Index: third_party/sqlite/src/src/test_fuzzer.c |
diff --git a/third_party/sqlite/src/src/test_fuzzer.c b/third_party/sqlite/src/src/test_fuzzer.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..cf59257175a32bfaa2b9d69eb859a0824fb6194d |
--- /dev/null |
+++ b/third_party/sqlite/src/src/test_fuzzer.c |
@@ -0,0 +1,944 @@ |
+/* |
+** 2011 March 24 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** |
+** Code for demonstartion virtual table that generates variations |
+** on an input word at increasing edit distances from the original. |
+** |
+** A fuzzer virtual table is created like this: |
+** |
+** CREATE VIRTUAL TABLE temp.f USING fuzzer; |
+** |
+** The name of the new virtual table in the example above is "f". |
+** Note that all fuzzer virtual tables must be TEMP tables. The |
+** "temp." prefix in front of the table name is required when the |
+** table is being created. The "temp." prefix can be omitted when |
+** using the table as long as the name is unambiguous. |
+** |
+** Before being used, the fuzzer needs to be programmed by giving it |
+** character transformations and a cost associated with each transformation. |
+** Examples: |
+** |
+** INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100); |
+** |
+** The above statement says that the cost of inserting a letter 'a' is |
+** 100. (All costs are integers. We recommend that costs be scaled so |
+** that the average cost is around 100.) |
+** |
+** INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87); |
+** |
+** The above statement says that the cost of deleting a single letter |
+** 'b' is 87. |
+** |
+** INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38); |
+** INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40); |
+** |
+** This third example says that the cost of transforming the single |
+** letter "o" into the two-letter sequence "oe" is 38 and that the |
+** cost of transforming "oe" back into "o" is 40. |
+** |
+** After all the transformation costs have been set, the fuzzer table |
+** can be queried as follows: |
+** |
+** SELECT word, distance FROM f |
+** WHERE word MATCH 'abcdefg' |
+** AND distance<200; |
+** |
+** This first query outputs the string "abcdefg" and all strings that |
+** can be derived from that string by appling the specified transformations. |
+** The strings are output together with their total transformation cost |
+** (called "distance") and appear in order of increasing cost. No string |
+** is output more than once. If there are multiple ways to transform the |
+** target string into the output string then the lowest cost transform is |
+** the one that is returned. In the example, the search is limited to |
+** strings with a total distance of less than 200. |
+** |
+** It is important to put some kind of a limit on the fuzzer output. This |
+** can be either in the form of a LIMIT clause at the end of the query, |
+** or better, a "distance<NNN" constraint where NNN is some number. The |
+** running time and memory requirement is exponential in the value of NNN |
+** so you want to make sure that NNN is not too big. A value of NNN that |
+** is about twice the average transformation cost seems to give good results. |
+** |
+** The fuzzer table can be useful for tasks such as spelling correction. |
+** Suppose there is a second table vocabulary(w) where the w column contains |
+** all correctly spelled words. Let $word be a word you want to look up. |
+** |
+** SELECT vocabulary.w FROM f, vocabulary |
