OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2011 March 24 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** Code for demonstartion virtual table that generates variations |
| 14 ** on an input word at increasing edit distances from the original. |
| 15 ** |
| 16 ** A fuzzer virtual table is created like this: |
| 17 ** |
| 18 ** CREATE VIRTUAL TABLE temp.f USING fuzzer; |
| 19 ** |
| 20 ** The name of the new virtual table in the example above is "f". |
| 21 ** Note that all fuzzer virtual tables must be TEMP tables. The |
| 22 ** "temp." prefix in front of the table name is required when the |
| 23 ** table is being created. The "temp." prefix can be omitted when |
| 24 ** using the table as long as the name is unambiguous. |
| 25 ** |
| 26 ** Before being used, the fuzzer needs to be programmed by giving it |
| 27 ** character transformations and a cost associated with each transformation. |
| 28 ** Examples: |
| 29 ** |
| 30 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100); |
| 31 ** |
| 32 ** The above statement says that the cost of inserting a letter 'a' is |
| 33 ** 100. (All costs are integers. We recommend that costs be scaled so |
| 34 ** that the average cost is around 100.) |
| 35 ** |
| 36 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87); |
| 37 ** |
| 38 ** The above statement says that the cost of deleting a single letter |
| 39 ** 'b' is 87. |
| 40 ** |
| 41 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38); |
| 42 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40); |
| 43 ** |
| 44 ** This third example says that the cost of transforming the single |
| 45 ** letter "o" into the two-letter sequence "oe" is 38 and that the |
| 46 ** cost of transforming "oe" back into "o" is 40. |
| 47 ** |
| 48 ** After all the transformation costs have been set, the fuzzer table |
| 49 ** can be queried as follows: |
| 50 ** |
| 51 ** SELECT word, distance FROM f |
| 52 ** WHERE word MATCH 'abcdefg' |
| 53 ** AND distance<200; |
| 54 ** |
| 55 ** This first query outputs the string "abcdefg" and all strings that |
| 56 ** can be derived from that string by appling the specified transformations. |
| 57 ** The strings are output together with their total transformation cost |
| 58 ** (called "distance") and appear in order of increasing cost. No string |
| 59 ** is output more than once. If there are multiple ways to transform the |
| 60 ** target string into the output string then the lowest cost transform is |
| 61 ** the one that is returned. In the example, the search is limited to |
| 62 ** strings with a total distance of less than 200. |
| 63 ** |
| 64 ** It is important to put some kind of a limit on the fuzzer output. This |
| 65 ** can be either in the form of a LIMIT clause at the end of the query, |
| 66 ** or better, a "distance<NNN" constraint where NNN is some number. The |
| 67 ** running time and memory requirement is exponential in the value of NNN |
| 68 ** so you want to make sure that NNN is not too big. A value of NNN that |
| 69 ** is about twice the average transformation cost seems to give good results. |
| 70 ** |
| 71 ** The fuzzer table can be useful for tasks such as spelling correction. |
| 72 ** Suppose there is a second table vocabulary(w) where the w column contains |
| 73 ** all correctly spelled words. Let $word be a word you want to look up. |
| 74 ** |
| 75 ** SELECT vocabulary.w FROM f, vocabulary |
| 76 ** WHERE f.word MATCH $word |
| 77 ** AND f.distance<=200 |
| 78 ** AND f.word=vocabulary.w |
| 79 ** LIMIT 20 |
| 80 ** |
| 81 ** The query above gives the 20 closest words to the $word being tested. |
| 82 ** (Note that for good performance, the vocubulary.w column should be |
| 83 ** indexed.) |
| 84 ** |
| 85 ** A similar query can be used to find all words in the dictionary that |
| 86 ** begin with some prefix $prefix: |
| 87 ** |
| 88 ** SELECT vocabulary.w FROM f, vocabulary |
| 89 ** WHERE f.word MATCH $prefix |
