |
| 166 overflow >>= 1; |
| 167 } |
| 168 |
| 169 int dropped_bits_mask = ((1 << overflow_bits_count) - 1); |
| 170 int dropped_bits = static_cast<int>(number) & dropped_bits_mask; |
| 171 number >>= overflow_bits_count; |
| 172 exponent = overflow_bits_count; |
| 173 |
| 174 bool zero_tail = true; |
| 175 while (true) { |
| 176 ++current; |
| 177 if (current == end || !isDigit(*current, radix)) break; |
| 178 zero_tail = zero_tail && *current == '0'; |
| 179 exponent += radix_log_2; |
| 180 } |
| 181 |
| 182 if (!allow_trailing_junk && |
| 183 AdvanceToNonspace(unicode_cache, ¤t, end)) { |
| 184 return JUNK_STRING_VALUE; |
| 185 } |
| 186 |
| 187 int middle_value = (1 << (overflow_bits_count - 1)); |
| 188 if (dropped_bits > middle_value) { |
| 189 number++; // Rounding up. |
| 190 } else if (dropped_bits == middle_value) { |
| 191 // Rounding to even to consistency with decimals: half-way case rounds |
| 192 // up if significant part is odd and down otherwise. |
| 193 if ((number & 1) != 0 || !zero_tail) { |
| 194 number++; // Rounding up. |
| 195 } |
| 196 } |
| 197 |
| 198 // Rounding up may cause overflow. |
| 199 if ((number & ((int64_t)1 << 53)) != 0) { |
| 200 exponent++; |
| 201 number >>= 1; |
| 202 } |
| 203 break; |
| 204 } |
| 205 ++current; |
| 206 } while (current != end); |
| 207 |
| 208 ASSERT(number < ((int64_t)1 << 53)); |
| 209 ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); |
| 210 |
| 211 if (exponent == 0) { |
| 212 if (negative) { |
| 213 if (number == 0) return -0.0; |
| 214 number = -number; |
| 215 } |
| 216 return static_cast<double>(number); |
| 217 } |
| 218 |
| 219 ASSERT(number != 0); |
| 220 // The double could be constructed faster from number (mantissa), exponent |
| 221 // and sign. Assuming it's a rare case more simple code is used. |
| 222 return static_cast<double>(negative ? -number : number) * pow(2.0, exponent); |
| 223 } |
| 224 |
| 225 |
| 226 template <class Iterator, class EndMark> |
| 227 static double InternalStringToInt(UnicodeCache* unicode_cache, |
| 228 Iterator current, |
| 229 EndMark end, |
| 230 int radix) { |
| 231 const bool allow_trailing_junk = true; |
| 232 const double empty_string_val = JUNK_STRING_VALUE; |
| 233 |
| 234 if (!AdvanceToNonspace(unicode_cache, ¤t, end)) { |
| 235 return empty_string_val; |
| 236 } |
| 237 |
| 238 bool negative = false; |
| 239 bool leading_zero = false; |
| 240 |
| 241 if (*current == '+') { |
| 242 // Ignore leading sign; skip following spaces. |
| 243 ++current; |
| 244 if (current == end) { |
| 245 return JUNK_STRING_VALUE; |
| 246 } |
| 247 } else if (*current == '-') { |
| 248 ++current; |
| 249 if (current == end) { |
| 250 return JUNK_STRING_VALUE; |
| 251 } |
| 252 negative = true; |
| 253 } |
| 254 |
| 255 if (radix == 0) { |
| 256 // Radix detection. |
| 257 if (*current == '0') { |
| 258 ++current; |
| 259 if (current == end) return SignedZero(negative); |
| 260 if (*current == 'x' || *current == 'X') { |
| 261 radix = 16; |
| 262 ++current; |
| 263 if (current == end) return JUNK_STRING_VALUE; |
| 264 } else { |
| 265 radix = 8; |
| 266 leading_zero = true; |
| 267 } |
| 268 } else { |
| 269 radix = 10; |
| 270 } |
| 271 } else if (radix == 16) { |
| 272 if (*current == '0') { |
| 273 // Allow "0x" prefix. |