+** WHERE f.word MATCH $word |
+** AND f.distance<=200 |
+** AND f.word=vocabulary.w |
+** LIMIT 20 |
+** |
+** The query above gives the 20 closest words to the $word being tested. |
+** (Note that for good performance, the vocubulary.w column should be |
+** indexed.) |
+** |
+** A similar query can be used to find all words in the dictionary that |
+** begin with some prefix $prefix: |
+** |
+** SELECT vocabulary.w FROM f, vocabulary |
+** WHERE f.word MATCH $prefix |
+** AND f.distance<=200 |
+** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF') |
+** LIMIT 50 |
+** |
+** This last query will show up to 50 words out of the vocabulary that |
+** match or nearly match the $prefix. |
+*/ |
+#include "sqlite3.h" |
+#include <stdlib.h> |
+#include <string.h> |
+#include <assert.h> |
+#include <stdio.h> |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ |
+/* |
+** Forward declaration of objects used by this implementation |
+*/ |
+typedef struct fuzzer_vtab fuzzer_vtab; |
+typedef struct fuzzer_cursor fuzzer_cursor; |
+typedef struct fuzzer_rule fuzzer_rule; |
+typedef struct fuzzer_seen fuzzer_seen; |
+typedef struct fuzzer_stem fuzzer_stem; |
+ |
+/* |
+** Type of the "cost" of an edit operation. Might be changed to |
+** "float" or "double" or "sqlite3_int64" in the future. |
+*/ |
+typedef int fuzzer_cost; |
+ |
+ |
+/* |
+** Each transformation rule is stored as an instance of this object. |
+** All rules are kept on a linked list sorted by rCost. |
+*/ |
+struct fuzzer_rule { |
+ fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ |
+ fuzzer_cost rCost; /* Cost of this transformation */ |
+ int nFrom, nTo; /* Length of the zFrom and zTo strings */ |
+ char *zFrom; /* Transform from */ |
+ char zTo[4]; /* Transform to (extra space appended) */ |
+}; |
+ |
+/* |
+** A stem object is used to generate variants. It is also used to record |
+** previously generated outputs. |
+** |
+** Every stem is added to a hash table as it is output. Generation of |
+** duplicate stems is suppressed. |
+** |
+** Active stems (those that might generate new outputs) are kepts on a linked |
+** list sorted by increasing cost. The cost is the sum of rBaseCost and |
+** pRule->rCost. |
+*/ |
+struct fuzzer_stem { |
+ char *zBasis; /* Word being fuzzed */ |
+ int nBasis; /* Length of the zBasis string */ |
+ const fuzzer_rule *pRule; /* Current rule to apply */ |
+ int n; /* Apply pRule at this character offset */ |
+ fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ |
+ fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ |
+ fuzzer_stem *pNext; /* Next stem in rCost order */ |
+ fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ |
+}; |
+ |
+/* |
+** A fuzzer virtual-table object |
+*/ |
+struct fuzzer_vtab { |
+ sqlite3_vtab base; /* Base class - must be first */ |
+ char *zClassName; /* Name of this class. Default: "fuzzer" */ |
+ fuzzer_rule *pRule; /* All active rules in this fuzzer */ |
+ fuzzer_rule *pNewRule; /* New rules to add when last cursor expires */ |
+ int nCursor; /* Number of active cursors */ |
+}; |
+ |
+#define FUZZER_HASH 4001 /* Hash table size */ |
+#define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */ |
+ |
+/* A fuzzer cursor object */ |
+struct fuzzer_cursor { |
+ sqlite3_vtab_cursor base; /* Base class - must be first */ |
+ sqlite3_int64 iRowid; /* The rowid of the current word */ |
+ fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */ |
+ fuzzer_cost rLimit; /* Maximum cost of any term */ |