| 90 ** AND f.distance<=200 |
| 91 ** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF') |
| 92 ** LIMIT 50 |
| 93 ** |
| 94 ** This last query will show up to 50 words out of the vocabulary that |
| 95 ** match or nearly match the $prefix. |
| 96 */ |
| 97 #include "sqlite3.h" |
| 98 #include <stdlib.h> |
| 99 #include <string.h> |
| 100 #include <assert.h> |
| 101 #include <stdio.h> |
| 102 |
| 103 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 104 |
| 105 /* |
| 106 ** Forward declaration of objects used by this implementation |
| 107 */ |
| 108 typedef struct fuzzer_vtab fuzzer_vtab; |
| 109 typedef struct fuzzer_cursor fuzzer_cursor; |
| 110 typedef struct fuzzer_rule fuzzer_rule; |
| 111 typedef struct fuzzer_seen fuzzer_seen; |
| 112 typedef struct fuzzer_stem fuzzer_stem; |
| 113 |
| 114 /* |
| 115 ** Type of the "cost" of an edit operation. Might be changed to |
| 116 ** "float" or "double" or "sqlite3_int64" in the future. |
| 117 */ |
| 118 typedef int fuzzer_cost; |
| 119 |
| 120 |
| 121 /* |
| 122 ** Each transformation rule is stored as an instance of this object. |
| 123 ** All rules are kept on a linked list sorted by rCost. |
| 124 */ |
| 125 struct fuzzer_rule { |
| 126 fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ |
| 127 fuzzer_cost rCost; /* Cost of this transformation */ |
| 128 int nFrom, nTo; /* Length of the zFrom and zTo strings */ |
| 129 char *zFrom; /* Transform from */ |
| 130 char zTo[4]; /* Transform to (extra space appended) */ |
| 131 }; |
| 132 |
| 133 /* |
| 134 ** A stem object is used to generate variants. It is also used to record |
| 135 ** previously generated outputs. |
| 136 ** |
| 137 ** Every stem is added to a hash table as it is output. Generation of |
| 138 ** duplicate stems is suppressed. |
| 139 ** |
| 140 ** Active stems (those that might generate new outputs) are kepts on a linked |
| 141 ** list sorted by increasing cost. The cost is the sum of rBaseCost and |
| 142 ** pRule->rCost. |
| 143 */ |
| 144 struct fuzzer_stem { |
| 145 char *zBasis; /* Word being fuzzed */ |
| 146 int nBasis; /* Length of the zBasis string */ |
| 147 const fuzzer_rule *pRule; /* Current rule to apply */ |
| 148 int n; /* Apply pRule at this character offset */ |
| 149 fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ |
| 150 fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ |
| 151 fuzzer_stem *pNext; /* Next stem in rCost order */ |
| 152 fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ |
| 153 }; |
| 154 |
| 155 /* |
| 156 ** A fuzzer virtual-table object |
| 157 */ |
| 158 struct fuzzer_vtab { |
| 159 sqlite3_vtab base; /* Base class - must be first */ |
| 160 char *zClassName; /* Name of this class. Default: "fuzzer" */ |
| 161 fuzzer_rule *pRule; /* All active rules in this fuzzer */ |
| 162 fuzzer_rule *pNewRule; /* New rules to add when last cursor expires */ |
| 163 int nCursor; /* Number of active cursors */ |
| 164 }; |
| 165 |
| 166 #define FUZZER_HASH 4001 /* Hash table size */ |
| 167 #define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */ |
| 168 |
| 169 /* A fuzzer cursor object */ |
| 170 struct fuzzer_cursor { |
| 171 sqlite3_vtab_cursor base; /* Base class - must be first */ |
| 172 sqlite3_int64 iRowid; /* The rowid of the current word */ |
| 173 fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */ |
| 174 fuzzer_cost rLimit; /* Maximum cost of any term */ |
| 175 fuzzer_stem *pStem; /* Stem with smallest rCostX */ |
| 176 fuzzer_stem *pDone; /* Stems already processed to completion */ |
| 177 fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */ |
| 178 int mxQueue; /* Largest used index in aQueue[] */ |
| 179 char *zBuf; /* Temporary use buffer */ |
| 180 int nBuf; /* Bytes allocated for zBuf */ |
| 181 int nStem; /* Number of stems allocated */ |
| 182 fuzzer_rule nullRule; /* Null rule used first */ |
| 183 fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ |
| 184 }; |
| 185 |
| 186 /* Methods for the fuzzer module */ |
