Index: src/arm/codegen-arm.cc |
diff --git a/src/arm/codegen-arm.cc b/src/arm/codegen-arm.cc |
index 7b3ea141998f1a72f6c1a4a84665fea88ff97f89..bf748a9b6ac79aeb1655e6c043e5412cc0e9c882 100644 |
--- a/src/arm/codegen-arm.cc |
+++ b/src/arm/codegen-arm.cc |
@@ -1,4 +1,4 @@ |
-// Copyright 2010 the V8 project authors. All rights reserved. |
+// Copyright 2011 the V8 project authors. All rights reserved. |
// Redistribution and use in source and binary forms, with or without |
// modification, are permitted provided that the following conditions are |
// met: |
@@ -29,56 +29,14 @@ |
#if defined(V8_TARGET_ARCH_ARM) |
-#include "bootstrapper.h" |
-#include "code-stubs.h" |
-#include "codegen-inl.h" |
-#include "compiler.h" |
-#include "debug.h" |
-#include "ic-inl.h" |
-#include "jsregexp.h" |
-#include "jump-target-inl.h" |
-#include "parser.h" |
-#include "regexp-macro-assembler.h" |
-#include "regexp-stack.h" |
-#include "register-allocator-inl.h" |
-#include "runtime.h" |
-#include "scopes.h" |
-#include "stub-cache.h" |
-#include "virtual-frame-inl.h" |
-#include "virtual-frame-arm-inl.h" |
+#include "codegen.h" |
namespace v8 { |
namespace internal { |
- |
-#define __ ACCESS_MASM(masm_) |
- |
-// ------------------------------------------------------------------------- |
-// Platform-specific DeferredCode functions. |
- |
-void DeferredCode::SaveRegisters() { |
- // On ARM you either have a completely spilled frame or you |
- // handle it yourself, but at the moment there's no automation |
- // of registers and deferred code. |
-} |
- |
- |
-void DeferredCode::RestoreRegisters() { |
-} |
- |
- |
// ------------------------------------------------------------------------- |
// Platform-specific RuntimeCallHelper functions. |
-void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
- frame_state_->frame()->AssertIsSpilled(); |
-} |
- |
- |
-void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
-} |
- |
- |
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
masm->EnterInternalFrame(); |
} |
@@ -89,7349 +47,6 @@ void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
} |
-// ------------------------------------------------------------------------- |
-// CodeGenState implementation. |
- |
-CodeGenState::CodeGenState(CodeGenerator* owner) |
- : owner_(owner), |
- previous_(owner->state()) { |
- owner->set_state(this); |
-} |
- |
- |
-ConditionCodeGenState::ConditionCodeGenState(CodeGenerator* owner, |
- JumpTarget* true_target, |
- JumpTarget* false_target) |
- : CodeGenState(owner), |
- true_target_(true_target), |
- false_target_(false_target) { |
- owner->set_state(this); |
-} |
- |
- |
-TypeInfoCodeGenState::TypeInfoCodeGenState(CodeGenerator* owner, |
- Slot* slot, |
- TypeInfo type_info) |
- : CodeGenState(owner), |
- slot_(slot) { |
- owner->set_state(this); |
- old_type_info_ = owner->set_type_info(slot, type_info); |
-} |
- |
- |
-CodeGenState::~CodeGenState() { |
- ASSERT(owner_->state() == this); |
- owner_->set_state(previous_); |
-} |
- |
- |
-TypeInfoCodeGenState::~TypeInfoCodeGenState() { |
- owner()->set_type_info(slot_, old_type_info_); |
-} |
- |
-// ------------------------------------------------------------------------- |
-// CodeGenerator implementation |
- |
-CodeGenerator::CodeGenerator(MacroAssembler* masm) |
- : deferred_(8), |
- masm_(masm), |
- info_(NULL), |
- frame_(NULL), |
- allocator_(NULL), |
- cc_reg_(al), |
- state_(NULL), |
- loop_nesting_(0), |
- type_info_(NULL), |
- function_return_(JumpTarget::BIDIRECTIONAL), |
- function_return_is_shadowed_(false) { |
-} |
- |
- |
-// Calling conventions: |
-// fp: caller's frame pointer |
-// sp: stack pointer |
-// r1: called JS function |
-// cp: callee's context |
- |
-void CodeGenerator::Generate(CompilationInfo* info) { |
- // Record the position for debugging purposes. |
- CodeForFunctionPosition(info->function()); |
- Comment cmnt(masm_, "[ function compiled by virtual frame code generator"); |
- |
- // Initialize state. |
- info_ = info; |
- |
- int slots = scope()->num_parameters() + scope()->num_stack_slots(); |
- ScopedVector<TypeInfo> type_info_array(slots); |
- for (int i = 0; i < slots; i++) { |
- type_info_array[i] = TypeInfo::Unknown(); |
- } |
- type_info_ = &type_info_array; |
- |
- ASSERT(allocator_ == NULL); |
- RegisterAllocator register_allocator(this); |
- allocator_ = ®ister_allocator; |
- ASSERT(frame_ == NULL); |
- frame_ = new VirtualFrame(); |
- cc_reg_ = al; |
- |
- // Adjust for function-level loop nesting. |
- ASSERT_EQ(0, loop_nesting_); |
- loop_nesting_ = info->is_in_loop() ? 1 : 0; |
- |
- { |
- CodeGenState state(this); |
- |
- // Entry: |
- // Stack: receiver, arguments |
- // lr: return address |
- // fp: caller's frame pointer |
- // sp: stack pointer |
- // r1: called JS function |
- // cp: callee's context |
- allocator_->Initialize(); |
- |
-#ifdef DEBUG |
- if (strlen(FLAG_stop_at) > 0 && |
- info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { |
- frame_->SpillAll(); |
- __ stop("stop-at"); |
- } |
-#endif |
- |
- frame_->Enter(); |
- // tos: code slot |
- |