+ fuzzer_stem *pStem; /* Stem with smallest rCostX */ |
+ fuzzer_stem *pDone; /* Stems already processed to completion */ |
+ fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */ |
+ int mxQueue; /* Largest used index in aQueue[] */ |
+ char *zBuf; /* Temporary use buffer */ |
+ int nBuf; /* Bytes allocated for zBuf */ |
+ int nStem; /* Number of stems allocated */ |
+ fuzzer_rule nullRule; /* Null rule used first */ |
+ fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ |
+}; |
+ |
+/* Methods for the fuzzer module */ |
+static int fuzzerConnect( |
+ sqlite3 *db, |
+ void *pAux, |
+ int argc, const char *const*argv, |
+ sqlite3_vtab **ppVtab, |
+ char **pzErr |
+){ |
+ fuzzer_vtab *pNew; |
+ int n; |
+ if( strcmp(argv[1],"temp")!=0 ){ |
+ *pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]); |
+ return SQLITE_ERROR; |
+ } |
+ n = strlen(argv[0]) + 1; |
+ pNew = sqlite3_malloc( sizeof(*pNew) + n ); |
+ if( pNew==0 ) return SQLITE_NOMEM; |
+ pNew->zClassName = (char*)&pNew[1]; |
+ memcpy(pNew->zClassName, argv[0], n); |
+ sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)"); |
+ memset(pNew, 0, sizeof(*pNew)); |
+ *ppVtab = &pNew->base; |
+ return SQLITE_OK; |
+} |
+/* Note that for this virtual table, the xCreate and xConnect |
+** methods are identical. */ |
+ |
+static int fuzzerDisconnect(sqlite3_vtab *pVtab){ |
+ fuzzer_vtab *p = (fuzzer_vtab*)pVtab; |
+ assert( p->nCursor==0 ); |
+ do{ |
+ while( p->pRule ){ |
+ fuzzer_rule *pRule = p->pRule; |
+ p->pRule = pRule->pNext; |
+ sqlite3_free(pRule); |
+ } |
+ p->pRule = p->pNewRule; |
+ p->pNewRule = 0; |
+ }while( p->pRule ); |
+ sqlite3_free(p); |
+ return SQLITE_OK; |
+} |
+/* The xDisconnect and xDestroy methods are also the same */ |
+ |
+/* |
+** The two input rule lists are both sorted in order of increasing |
+** cost. Merge them together into a single list, sorted by cost, and |
+** return a pointer to the head of that list. |
+*/ |
+static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ |
+ fuzzer_rule head; |
+ fuzzer_rule *pTail; |
+ |
+ pTail = &head; |
+ while( pA && pB ){ |
+ if( pA->rCost<=pB->rCost ){ |
+ pTail->pNext = pA; |
+ pTail = pA; |
+ pA = pA->pNext; |
+ }else{ |
+ pTail->pNext = pB; |
+ pTail = pB; |
+ pB = pB->pNext; |
+ } |
+ } |
+ if( pA==0 ){ |
+ pTail->pNext = pB; |
+ }else{ |
+ pTail->pNext = pA; |
+ } |
+ return head.pNext; |
+} |
+ |
+ |
+/* |
+** Open a new fuzzer cursor. |
+*/ |
+static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
+ fuzzer_vtab *p = (fuzzer_vtab*)pVTab; |
+ fuzzer_cursor *pCur; |
+ pCur = sqlite3_malloc( sizeof(*pCur) ); |
+ if( pCur==0 ) return SQLITE_NOMEM; |
+ memset(pCur, 0, sizeof(*pCur)); |
+ pCur->pVtab = p; |
+ *ppCursor = &pCur->base; |
+ if( p->nCursor==0 && p->pNewRule ){ |
+ unsigned int i; |
+ fuzzer_rule *pX; |
+ fuzzer_rule *a[15]; |
+ for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0; |
+ while( (pX = p->pNewRule)!=0 ){ |
+ p->pNewRule = pX->pNext; |
+ pX->pNext = 0; |
+ for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){ |
+ pX = fuzzerMergeRules(a[i], pX); |
+ a[i] = 0; |
+ } |
+ a[i] = fuzzerMergeRules(a[i], pX); |
+ } |
+ for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){ |
+ pX = fuzzerMergeRules(a[i], pX); |
+ } |
+ p->pRule = fuzzerMergeRules(p->pRule, pX); |
+ } |
+ p->nCursor++; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Free all stems in a list. |
+*/ |
+static void fuzzerClearStemList(fuzzer_stem *pStem){ |
+ while( pStem ){ |
+ fuzzer_stem *pNext = pStem->pNext; |