| 187 static int fuzzerConnect( |
| 188 sqlite3 *db, |
| 189 void *pAux, |
| 190 int argc, const char *const*argv, |
| 191 sqlite3_vtab **ppVtab, |
| 192 char **pzErr |
| 193 ){ |
| 194 fuzzer_vtab *pNew; |
| 195 int n; |
| 196 if( strcmp(argv[1],"temp")!=0 ){ |
| 197 *pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]); |
| 198 return SQLITE_ERROR; |
| 199 } |
| 200 n = strlen(argv[0]) + 1; |
| 201 pNew = sqlite3_malloc( sizeof(*pNew) + n ); |
| 202 if( pNew==0 ) return SQLITE_NOMEM; |
| 203 pNew->zClassName = (char*)&pNew[1]; |
| 204 memcpy(pNew->zClassName, argv[0], n); |
| 205 sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)"); |
| 206 memset(pNew, 0, sizeof(*pNew)); |
| 207 *ppVtab = &pNew->base; |
| 208 return SQLITE_OK; |
| 209 } |
| 210 /* Note that for this virtual table, the xCreate and xConnect |
| 211 ** methods are identical. */ |
| 212 |
| 213 static int fuzzerDisconnect(sqlite3_vtab *pVtab){ |
| 214 fuzzer_vtab *p = (fuzzer_vtab*)pVtab; |
| 215 assert( p->nCursor==0 ); |
| 216 do{ |
| 217 while( p->pRule ){ |
| 218 fuzzer_rule *pRule = p->pRule; |
| 219 p->pRule = pRule->pNext; |
| 220 sqlite3_free(pRule); |
| 221 } |
| 222 p->pRule = p->pNewRule; |
| 223 p->pNewRule = 0; |
| 224 }while( p->pRule ); |
| 225 sqlite3_free(p); |
| 226 return SQLITE_OK; |
| 227 } |
| 228 /* The xDisconnect and xDestroy methods are also the same */ |
| 229 |
| 230 /* |
| 231 ** The two input rule lists are both sorted in order of increasing |
| 232 ** cost. Merge them together into a single list, sorted by cost, and |
| 233 ** return a pointer to the head of that list. |
| 234 */ |
| 235 static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ |
| 236 fuzzer_rule head; |
| 237 fuzzer_rule *pTail; |
| 238 |
| 239 pTail = &head; |
| 240 while( pA && pB ){ |
| 241 if( pA->rCost<=pB->rCost ){ |
| 242 pTail->pNext = pA; |
| 243 pTail = pA; |
| 244 pA = pA->pNext; |
| 245 }else{ |
| 246 pTail->pNext = pB; |
| 247 pTail = pB; |
| 248 pB = pB->pNext; |
| 249 } |
| 250 } |
| 251 if( pA==0 ){ |
| 252 pTail->pNext = pB; |
| 253 }else{ |
| 254 pTail->pNext = pA; |
| 255 } |
| 256 return head.pNext; |
| 257 } |
| 258 |
| 259 |
| 260 /* |
| 261 ** Open a new fuzzer cursor. |
| 262 */ |
| 263 static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| 264 fuzzer_vtab *p = (fuzzer_vtab*)pVTab; |
| 265 fuzzer_cursor *pCur; |
| 266 pCur = sqlite3_malloc( sizeof(*pCur) ); |
| 267 if( pCur==0 ) return SQLITE_NOMEM; |
| 268 memset(pCur, 0, sizeof(*pCur)); |
| 269 pCur->pVtab = p; |
| 270 *ppCursor = &pCur->base; |
| 271 if( p->nCursor==0 && p->pNewRule ){ |
| 272 unsigned int i; |
| 273 fuzzer_rule *pX; |
| 274 fuzzer_rule *a[15]; |
| 275 for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0; |
| 276 while( (pX = p->pNewRule)!=0 ){ |
| 277 p->pNewRule = pX->pNext; |
| 278 pX->pNext = 0; |
| 279 for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){ |
| 280 pX = fuzzerMergeRules(a[i], pX); |
| 281 a[i] = 0; |
| 282 } |
| 283 a[i] = fuzzerMergeRules(a[i], pX); |
| 284 } |
| 285 for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){ |
| 286 pX = fuzzerMergeRules(a[i], pX); |
| 287 } |
| 288 p->pRule = fuzzerMergeRules(p->pRule, pX); |
| 289 } |
| 290 p->nCursor++; |
| 291 return SQLITE_OK; |
| 292 } |
| 293 |
| 294 /* |
| 295 ** Free all stems in a list. |
| 296 */ |
| 297 static void fuzzerClearStemList(fuzzer_stem *pStem){ |
| 298 while( pStem ){ |
| 299 fuzzer_stem *pNext = pStem->pNext; |
| 300 sqlite3_free(pStem); |
| 301 pStem = pNext; |
| 302 } |
| 303 } |
| 304 |
| 305 /* |
| 306 ** Free up all the memory allocated by a cursor. Set it rLimit to 0 |
| 307 ** to indicate that it is at EOF. |
| 308 */ |
| 309 static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){ |
| 310 int i; |
| 311 fuzzerClearStemList(pCur->pStem); |
| 312 fuzzerClearStemList(pCur->pDone); |
| 313 for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]); |
| 314 pCur->rLimit = (fuzzer_cost)0; |