| 274 ++current; |
| 275 if (current == end) return SignedZero(negative); |
| 276 if (*current == 'x' || *current == 'X') { |
| 277 ++current; |
| 278 if (current == end) return JUNK_STRING_VALUE; |
| 279 } else { |
| 280 leading_zero = true; |
| 281 } |
| 282 } |
| 283 } |
| 284 |
| 285 if (radix < 2 || radix > 36) return JUNK_STRING_VALUE; |
| 286 |
| 287 // Skip leading zeros. |
| 288 while (*current == '0') { |
| 289 leading_zero = true; |
| 290 ++current; |
| 291 if (current == end) return SignedZero(negative); |
| 292 } |
| 293 |
| 294 if (!leading_zero && !isDigit(*current, radix)) { |
| 295 return JUNK_STRING_VALUE; |
| 296 } |
| 297 |
| 298 if (IsPowerOf2(radix)) { |
| 299 switch (radix) { |
| 300 case 2: |
| 301 return InternalStringToIntDouble<1>( |
| 302 unicode_cache, current, end, negative, allow_trailing_junk); |
| 303 case 4: |
| 304 return InternalStringToIntDouble<2>( |
| 305 unicode_cache, current, end, negative, allow_trailing_junk); |
| 306 case 8: |
| 307 return InternalStringToIntDouble<3>( |
| 308 unicode_cache, current, end, negative, allow_trailing_junk); |
| 309 |
| 310 case 16: |
| 311 return InternalStringToIntDouble<4>( |
| 312 unicode_cache, current, end, negative, allow_trailing_junk); |
| 313 |
| 314 case 32: |
| 315 return InternalStringToIntDouble<5>( |
| 316 unicode_cache, current, end, negative, allow_trailing_junk); |
| 317 default: |
| 318 UNREACHABLE(); |
| 319 } |
| 320 } |
| 321 |
| 322 if (radix == 10) { |
| 323 // Parsing with strtod. |
| 324 const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308. |
| 325 // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero |
| 326 // end. |
| 327 const int kBufferSize = kMaxSignificantDigits + 2; |
| 328 char buffer[kBufferSize]; |
| 329 int buffer_pos = 0; |
| 330 while (*current >= '0' && *current <= '9') { |
| 331 if (buffer_pos <= kMaxSignificantDigits) { |
| 332 // If the number has more than kMaxSignificantDigits it will be parsed |
| 333 // as infinity. |
| 334 ASSERT(buffer_pos < kBufferSize); |
| 335 buffer[buffer_pos++] = static_cast<char>(*current); |
| 336 } |
| 337 ++current; |
| 338 if (current == end) break; |
| 339 } |
| 340 |
| 341 if (!allow_trailing_junk && |
| 342 AdvanceToNonspace(unicode_cache, ¤t, end)) { |
| 343 return JUNK_STRING_VALUE; |
| 344 } |
| 345 |
| 346 ASSERT(buffer_pos < kBufferSize); |
| 347 buffer[buffer_pos] = '\0'; |
| 348 Vector<const char> buffer_vector(buffer, buffer_pos); |
| 349 return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0); |
| 350 } |
| 351 |
| 352 // The following code causes accumulating rounding error for numbers greater |
| 353 // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10, |
| 354 // 16, or 32, then mathInt may be an implementation-dependent approximation to |
| 355 // the mathematical integer value" (15.1.2.2). |
| 356 |
| 357 int lim_0 = '0' + (radix < 10 ? radix : 10); |
| 358 int lim_a = 'a' + (radix - 10); |
| 359 int lim_A = 'A' + (radix - 10); |
| 360 |
| 361 // NOTE: The code for computing the value may seem a bit complex at |
| 362 // first glance. It is structured to use 32-bit multiply-and-add |
| 363 // loops as long as possible to avoid loosing precision. |
| 364 |
| 365 double v = 0.0; |
| 366 bool done = false; |
| 367 do { |