+ sqlite3_free(pStem); |
+ pStem = pNext; |
+ } |
+} |
+ |
+/* |
+** Free up all the memory allocated by a cursor. Set it rLimit to 0 |
+** to indicate that it is at EOF. |
+*/ |
+static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){ |
+ int i; |
+ fuzzerClearStemList(pCur->pStem); |
+ fuzzerClearStemList(pCur->pDone); |
+ for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]); |
+ pCur->rLimit = (fuzzer_cost)0; |
+ if( clearHash && pCur->nStem ){ |
+ pCur->mxQueue = 0; |
+ pCur->pStem = 0; |
+ pCur->pDone = 0; |
+ memset(pCur->aQueue, 0, sizeof(pCur->aQueue)); |
+ memset(pCur->apHash, 0, sizeof(pCur->apHash)); |
+ } |
+ pCur->nStem = 0; |
+} |
+ |
+/* |
+** Close a fuzzer cursor. |
+*/ |
+static int fuzzerClose(sqlite3_vtab_cursor *cur){ |
+ fuzzer_cursor *pCur = (fuzzer_cursor *)cur; |
+ fuzzerClearCursor(pCur, 0); |
+ sqlite3_free(pCur->zBuf); |
+ pCur->pVtab->nCursor--; |
+ sqlite3_free(pCur); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Compute the current output term for a fuzzer_stem. |
+*/ |
+static int fuzzerRender( |
+ fuzzer_stem *pStem, /* The stem to be rendered */ |
+ char **pzBuf, /* Write results into this buffer. realloc if needed */ |
+ int *pnBuf /* Size of the buffer */ |
+){ |
+ const fuzzer_rule *pRule = pStem->pRule; |
+ int n; |
+ char *z; |
+ |
+ n = pStem->nBasis + pRule->nTo - pRule->nFrom; |
+ if( (*pnBuf)<n+1 ){ |
+ (*pzBuf) = sqlite3_realloc((*pzBuf), n+100); |
+ if( (*pzBuf)==0 ) return SQLITE_NOMEM; |
+ (*pnBuf) = n+100; |
+ } |
+ n = pStem->n; |
+ z = *pzBuf; |
+ if( n<0 ){ |
+ memcpy(z, pStem->zBasis, pStem->nBasis+1); |
+ }else{ |
+ memcpy(z, pStem->zBasis, n); |
+ memcpy(&z[n], pRule->zTo, pRule->nTo); |
+ memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], |
+ pStem->nBasis-n-pRule->nFrom+1); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Compute a hash on zBasis. |
+*/ |
+static unsigned int fuzzerHash(const char *z){ |
+ unsigned int h = 0; |
+ while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } |
+ return h % FUZZER_HASH; |
+} |
+ |
+/* |
+** Current cost of a stem |
+*/ |
+static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){ |
+ return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost; |
+} |
+ |
+#if 0 |
+/* |
+** Print a description of a fuzzer_stem on stderr. |
+*/ |
+static void fuzzerStemPrint( |
+ const char *zPrefix, |
+ fuzzer_stem *pStem, |
+ const char *zSuffix |
+){ |
+ if( pStem->n<0 ){ |
+ fprintf(stderr, "%s[%s](%d)-->self%s", |
+ zPrefix, |
+ pStem->zBasis, pStem->rBaseCost, |
+ zSuffix |
+ ); |
+ }else{ |
+ char *zBuf = 0; |
+ int nBuf = 0; |
+ if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return; |
+ fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s", |
+ zPrefix, |
+ pStem->zBasis, pStem->rBaseCost, zBuf, pStem->, |
+ zSuffix |
+ ); |
+ sqlite3_free(zBuf); |
+ } |
+} |
+#endif |
+ |
+/* |
+** Return 1 if the string to which the cursor is point has already |
+** been emitted. Return 0 if not. Return -1 on a memory allocation |
+** failures. |
+*/ |
+static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
+ unsigned int h; |
+ fuzzer_stem *pLookup; |
+ |
+ if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ |
+ return -1; |
+ } |
+ h = fuzzerHash(pCur->zBuf); |
+ pLookup = pCur->apHash[h]; |
+ while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ |
+ pLookup = pLookup->pHash; |
+ } |
+ return pLookup!=0; |
+} |
+ |
+/* |
+** Advance a fuzzer_stem to its next value. Return 0 if there are |