| 315 if( clearHash && pCur->nStem ){ |
| 316 pCur->mxQueue = 0; |
| 317 pCur->pStem = 0; |
| 318 pCur->pDone = 0; |
| 319 memset(pCur->aQueue, 0, sizeof(pCur->aQueue)); |
| 320 memset(pCur->apHash, 0, sizeof(pCur->apHash)); |
| 321 } |
| 322 pCur->nStem = 0; |
| 323 } |
| 324 |
| 325 /* |
| 326 ** Close a fuzzer cursor. |
| 327 */ |
| 328 static int fuzzerClose(sqlite3_vtab_cursor *cur){ |
| 329 fuzzer_cursor *pCur = (fuzzer_cursor *)cur; |
| 330 fuzzerClearCursor(pCur, 0); |
| 331 sqlite3_free(pCur->zBuf); |
| 332 pCur->pVtab->nCursor--; |
| 333 sqlite3_free(pCur); |
| 334 return SQLITE_OK; |
| 335 } |
| 336 |
| 337 /* |
| 338 ** Compute the current output term for a fuzzer_stem. |
| 339 */ |
| 340 static int fuzzerRender( |
| 341 fuzzer_stem *pStem, /* The stem to be rendered */ |
| 342 char **pzBuf, /* Write results into this buffer. realloc if needed */ |
| 343 int *pnBuf /* Size of the buffer */ |
| 344 ){ |
| 345 const fuzzer_rule *pRule = pStem->pRule; |
| 346 int n; |
| 347 char *z; |
| 348 |
| 349 n = pStem->nBasis + pRule->nTo - pRule->nFrom; |
| 350 if( (*pnBuf)<n+1 ){ |
| 351 (*pzBuf) = sqlite3_realloc((*pzBuf), n+100); |
| 352 if( (*pzBuf)==0 ) return SQLITE_NOMEM; |
| 353 (*pnBuf) = n+100; |
| 354 } |
| 355 n = pStem->n; |
| 356 z = *pzBuf; |
| 357 if( n<0 ){ |
| 358 memcpy(z, pStem->zBasis, pStem->nBasis+1); |
| 359 }else{ |
| 360 memcpy(z, pStem->zBasis, n); |
| 361 memcpy(&z[n], pRule->zTo, pRule->nTo); |
| 362 memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], |
| 363 pStem->nBasis-n-pRule->nFrom+1); |
| 364 } |
| 365 return SQLITE_OK; |
| 366 } |
| 367 |
| 368 /* |
| 369 ** Compute a hash on zBasis. |
| 370 */ |
| 371 static unsigned int fuzzerHash(const char *z){ |
| 372 unsigned int h = 0; |
| 373 while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } |
| 374 return h % FUZZER_HASH; |
| 375 } |
| 376 |
| 377 /* |
| 378 ** Current cost of a stem |
| 379 */ |
| 380 static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){ |
| 381 return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost; |
| 382 } |
| 383 |
| 384 #if 0 |
| 385 /* |
| 386 ** Print a description of a fuzzer_stem on stderr. |
| 387 */ |
| 388 static void fuzzerStemPrint( |
| 389 const char *zPrefix, |
| 390 fuzzer_stem *pStem, |
| 391 const char *zSuffix |
| 392 ){ |
| 393 if( pStem->n<0 ){ |
| 394 fprintf(stderr, "%s[%s](%d)-->self%s", |
| 395 zPrefix, |
| 396 pStem->zBasis, pStem->rBaseCost, |
| 397 zSuffix |
| 398 ); |
| 399 }else{ |
| 400 char *zBuf = 0; |
| 401 int nBuf = 0; |
| 402 if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return; |
| 403 fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s", |
| 404 zPrefix, |
| 405 pStem->zBasis, pStem->rBaseCost, zBuf, pStem->, |
| 406 zSuffix |
| 407 ); |
| 408 sqlite3_free(zBuf); |
| 409 } |
| 410 } |
| 411 #endif |
| 412 |
| 413 /* |
| 414 ** Return 1 if the string to which the cursor is point has already |
| 415 ** been emitted. Return 0 if not. Return -1 on a memory allocation |
| 416 ** failures. |
| 417 */ |
| 418 static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
| 419 unsigned int h; |
| 420 fuzzer_stem *pLookup; |
| 421 |
| 422 if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ |
| 423 return -1; |
| 424 } |
| 425 h = fuzzerHash(pCur->zBuf); |
| 426 pLookup = pCur->apHash[h]; |
| 427 while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ |
| 428 pLookup = pLookup->pHash; |
| 429 } |
| 430 return pLookup!=0; |
| 431 } |
| 432 |
| 433 /* |
| 434 ** Advance a fuzzer_stem to its next value. Return 0 if there are |
| 435 ** no more values that can be generated by this fuzzer_stem. Return |
| 436 ** -1 on a memory allocation failure. |
| 437 */ |
| 438 static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
| 439 const fuzzer_rule *pRule; |
| 440 while( (pRule = pStem->pRule)!=0 ){ |
| 441 while( pStem->n < pStem->nBasis - pRule->nFrom ){ |
| 442 pStem->n++; |
| 443 if( pRule->nFrom==0 |
| 444 || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 |