| 368 // Parse the longest part of the string starting at index j |
| 369 // possible while keeping the multiplier, and thus the part |
| 370 // itself, within 32 bits. |
| 371 unsigned int part = 0, multiplier = 1; |
| 372 while (true) { |
| 373 int d; |
| 374 if (*current >= '0' && *current < lim_0) { |
| 375 d = *current - '0'; |
| 376 } else if (*current >= 'a' && *current < lim_a) { |
| 377 d = *current - 'a' + 10; |
| 378 } else if (*current >= 'A' && *current < lim_A) { |
| 379 d = *current - 'A' + 10; |
| 380 } else { |
| 381 done = true; |
| 382 break; |
| 383 } |
| 384 |
| 385 // Update the value of the part as long as the multiplier fits |
| 386 // in 32 bits. When we can't guarantee that the next iteration |
| 387 // will not overflow the multiplier, we stop parsing the part |
| 388 // by leaving the loop. |
| 389 const unsigned int kMaximumMultiplier = 0xffffffffU / 36; |
| 390 uint32_t m = multiplier * radix; |
| 391 if (m > kMaximumMultiplier) break; |
| 392 part = part * radix + d; |
| 393 multiplier = m; |
| 394 ASSERT(multiplier > part); |
| 395 |
| 396 ++current; |
| 397 if (current == end) { |
| 398 done = true; |
| 399 break; |
| 400 } |
| 401 } |
| 402 |
| 403 // Update the value and skip the part in the string. |
| 404 v = v * multiplier + part; |
| 405 } while (!done); |
| 406 |
| 407 if (!allow_trailing_junk && |
| 408 AdvanceToNonspace(unicode_cache, ¤t, end)) { |
| 409 return JUNK_STRING_VALUE; |
| 410 } |
| 411 |
| 412 return negative ? -v : v; |
| 413 } |
| 414 |
| 415 |
| 416 // Converts a string to a double value. Assumes the Iterator supports |
| 417 // the following operations: |
| 418 // 1. current == end (other ops are not allowed), current != end. |
| 419 // 2. *current - gets the current character in the sequence. |
| 420 // 3. ++current (advances the position). |
| 421 template <class Iterator, class EndMark> |
| 422 static double InternalStringToDouble(UnicodeCache* unicode_cache, |
| 423 Iterator current, |
| 424 EndMark end, |
| 425 int flags, |
| 426 double empty_string_val) { |
| 427 // To make sure that iterator dereferencing is valid the following |
| 428 // convention is used: |
| 429 // 1. Each '++current' statement is followed by check for equality to 'end'. |
| 430 // 2. If AdvanceToNonspace returned false then current == end. |
| 431 // 3. If 'current' becomes be equal to 'end' the function returns or goes to |
| 432 // 'parsing_done'. |
| 433 // 4. 'current' is not dereferenced after the 'parsing_done' label. |
| 434 // 5. Code before 'parsing_done' may rely on 'current != end'. |
| 435 if (!AdvanceToNonspace(unicode_cache, ¤t, end)) { |
| 436 return empty_string_val; |
| 437 } |
| 438 |
| 439 const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0; |
| 440 |
| 441 // The longest form of simplified number is: "-<significant digits>'.1eXXX\0". |
| 442 const int kBufferSize = kMaxSignificantDigits + 10; |
| 443 char buffer[kBufferSize]; // NOLINT: size is known at compile time. |
| 444 int buffer_pos = 0; |
| 445 |
| 446 // Exponent will be adjusted if insignificant digits of the integer part |
| 447 // or insignificant leading zeros of the fractional part are dropped. |
| 448 int exponent = 0; |
| 449 int significant_digits = 0; |
| 450 int insignificant_digits = 0; |