+** no more values that can be generated by this fuzzer_stem. Return |
+** -1 on a memory allocation failure. |
+*/ |
+static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
+ const fuzzer_rule *pRule; |
+ while( (pRule = pStem->pRule)!=0 ){ |
+ while( pStem->n < pStem->nBasis - pRule->nFrom ){ |
+ pStem->n++; |
+ if( pRule->nFrom==0 |
+ || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 |
+ ){ |
+ /* Found a rewrite case. Make sure it is not a duplicate */ |
+ int rc = fuzzerSeen(pCur, pStem); |
+ if( rc<0 ) return -1; |
+ if( rc==0 ){ |
+ fuzzerCost(pStem); |
+ return 1; |
+ } |
+ } |
+ } |
+ pStem->n = -1; |
+ pStem->pRule = pRule->pNext; |
+ if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** The two input stem lists are both sorted in order of increasing |
+** rCostX. Merge them together into a single list, sorted by rCostX, and |
+** return a pointer to the head of that new list. |
+*/ |
+static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ |
+ fuzzer_stem head; |
+ fuzzer_stem *pTail; |
+ |
+ pTail = &head; |
+ while( pA && pB ){ |
+ if( pA->rCostX<=pB->rCostX ){ |
+ pTail->pNext = pA; |
+ pTail = pA; |
+ pA = pA->pNext; |
+ }else{ |
+ pTail->pNext = pB; |
+ pTail = pB; |
+ pB = pB->pNext; |
+ } |
+ } |
+ if( pA==0 ){ |
+ pTail->pNext = pB; |
+ }else{ |
+ pTail->pNext = pA; |
+ } |
+ return head.pNext; |
+} |
+ |
+/* |
+** Load pCur->pStem with the lowest-cost stem. Return a pointer |
+** to the lowest-cost stem. |
+*/ |
+static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){ |
+ fuzzer_stem *pBest, *pX; |
+ int iBest; |
+ int i; |
+ |
+ if( pCur->pStem==0 ){ |
+ iBest = -1; |
+ pBest = 0; |
+ for(i=0; i<=pCur->mxQueue; i++){ |
+ pX = pCur->aQueue[i]; |
+ if( pX==0 ) continue; |
+ if( pBest==0 || pBest->rCostX>pX->rCostX ){ |
+ pBest = pX; |
+ iBest = i; |
+ } |
+ } |
+ if( pBest ){ |
+ pCur->aQueue[iBest] = pBest->pNext; |
+ pBest->pNext = 0; |
+ pCur->pStem = pBest; |
+ } |
+ } |
+ return pCur->pStem; |
+} |
+ |
+/* |
+** Insert pNew into queue of pending stems. Then find the stem |
+** with the lowest rCostX and move it into pCur->pStem. |
+** list. The insert is done such the pNew is in the correct order |
+** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost. |
+*/ |
+static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){ |
+ fuzzer_stem *pX; |
+ int i; |
+ |
+ /* If pCur->pStem exists and is greater than pNew, then make pNew |
+ ** the new pCur->pStem and insert the old pCur->pStem instead. |
+ */ |
+ if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){ |
+ pNew->pNext = 0; |
+ pCur->pStem = pNew; |
+ pNew = pX; |
+ } |
+ |
+ /* Insert the new value */ |
+ pNew->pNext = 0; |
+ pX = pNew; |
+ for(i=0; i<=pCur->mxQueue; i++){ |
+ if( pCur->aQueue[i] ){ |
+ pX = fuzzerMergeStems(pX, pCur->aQueue[i]); |
+ pCur->aQueue[i] = 0; |
+ }else{ |
+ pCur->aQueue[i] = pX; |
+ break; |
+ } |
+ } |
+ if( i>pCur->mxQueue ){ |
+ if( i<FUZZER_NQUEUE ){ |
+ pCur->mxQueue = i; |
+ pCur->aQueue[i] = pX; |
+ }else{ |
+ assert( pCur->mxQueue==FUZZER_NQUEUE-1 ); |
+ pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]); |
+ pCur->aQueue[FUZZER_NQUEUE-1] = pX; |
+ } |
+ } |
+ |
+ return fuzzerLowestCostStem(pCur); |
+} |
+ |
+/* |
+** Allocate a new fuzzer_stem. Add it to the hash table but do not |
+** link it into either the pCur->pStem or pCur->pDone lists. |
+*/ |
+static fuzzer_stem *fuzzerNewStem( |
+ fuzzer_cursor *pCur, |
+ const char *zWord, |
+ fuzzer_cost rBaseCost |
+){ |
+ fuzzer_stem *pNew; |