| 445 ){ |
| 446 /* Found a rewrite case. Make sure it is not a duplicate */ |
| 447 int rc = fuzzerSeen(pCur, pStem); |
| 448 if( rc<0 ) return -1; |
| 449 if( rc==0 ){ |
| 450 fuzzerCost(pStem); |
| 451 return 1; |
| 452 } |
| 453 } |
| 454 } |
| 455 pStem->n = -1; |
| 456 pStem->pRule = pRule->pNext; |
| 457 if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; |
| 458 } |
| 459 return 0; |
| 460 } |
| 461 |
| 462 /* |
| 463 ** The two input stem lists are both sorted in order of increasing |
| 464 ** rCostX. Merge them together into a single list, sorted by rCostX, and |
| 465 ** return a pointer to the head of that new list. |
| 466 */ |
| 467 static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ |
| 468 fuzzer_stem head; |
| 469 fuzzer_stem *pTail; |
| 470 |
| 471 pTail = &head; |
| 472 while( pA && pB ){ |
| 473 if( pA->rCostX<=pB->rCostX ){ |
| 474 pTail->pNext = pA; |
| 475 pTail = pA; |
| 476 pA = pA->pNext; |
| 477 }else{ |
| 478 pTail->pNext = pB; |
| 479 pTail = pB; |
| 480 pB = pB->pNext; |
| 481 } |
| 482 } |
| 483 if( pA==0 ){ |
| 484 pTail->pNext = pB; |
| 485 }else{ |
| 486 pTail->pNext = pA; |
| 487 } |
| 488 return head.pNext; |
| 489 } |
| 490 |
| 491 /* |
| 492 ** Load pCur->pStem with the lowest-cost stem. Return a pointer |
| 493 ** to the lowest-cost stem. |
| 494 */ |
| 495 static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){ |
| 496 fuzzer_stem *pBest, *pX; |
| 497 int iBest; |
| 498 int i; |
| 499 |
| 500 if( pCur->pStem==0 ){ |
| 501 iBest = -1; |
| 502 pBest = 0; |
| 503 for(i=0; i<=pCur->mxQueue; i++){ |
| 504 pX = pCur->aQueue[i]; |
| 505 if( pX==0 ) continue; |
| 506 if( pBest==0 || pBest->rCostX>pX->rCostX ){ |
| 507 pBest = pX; |
| 508 iBest = i; |
| 509 } |
| 510 } |
| 511 if( pBest ){ |
| 512 pCur->aQueue[iBest] = pBest->pNext; |
| 513 pBest->pNext = 0; |
| 514 pCur->pStem = pBest; |
| 515 } |
| 516 } |
| 517 return pCur->pStem; |
| 518 } |
| 519 |
| 520 /* |
| 521 ** Insert pNew into queue of pending stems. Then find the stem |
| 522 ** with the lowest rCostX and move it into pCur->pStem. |
| 523 ** list. The insert is done such the pNew is in the correct order |
| 524 ** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost. |
| 525 */ |
| 526 static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){ |
| 527 fuzzer_stem *pX; |
| 528 int i; |
| 529 |
| 530 /* If pCur->pStem exists and is greater than pNew, then make pNew |
| 531 ** the new pCur->pStem and insert the old pCur->pStem instead. |
| 532 */ |
| 533 if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){ |
| 534 pNew->pNext = 0; |
| 535 pCur->pStem = pNew; |
| 536 pNew = pX; |
| 537 } |
| 538 |
| 539 /* Insert the new value */ |
| 540 pNew->pNext = 0; |
| 541 pX = pNew; |
| 542 for(i=0; i<=pCur->mxQueue; i++){ |
| 543 if( pCur->aQueue[i] ){ |
| 544 pX = fuzzerMergeStems(pX, pCur->aQueue[i]); |
| 545 pCur->aQueue[i] = 0; |
| 546 }else{ |
| 547 pCur->aQueue[i] = pX; |
| 548 break; |
| 549 } |
| 550 } |
| 551 if( i>pCur->mxQueue ){ |
| 552 if( i<FUZZER_NQUEUE ){ |
| 553 pCur->mxQueue = i; |
| 554 pCur->aQueue[i] = pX; |
| 555 }else{ |
| 556 assert( pCur->mxQueue==FUZZER_NQUEUE-1 ); |
| 557 pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]); |
| 558 pCur->aQueue[FUZZER_NQUEUE-1] = pX; |
| 559 } |
| 560 } |
| 561 |
| 562 return fuzzerLowestCostStem(pCur); |
| 563 } |
| 564 |
| 565 /* |
| 566 ** Allocate a new fuzzer_stem. Add it to the hash table but do not |
| 567 ** link it into either the pCur->pStem or pCur->pDone lists. |
| 568 */ |
| 569 static fuzzer_stem *fuzzerNewStem( |
| 570 fuzzer_cursor *pCur, |
| 571 const char *zWord, |
| 572 fuzzer_cost rBaseCost |
| 573 ){ |
| 574 fuzzer_stem *pNew; |
| 575 unsigned int h; |
| 576 |
| 577 pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 ); |
| 578 if( pNew==0 ) return 0; |
| 579 memset(pNew, 0, sizeof(*pNew)); |
| 580 pNew->zBasis = (char*)&pNew[1]; |
| 581 pNew->nBasis = strlen(zWord); |