| 451 bool nonzero_digit_dropped = false; |
| 452 bool fractional_part = false; |
| 453 |
| 454 bool negative = false; |
| 455 |
| 456 if (*current == '+') { |
| 457 // Ignore leading sign. |
| 458 ++current; |
| 459 if (current == end) return JUNK_STRING_VALUE; |
| 460 } else if (*current == '-') { |
| 461 ++current; |
| 462 if (current == end) return JUNK_STRING_VALUE; |
| 463 negative = true; |
| 464 } |
| 465 |
| 466 static const char kInfinitySymbol[] = "Infinity"; |
| 467 if (*current == kInfinitySymbol[0]) { |
| 468 if (!SubStringEquals(¤t, end, kInfinitySymbol)) { |
| 469 return JUNK_STRING_VALUE; |
| 470 } |
| 471 |
| 472 if (!allow_trailing_junk && |
| 473 AdvanceToNonspace(unicode_cache, ¤t, end)) { |
| 474 return JUNK_STRING_VALUE; |
| 475 } |
| 476 |
| 477 ASSERT(buffer_pos == 0); |
| 478 return negative ? -V8_INFINITY : V8_INFINITY; |
| 479 } |
| 480 |
| 481 bool leading_zero = false; |
| 482 if (*current == '0') { |
| 483 ++current; |
| 484 if (current == end) return SignedZero(negative); |
| 485 |
| 486 leading_zero = true; |
| 487 |
| 488 // It could be hexadecimal value. |
| 489 if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { |
| 490 ++current; |
| 491 if (current == end || !isDigit(*current, 16)) { |
| 492 return JUNK_STRING_VALUE; // "0x". |
| 493 } |
| 494 |
| 495 return InternalStringToIntDouble<4>(unicode_cache, |
| 496 current, |
| 497 end, |
| 498 negative, |
| 499 allow_trailing_junk); |
| 500 } |
| 501 |
| 502 // Ignore leading zeros in the integer part. |
| 503 while (*current == '0') { |
| 504 ++current; |
| 505 if (current == end) return SignedZero(negative); |
| 506 } |
| 507 } |
| 508 |
| 509 bool octal = leading_zero && (flags & ALLOW_OCTALS) != 0; |
| 510 |
| 511 // Copy significant digits of the integer part (if any) to the buffer. |
| 512 while (*current >= '0' && *current <= '9') { |
| 513 if (significant_digits < kMaxSignificantDigits) { |
| 514 ASSERT(buffer_pos < kBufferSize); |
| 515 buffer[buffer_pos++] = static_cast<char>(*current); |
| 516 significant_digits++; |
| 517 // Will later check if it's an octal in the buffer. |
| 518 } else { |
| 519 insignificant_digits++; // Move the digit into the exponential part. |
| 520 nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 521 } |
| 522 octal = octal && *current < '8'; |
| 523 ++current; |
| 524 if (current == end) goto parsing_done; |
| 525 } |
| 526 |
| 527 if (significant_digits == 0) { |
| 528 octal = false; |
| 529 } |
| 530 |
| 531 if (*current == '.') { |
| 532 if (octal && !allow_trailing_junk) return JUNK_STRING_VALUE; |
| 533 if (octal) goto parsing_done; |
| 534 |
| 535 ++current; |
| 536 if (current == end) { |
| 537 if (significant_digits == 0 && !leading_zero) { |
| 538 return JUNK_STRING_VALUE; |
| 539 } else { |
| 540 goto parsing_done; |
| 541 } |
| 542 } |
| 543 |
| 544 if (significant_digits == 0) { |
| 545 // octal = false; |
| 546 // Integer part consists of 0 or is absent. Significant digits start after |
| 547 // leading zeros (if any). |
| 548 while (*current == '0') { |
| 549 ++current; |
| 550 if (current == end) return SignedZero(negative); |
| 551 exponent--; // Move this 0 into the exponent. |
| 552 } |
| 553 } |
| 554 |
| 555 // We don't emit a '.', but adjust the exponent instead. |