+ unsigned int h; |
+ |
+ pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 ); |
+ if( pNew==0 ) return 0; |
+ memset(pNew, 0, sizeof(*pNew)); |
+ pNew->zBasis = (char*)&pNew[1]; |
+ pNew->nBasis = strlen(zWord); |
+ memcpy(pNew->zBasis, zWord, pNew->nBasis+1); |
+ pNew->pRule = pCur->pVtab->pRule; |
+ pNew->n = -1; |
+ pNew->rBaseCost = pNew->rCostX = rBaseCost; |
+ h = fuzzerHash(pNew->zBasis); |
+ pNew->pHash = pCur->apHash[h]; |
+ pCur->apHash[h] = pNew; |
+ pCur->nStem++; |
+ return pNew; |
+} |
+ |
+ |
+/* |
+** Advance a cursor to its next row of output |
+*/ |
+static int fuzzerNext(sqlite3_vtab_cursor *cur){ |
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
+ int rc; |
+ fuzzer_stem *pStem, *pNew; |
+ |
+ pCur->iRowid++; |
+ |
+ /* Use the element the cursor is currently point to to create |
+ ** a new stem and insert the new stem into the priority queue. |
+ */ |
+ pStem = pCur->pStem; |
+ if( pStem->rCostX>0 ){ |
+ rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf); |
+ if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; |
+ pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX); |
+ if( pNew ){ |
+ if( fuzzerAdvance(pCur, pNew)==0 ){ |
+ pNew->pNext = pCur->pDone; |
+ pCur->pDone = pNew; |
+ }else{ |
+ if( fuzzerInsert(pCur, pNew)==pNew ){ |
+ return SQLITE_OK; |
+ } |
+ } |
+ }else{ |
+ return SQLITE_NOMEM; |
+ } |
+ } |
+ |
+ /* Adjust the priority queue so that the first element of the |
+ ** stem list is the next lowest cost word. |
+ */ |
+ while( (pStem = pCur->pStem)!=0 ){ |
+ if( fuzzerAdvance(pCur, pStem) ){ |
+ pCur->pStem = 0; |
+ pStem = fuzzerInsert(pCur, pStem); |
+ if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ |
+ if( rc<0 ) return SQLITE_NOMEM; |
+ continue; |
+ } |
+ return SQLITE_OK; /* New word found */ |
+ } |
+ pCur->pStem = 0; |
+ pStem->pNext = pCur->pDone; |
+ pCur->pDone = pStem; |
+ if( fuzzerLowestCostStem(pCur) ){ |
+ rc = fuzzerSeen(pCur, pCur->pStem); |
+ if( rc<0 ) return SQLITE_NOMEM; |
+ if( rc==0 ){ |
+ return SQLITE_OK; |
+ } |
+ } |
+ } |
+ |
+ /* Reach this point only if queue has been exhausted and there is |
+ ** nothing left to be output. */ |
+ pCur->rLimit = (fuzzer_cost)0; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Called to "rewind" a cursor back to the beginning so that |
+** it starts its output over again. Always called at least once |
+** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. |
+*/ |
+static int fuzzerFilter( |
+ sqlite3_vtab_cursor *pVtabCursor, |
+ int idxNum, const char *idxStr, |
+ int argc, sqlite3_value **argv |
+){ |
+ fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; |
+ const char *zWord = 0; |
+ fuzzer_stem *pStem; |
+ |
+ fuzzerClearCursor(pCur, 1); |
+ pCur->rLimit = 2147483647; |
+ if( idxNum==1 ){ |
+ zWord = (const char*)sqlite3_value_text(argv[0]); |
+ }else if( idxNum==2 ){ |
+ pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]); |
+ }else if( idxNum==3 ){ |
+ zWord = (const char*)sqlite3_value_text(argv[0]); |
+ pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]); |
+ } |
+ if( zWord==0 ) zWord = ""; |
+ pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); |
+ if( pStem==0 ) return SQLITE_NOMEM; |
+ pCur->nullRule.pNext = pCur->pVtab->pRule; |
+ pCur->nullRule.rCost = 0; |
+ pCur->nullRule.nFrom = 0; |
+ pCur->nullRule.nTo = 0; |
+ pCur->nullRule.zFrom = ""; |
+ pStem->pRule = &pCur->nullRule; |
+ pStem->n = pStem->nBasis; |