| 582 memcpy(pNew->zBasis, zWord, pNew->nBasis+1); |
| 583 pNew->pRule = pCur->pVtab->pRule; |
| 584 pNew->n = -1; |
| 585 pNew->rBaseCost = pNew->rCostX = rBaseCost; |
| 586 h = fuzzerHash(pNew->zBasis); |
| 587 pNew->pHash = pCur->apHash[h]; |
| 588 pCur->apHash[h] = pNew; |
| 589 pCur->nStem++; |
| 590 return pNew; |
| 591 } |
| 592 |
| 593 |
| 594 /* |
| 595 ** Advance a cursor to its next row of output |
| 596 */ |
| 597 static int fuzzerNext(sqlite3_vtab_cursor *cur){ |
| 598 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
| 599 int rc; |
| 600 fuzzer_stem *pStem, *pNew; |
| 601 |
| 602 pCur->iRowid++; |
| 603 |
| 604 /* Use the element the cursor is currently point to to create |
| 605 ** a new stem and insert the new stem into the priority queue. |
| 606 */ |
| 607 pStem = pCur->pStem; |
| 608 if( pStem->rCostX>0 ){ |
| 609 rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf); |
| 610 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; |
| 611 pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX); |
| 612 if( pNew ){ |
| 613 if( fuzzerAdvance(pCur, pNew)==0 ){ |
| 614 pNew->pNext = pCur->pDone; |
| 615 pCur->pDone = pNew; |
| 616 }else{ |
| 617 if( fuzzerInsert(pCur, pNew)==pNew ){ |
| 618 return SQLITE_OK; |
| 619 } |
| 620 } |
| 621 }else{ |
| 622 return SQLITE_NOMEM; |
| 623 } |
| 624 } |
| 625 |
| 626 /* Adjust the priority queue so that the first element of the |
| 627 ** stem list is the next lowest cost word. |
| 628 */ |
| 629 while( (pStem = pCur->pStem)!=0 ){ |
| 630 if( fuzzerAdvance(pCur, pStem) ){ |
| 631 pCur->pStem = 0; |
| 632 pStem = fuzzerInsert(pCur, pStem); |
| 633 if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ |
| 634 if( rc<0 ) return SQLITE_NOMEM; |
| 635 continue; |
| 636 } |
| 637 return SQLITE_OK; /* New word found */ |
| 638 } |
| 639 pCur->pStem = 0; |
| 640 pStem->pNext = pCur->pDone; |
| 641 pCur->pDone = pStem; |
| 642 if( fuzzerLowestCostStem(pCur) ){ |
| 643 rc = fuzzerSeen(pCur, pCur->pStem); |
| 644 if( rc<0 ) return SQLITE_NOMEM; |
| 645 if( rc==0 ){ |
| 646 return SQLITE_OK; |
| 647 } |
| 648 } |
| 649 } |
| 650 |
| 651 /* Reach this point only if queue has been exhausted and there is |
| 652 ** nothing left to be output. */ |
| 653 pCur->rLimit = (fuzzer_cost)0; |
| 654 return SQLITE_OK; |
| 655 } |
| 656 |
| 657 /* |
| 658 ** Called to "rewind" a cursor back to the beginning so that |
| 659 ** it starts its output over again. Always called at least once |
| 660 ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. |
| 661 */ |
| 662 static int fuzzerFilter( |
| 663 sqlite3_vtab_cursor *pVtabCursor, |
| 664 int idxNum, const char *idxStr, |
| 665 int argc, sqlite3_value **argv |
| 666 ){ |
| 667 fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; |
| 668 const char *zWord = 0; |
| 669 fuzzer_stem *pStem; |
| 670 |
| 671 fuzzerClearCursor(pCur, 1); |
| 672 pCur->rLimit = 2147483647; |
| 673 if( idxNum==1 ){ |
| 674 zWord = (const char*)sqlite3_value_text(argv[0]); |
| 675 }else if( idxNum==2 ){ |
| 676 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]); |
| 677 }else if( idxNum==3 ){ |
| 678 zWord = (const char*)sqlite3_value_text(argv[0]); |
| 679 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]); |
| 680 } |
| 681 if( zWord==0 ) zWord = ""; |
| 682 pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); |
| 683 if( pStem==0 ) return SQLITE_NOMEM; |
| 684 pCur->nullRule.pNext = pCur->pVtab->pRule; |
| 685 pCur->nullRule.rCost = 0; |
| 686 pCur->nullRule.nFrom = 0; |
| 687 pCur->nullRule.nTo = 0; |
| 688 pCur->nullRule.zFrom = ""; |
| 689 pStem->pRule = &pCur->nullRule; |
| 690 pStem->n = pStem->nBasis; |
| 691 pCur->iRowid = 1; |
| 692 return SQLITE_OK; |
| 693 } |
| 694 |
| 695 /* |
| 696 ** Only the word and distance columns have values. All other columns |
| 697 ** return NULL |
| 698 */ |
| 699 static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
| 700 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
| 701 if( i==0 ){ |