| 556 fractional_part = true; |
| 557 |
| 558 // There is a fractional part. |
| 559 while (*current >= '0' && *current <= '9') { |
| 560 if (significant_digits < kMaxSignificantDigits) { |
| 561 ASSERT(buffer_pos < kBufferSize); |
| 562 buffer[buffer_pos++] = static_cast<char>(*current); |
| 563 significant_digits++; |
| 564 exponent--; |
| 565 } else { |
| 566 // Ignore insignificant digits in the fractional part. |
| 567 nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 568 } |
| 569 ++current; |
| 570 if (current == end) goto parsing_done; |
| 571 } |
| 572 } |
| 573 |
| 574 if (!leading_zero && exponent == 0 && significant_digits == 0) { |
| 575 // If leading_zeros is true then the string contains zeros. |
| 576 // If exponent < 0 then string was [+-]\.0*... |
| 577 // If significant_digits != 0 the string is not equal to 0. |
| 578 // Otherwise there are no digits in the string. |
| 579 return JUNK_STRING_VALUE; |
| 580 } |
| 581 |
| 582 // Parse exponential part. |
| 583 if (*current == 'e' || *current == 'E') { |
| 584 if (octal) return JUNK_STRING_VALUE; |
| 585 ++current; |
| 586 if (current == end) { |
| 587 if (allow_trailing_junk) { |
| 588 goto parsing_done; |
| 589 } else { |
| 590 return JUNK_STRING_VALUE; |
| 591 } |
| 592 } |
| 593 char sign = '+'; |
| 594 if (*current == '+' || *current == '-') { |
| 595 sign = static_cast<char>(*current); |
| 596 ++current; |
| 597 if (current == end) { |
| 598 if (allow_trailing_junk) { |
| 599 goto parsing_done; |
| 600 } else { |
| 601 return JUNK_STRING_VALUE; |
| 602 } |
| 603 } |
| 604 } |
| 605 |
| 606 if (current == end || *current < '0' || *current > '9') { |
| 607 if (allow_trailing_junk) { |
| 608 goto parsing_done; |
| 609 } else { |
| 610 return JUNK_STRING_VALUE; |
| 611 } |
| 612 } |
| 613 |
| 614 const int max_exponent = INT_MAX / 2; |
| 615 ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); |
| 616 int num = 0; |
| 617 do { |
| 618 // Check overflow. |
| 619 int digit = *current - '0'; |
| 620 if (num >= max_exponent / 10 |
| 621 && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { |
| 622 num = max_exponent; |
| 623 } else { |
| 624 num = num * 10 + digit; |
| 625 } |
| 626 ++current; |
| 627 } while (current != end && *current >= '0' && *current <= '9'); |
| 628 |
| 629 exponent += (sign == '-' ? -num : num); |
| 630 } |
| 631 |
| 632 if (!allow_trailing_junk && |
| 633 AdvanceToNonspace(unicode_cache, ¤t, end)) { |
| 634 return JUNK_STRING_VALUE; |
| 635 } |
| 636 |
| 637 parsing_done: |
| 638 exponent += insignificant_digits; |
| 639 |
| 640 if (octal) { |
| 641 return InternalStringToIntDouble<3>(unicode_cache, |
| 642 buffer, |
| 643 buffer + buffer_pos, |
| 644 negative, |
| 645 allow_trailing_junk); |
| 646 } |
| 647 |
| 648 if (nonzero_digit_dropped) { |
| 649 buffer[buffer_pos++] = '1'; |
| 650 exponent--; |
| 651 } |
| 652 |
| 653 ASSERT(buffer_pos < kBufferSize); |
| 654 buffer[buffer_pos] = '\0'; |
| 655 |
| 656 double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); |
| 657 return negative ? -converted : converted; |
| 658 } |
| 659 |
104 } } // namespace v8::internal | 660 } } // namespace v8::internal |
105 | 661 |
106 #endif // V8_CONVERSIONS_INL_H_ | 662 #endif // V8_CONVERSIONS_INL_H_ |
OLD | NEW |