+ pCur->iRowid = 1; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Only the word and distance columns have values. All other columns |
+** return NULL |
+*/ |
+static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
+ if( i==0 ){ |
+ /* the "word" column */ |
+ if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ |
+ return SQLITE_NOMEM; |
+ } |
+ sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); |
+ }else if( i==1 ){ |
+ /* the "distance" column */ |
+ sqlite3_result_int(ctx, pCur->pStem->rCostX); |
+ }else{ |
+ /* All other columns are NULL */ |
+ sqlite3_result_null(ctx); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** The rowid. |
+*/ |
+static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ |
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
+ *pRowid = pCur->iRowid; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal |
+** that the cursor has nothing more to output. |
+*/ |
+static int fuzzerEof(sqlite3_vtab_cursor *cur){ |
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
+ return pCur->rLimit<=(fuzzer_cost)0; |
+} |
+ |
+/* |
+** Search for terms of these forms: |
+** |
+** word MATCH $str |
+** distance < $value |
+** distance <= $value |
+** |
+** The distance< and distance<= are both treated as distance<=. |
+** The query plan number is as follows: |
+** |
+** 0: None of the terms above are found |
+** 1: There is a "word MATCH" term with $str in filter.argv[0]. |
+** 2: There is a "distance<" term with $value in filter.argv[0]. |
+** 3: Both "word MATCH" and "distance<" with $str in argv[0] and |
+** $value in argv[1]. |
+*/ |
+static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
+ int iPlan = 0; |
+ int iDistTerm = -1; |
+ int i; |
+ const struct sqlite3_index_constraint *pConstraint; |
+ pConstraint = pIdxInfo->aConstraint; |
+ for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ |
+ if( pConstraint->usable==0 ) continue; |
+ if( (iPlan & 1)==0 |
+ && pConstraint->iColumn==0 |
+ && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH |
+ ){ |
+ iPlan |= 1; |
+ pIdxInfo->aConstraintUsage[i].argvIndex = 1; |
+ pIdxInfo->aConstraintUsage[i].omit = 1; |
+ } |
+ if( (iPlan & 2)==0 |
+ && pConstraint->iColumn==1 |
+ && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT |
+ || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) |
+ ){ |
+ iPlan |= 2; |
+ iDistTerm = i; |
+ } |
+ } |
+ if( iPlan==2 ){ |
+ pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1; |
+ }else if( iPlan==3 ){ |
+ pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2; |
+ } |
+ pIdxInfo->idxNum = iPlan; |
+ if( pIdxInfo->nOrderBy==1 |
+ && pIdxInfo->aOrderBy[0].iColumn==1 |
+ && pIdxInfo->aOrderBy[0].desc==0 |
+ ){ |
+ pIdxInfo->orderByConsumed = 1; |
+ } |
+ pIdxInfo->estimatedCost = (double)10000; |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Disallow all attempts to DELETE or UPDATE. Only INSERTs are allowed. |
+** |
+** On an insert, the cFrom, cTo, and cost columns are used to construct |
+** a new rule. All other columns are ignored. The rule is ignored |
+** if cFrom and cTo are identical. A NULL value for cFrom or cTo is |
+** interpreted as an empty string. The cost must be positive. |
+*/ |
+static int fuzzerUpdate( |
+ sqlite3_vtab *pVTab, |
+ int argc, |
+ sqlite3_value **argv, |
+ sqlite_int64 *pRowid |
+){ |
+ fuzzer_vtab *p = (fuzzer_vtab*)pVTab; |
+ fuzzer_rule *pRule; |
+ const char *zFrom; |
+ int nFrom; |
+ const char *zTo; |
+ int nTo; |
+ fuzzer_cost rCost; |
+ if( argc!=7 ){ |
+ sqlite3_free(pVTab->zErrMsg); |
+ pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table", |
+ p->zClassName); |
+ return SQLITE_CONSTRAINT; |
+ } |
+ if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){ |
+ sqlite3_free(pVTab->zErrMsg); |
+ pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table", |
+ p->zClassName); |
+ return SQLITE_CONSTRAINT; |
+ } |
+ zFrom = (char*)sqlite3_value_text(argv[4]); |
+ if( zFrom==0 ) zFrom = ""; |
+ zTo = (char*)sqlite3_value_text(argv[5]); |
+ if( zTo==0 ) zTo = ""; |
+ if( strcmp(zFrom,zTo)==0 ){ |
+ /* Silently ignore null transformations */ |
+ return SQLITE_OK; |
+ } |
+ rCost = sqlite3_value_int(argv[6]); |
+ if( rCost<=0 ){ |
+ sqlite3_free(pVTab->zErrMsg); |
+ pVTab->zErrMsg = sqlite3_mprintf("cost must be positive"); |
+ return SQLITE_CONSTRAINT; |
+ } |
+ nFrom = strlen(zFrom); |
+ nTo = strlen(zTo); |
+ pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); |
+ if( pRule==0 ){ |
+ return SQLITE_NOMEM; |
+ } |
+ pRule->zFrom = &pRule->zTo[nTo+1]; |
+ pRule->nFrom = nFrom; |
+ memcpy(pRule->zFrom, zFrom, nFrom+1); |
+ memcpy(pRule->zTo, zTo, nTo+1); |
+ pRule->nTo = nTo; |
+ pRule->rCost = rCost; |
+ pRule->pNext = p->pNewRule; |
+ p->pNewRule = pRule; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** A virtual table module that provides read-only access to a |
+** Tcl global variable namespace. |
+*/ |
+static sqlite3_module fuzzerModule = { |
+ 0, /* iVersion */ |
+ fuzzerConnect, |
+ fuzzerConnect, |
+ fuzzerBestIndex, |
+ fuzzerDisconnect, |
+ fuzzerDisconnect, |
+ fuzzerOpen, /* xOpen - open a cursor */ |
+ fuzzerClose, /* xClose - close a cursor */ |
+ fuzzerFilter, /* xFilter - configure scan constraints */ |
+ fuzzerNext, /* xNext - advance a cursor */ |
+ fuzzerEof, /* xEof - check for end of scan */ |
+ fuzzerColumn, /* xColumn - read data */ |
+ fuzzerRowid, /* xRowid - read data */ |
+ fuzzerUpdate, /* xUpdate - INSERT */ |
+ 0, /* xBegin */ |
+ 0, /* xSync */ |
+ 0, /* xCommit */ |
+ 0, /* xRollback */ |
+ 0, /* xFindMethod */ |
+ 0, /* xRename */ |
+}; |
+ |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+ |
+/* |
+** Register the fuzzer virtual table |
+*/ |
+int fuzzer_register(sqlite3 *db){ |
+ int rc = SQLITE_OK; |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); |
+#endif |
+ return rc; |
+} |
+ |
+#ifdef SQLITE_TEST |
+#include <tcl.h> |
+/* |
+** Decode a pointer to an sqlite3 object. |
+*/ |
+extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); |
+ |
+/* |
+** Register the echo virtual table module. |
+*/ |
+static int register_fuzzer_module( |
+ ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ |
+ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ |
+ int objc, /* Number of arguments */ |
+ Tcl_Obj *CONST objv[] /* Command arguments */ |
+){ |
+ sqlite3 *db; |
+ if( objc!=2 ){ |
+ Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
+ return TCL_ERROR; |
+ } |
+ if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
+ fuzzer_register(db); |
+ return TCL_OK; |
+} |
+ |
+ |
+/* |
+** Register commands with the TCL interpreter. |
+*/ |
+int Sqlitetestfuzzer_Init(Tcl_Interp *interp){ |
+ static struct { |
+ char *zName; |
+ Tcl_ObjCmdProc *xProc; |
+ void *clientData; |
+ } aObjCmd[] = { |
+ { "register_fuzzer_module", register_fuzzer_module, 0 }, |
+ }; |
+ int i; |
+ for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ |
+ Tcl_CreateObjCommand(interp, aObjCmd[i].zName, |
+ aObjCmd[i].xProc, aObjCmd[i].clientData, 0); |
+ } |
+ return TCL_OK; |
+} |
+ |
+#endif /* SQLITE_TEST */ |