| 702 /* the "word" column */ |
| 703 if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ |
| 704 return SQLITE_NOMEM; |
| 705 } |
| 706 sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); |
| 707 }else if( i==1 ){ |
| 708 /* the "distance" column */ |
| 709 sqlite3_result_int(ctx, pCur->pStem->rCostX); |
| 710 }else{ |
| 711 /* All other columns are NULL */ |
| 712 sqlite3_result_null(ctx); |
| 713 } |
| 714 return SQLITE_OK; |
| 715 } |
| 716 |
| 717 /* |
| 718 ** The rowid. |
| 719 */ |
| 720 static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ |
| 721 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
| 722 *pRowid = pCur->iRowid; |
| 723 return SQLITE_OK; |
| 724 } |
| 725 |
| 726 /* |
| 727 ** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal |
| 728 ** that the cursor has nothing more to output. |
| 729 */ |
| 730 static int fuzzerEof(sqlite3_vtab_cursor *cur){ |
| 731 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
| 732 return pCur->rLimit<=(fuzzer_cost)0; |
| 733 } |
| 734 |
| 735 /* |
| 736 ** Search for terms of these forms: |
| 737 ** |
| 738 ** word MATCH $str |
| 739 ** distance < $value |
| 740 ** distance <= $value |
| 741 ** |
| 742 ** The distance< and distance<= are both treated as distance<=. |
| 743 ** The query plan number is as follows: |
| 744 ** |
| 745 ** 0: None of the terms above are found |
| 746 ** 1: There is a "word MATCH" term with $str in filter.argv[0]. |
| 747 ** 2: There is a "distance<" term with $value in filter.argv[0]. |
| 748 ** 3: Both "word MATCH" and "distance<" with $str in argv[0] and |
| 749 ** $value in argv[1]. |
| 750 */ |
| 751 static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
| 752 int iPlan = 0; |
| 753 int iDistTerm = -1; |
| 754 int i; |
| 755 const struct sqlite3_index_constraint *pConstraint; |
| 756 pConstraint = pIdxInfo->aConstraint; |
| 757 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ |
| 758 if( pConstraint->usable==0 ) continue; |
| 759 if( (iPlan & 1)==0 |
| 760 && pConstraint->iColumn==0 |
| 761 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH |
| 762 ){ |
| 763 iPlan |= 1; |
| 764 pIdxInfo->aConstraintUsage[i].argvIndex = 1; |
| 765 pIdxInfo->aConstraintUsage[i].omit = 1; |
| 766 } |
| 767 if( (iPlan & 2)==0 |
| 768 && pConstraint->iColumn==1 |
| 769 && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT |
| 770 || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) |
| 771 ){ |
| 772 iPlan |= 2; |
| 773 iDistTerm = i; |
| 774 } |
| 775 } |
| 776 if( iPlan==2 ){ |
| 777 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1; |
| 778 }else if( iPlan==3 ){ |
| 779 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2; |
| 780 } |
| 781 pIdxInfo->idxNum = iPlan; |
| 782 if( pIdxInfo->nOrderBy==1 |
| 783 && pIdxInfo->aOrderBy[0].iColumn==1 |
| 784 && pIdxInfo->aOrderBy[0].desc==0 |
| 785 ){ |
| 786 pIdxInfo->orderByConsumed = 1; |
| 787 } |
| 788 pIdxInfo->estimatedCost = (double)10000; |
| 789 |
| 790 return SQLITE_OK; |
| 791 } |
| 792 |
| 793 /* |
| 794 ** Disallow all attempts to DELETE or UPDATE. Only INSERTs are allowed. |
| 795 ** |
| 796 ** On an insert, the cFrom, cTo, and cost columns are used to construct |
| 797 ** a new rule. All other columns are ignored. The rule is ignored |
| 798 ** if cFrom and cTo are identical. A NULL value for cFrom or cTo is |
| 799 ** interpreted as an empty string. The cost must be positive. |
| 800 */ |
| 801 static int fuzzerUpdate( |
| 802 sqlite3_vtab *pVTab, |
| 803 int argc, |
| 804 sqlite3_value **argv, |
| 805 sqlite_int64 *pRowid |
| 806 ){ |
| 807 fuzzer_vtab *p = (fuzzer_vtab*)pVTab; |
| 808 fuzzer_rule *pRule; |
| 809 const char *zFrom; |
| 810 int nFrom; |
| 811 const char *zTo; |
| 812 int nTo; |
| 813 fuzzer_cost rCost; |
| 814 if( argc!=7 ){ |
| 815 sqlite3_free(pVTab->zErrMsg); |
| 816 pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table", |
| 817 p->zClassName); |
| 818 return SQLITE_CONSTRAINT; |
| 819 } |
| 820 if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){ |
| 821 sqlite3_free(pVTab->zErrMsg); |
| 822 pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table", |
| 823 p->zClassName); |
| 824 return SQLITE_CONSTRAINT; |
| 825 } |
| 826 zFrom = (char*)sqlite3_value_text(argv[4]); |
| 827 if( zFrom==0 ) zFrom = ""; |
| 828 zTo = (char*)sqlite3_value_text(argv[5]); |
| 829 if( zTo==0 ) zTo = ""; |
| 830 if( strcmp(zFrom,zTo)==0 ){ |
| 831 /* Silently ignore null transformations */ |
| 832 return SQLITE_OK; |
| 833 } |
| 834 rCost = sqlite3_value_int(argv[6]); |
| 835 if( rCost<=0 ){ |
| 836 sqlite3_free(pVTab->zErrMsg); |
| 837 pVTab->zErrMsg = sqlite3_mprintf("cost must be positive"); |
| 838 return SQLITE_CONSTRAINT; |
| 839 } |
| 840 nFrom = strlen(zFrom); |
| 841 nTo = strlen(zTo); |
| 842 pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); |
| 843 if( pRule==0 ){ |
| 844 return SQLITE_NOMEM; |
| 845 } |
| 846 pRule->zFrom = &pRule->zTo[nTo+1]; |
| 847 pRule->nFrom = nFrom; |
| 848 memcpy(pRule->zFrom, zFrom, nFrom+1); |
| 849 memcpy(pRule->zTo, zTo, nTo+1); |
| 850 pRule->nTo = nTo; |
| 851 pRule->rCost = rCost; |
| 852 pRule->pNext = p->pNewRule; |
| 853 p->pNewRule = pRule; |
| 854 return SQLITE_OK; |
| 855 } |
| 856 |
| 857 /* |
| 858 ** A virtual table module that provides read-only access to a |
| 859 ** Tcl global variable namespace. |
| 860 */ |
| 861 static sqlite3_module fuzzerModule = { |
| 862 0, /* iVersion */ |
| 863 fuzzerConnect, |
| 864 fuzzerConnect, |
| 865 fuzzerBestIndex, |
| 866 fuzzerDisconnect, |
| 867 fuzzerDisconnect, |
| 868 fuzzerOpen, /* xOpen - open a cursor */ |
| 869 fuzzerClose, /* xClose - close a cursor */ |
| 870 fuzzerFilter, /* xFilter - configure scan constraints */ |
| 871 fuzzerNext, /* xNext - advance a cursor */ |
| 872 fuzzerEof, /* xEof - check for end of scan */ |
| 873 fuzzerColumn, /* xColumn - read data */ |
| 874 fuzzerRowid, /* xRowid - read data */ |
| 875 fuzzerUpdate, /* xUpdate - INSERT */ |
| 876 0, /* xBegin */ |
| 877 0, /* xSync */ |
| 878 0, /* xCommit */ |
| 879 0, /* xRollback */ |
| 880 0, /* xFindMethod */ |
| 881 0, /* xRename */ |
| 882 }; |
| 883 |
| 884 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 885 |
| 886 |
| 887 /* |
| 888 ** Register the fuzzer virtual table |
| 889 */ |
| 890 int fuzzer_register(sqlite3 *db){ |
| 891 int rc = SQLITE_OK; |
| 892 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 893 rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); |
| 894 #endif |
| 895 return rc; |
| 896 } |
| 897 |
| 898 #ifdef SQLITE_TEST |
| 899 #include <tcl.h> |
| 900 /* |
| 901 ** Decode a pointer to an sqlite3 object. |
| 902 */ |
| 903 extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); |
| 904 |
| 905 /* |
| 906 ** Register the echo virtual table module. |
| 907 */ |
| 908 static int register_fuzzer_module( |
| 909 ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ |
| 910 Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ |
| 911 int objc, /* Number of arguments */ |
| 912 Tcl_Obj *CONST objv[] /* Command arguments */ |
| 913 ){ |
| 914 sqlite3 *db; |
| 915 if( objc!=2 ){ |
| 916 Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
| 917 return TCL_ERROR; |
| 918 } |
| 919 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
| 920 fuzzer_register(db); |
| 921 return TCL_OK; |
| 922 } |
| 923 |
| 924 |
| 925 /* |
| 926 ** Register commands with the TCL interpreter. |
| 927 */ |
| 928 int Sqlitetestfuzzer_Init(Tcl_Interp *interp){ |
| 929 static struct { |
| 930 char *zName; |
| 931 Tcl_ObjCmdProc *xProc; |
| 932 void *clientData; |
| 933 } aObjCmd[] = { |
| 934 { "register_fuzzer_module", register_fuzzer_module, 0 }, |
| 935 }; |
| 936 int i; |
| 937 for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ |
| 938 Tcl_CreateObjCommand(interp, aObjCmd[i].zName, |
| 939 aObjCmd[i].xProc, aObjCmd[i].clientData, 0); |
| 940 } |
| 941 return TCL_OK; |
| 942 } |
| 943 |
| 944 #endif /* SQLITE_TEST */ |
OLD | NEW |