- // Allocate space for locals and initialize them. This also checks |
- // for stack overflow. |
- frame_->AllocateStackSlots(); |
- |
- frame_->AssertIsSpilled(); |
- int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
- if (heap_slots > 0) { |
- // Allocate local context. |
- // Get outer context and create a new context based on it. |
- __ ldr(r0, frame_->Function()); |
- frame_->EmitPush(r0); |
- if (heap_slots <= FastNewContextStub::kMaximumSlots) { |
- FastNewContextStub stub(heap_slots); |
- frame_->CallStub(&stub, 1); |
- } else { |
- frame_->CallRuntime(Runtime::kNewContext, 1); |
- } |
- |
-#ifdef DEBUG |
- JumpTarget verified_true; |
- __ cmp(r0, cp); |
- verified_true.Branch(eq); |
- __ stop("NewContext: r0 is expected to be the same as cp"); |
- verified_true.Bind(); |
-#endif |
- // Update context local. |
- __ str(cp, frame_->Context()); |
- } |
- |
- // TODO(1241774): Improve this code: |
- // 1) only needed if we have a context |
- // 2) no need to recompute context ptr every single time |
- // 3) don't copy parameter operand code from SlotOperand! |
- { |
- Comment cmnt2(masm_, "[ copy context parameters into .context"); |
- // Note that iteration order is relevant here! If we have the same |
- // parameter twice (e.g., function (x, y, x)), and that parameter |
- // needs to be copied into the context, it must be the last argument |
- // passed to the parameter that needs to be copied. This is a rare |
- // case so we don't check for it, instead we rely on the copying |
- // order: such a parameter is copied repeatedly into the same |
- // context location and thus the last value is what is seen inside |
- // the function. |
- frame_->AssertIsSpilled(); |
- for (int i = 0; i < scope()->num_parameters(); i++) { |
- Variable* par = scope()->parameter(i); |
- Slot* slot = par->AsSlot(); |
- if (slot != NULL && slot->type() == Slot::CONTEXT) { |
- ASSERT(!scope()->is_global_scope()); // No params in global scope. |
- __ ldr(r1, frame_->ParameterAt(i)); |
- // Loads r2 with context; used below in RecordWrite. |
- __ str(r1, SlotOperand(slot, r2)); |
- // Load the offset into r3. |
- int slot_offset = |
- FixedArray::kHeaderSize + slot->index() * kPointerSize; |
- __ RecordWrite(r2, Operand(slot_offset), r3, r1); |
- } |
- } |
- } |
- |
- // Store the arguments object. This must happen after context |
- // initialization because the arguments object may be stored in |
- // the context. |
- if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { |
- StoreArgumentsObject(true); |
- } |
- |
- // Initialize ThisFunction reference if present. |
- if (scope()->is_function_scope() && scope()->function() != NULL) { |
- frame_->EmitPushRoot(Heap::kTheHoleValueRootIndex); |
- StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT); |
- } |
- |
- // Initialize the function return target after the locals are set |
- // up, because it needs the expected frame height from the frame. |
- function_return_.SetExpectedHeight(); |
- function_return_is_shadowed_ = false; |
- |
- // Generate code to 'execute' declarations and initialize functions |
- // (source elements). In case of an illegal redeclaration we need to |
- // handle that instead of processing the declarations. |
- if (scope()->HasIllegalRedeclaration()) { |
- Comment cmnt(masm_, "[ illegal redeclarations"); |
- scope()->VisitIllegalRedeclaration(this); |
- } else { |
- Comment cmnt(masm_, "[ declarations"); |
- ProcessDeclarations(scope()->declarations()); |
- // Bail out if a stack-overflow exception occurred when processing |
- // declarations. |
- if (HasStackOverflow()) return; |
- } |
- |
- if (FLAG_trace) { |
- frame_->CallRuntime(Runtime::kTraceEnter, 0); |
- // Ignore the return value. |
- } |
- |
- // Compile the body of the function in a vanilla state. Don't |
- // bother compiling all the code if the scope has an illegal |
- // redeclaration. |
- if (!scope()->HasIllegalRedeclaration()) { |
- Comment cmnt(masm_, "[ function body"); |
-#ifdef DEBUG |
- bool is_builtin = Isolate::Current()->bootstrapper()->IsActive(); |
- bool should_trace = |
- is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; |
- if (should_trace) { |
- frame_->CallRuntime(Runtime::kDebugTrace, 0); |
- // Ignore the return value. |
- } |
-#endif |
- VisitStatements(info->function()->body()); |
- } |
- } |
- |
- // Handle the return from the function. |
- if (has_valid_frame()) { |
- // If there is a valid frame, control flow can fall off the end of |
- // the body. In that case there is an implicit return statement. |
- ASSERT(!function_return_is_shadowed_); |
- frame_->PrepareForReturn(); |
- __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
- if (function_return_.is_bound()) { |
- function_return_.Jump(); |
- } else { |
- function_return_.Bind(); |
- GenerateReturnSequence(); |
- } |
- } else if (function_return_.is_linked()) { |
- // If the return target has dangling jumps to it, then we have not |
- // yet generated the return sequence. This can happen when (a) |
- // control does not flow off the end of the body so we did not |
- // compile an artificial return statement just above, and (b) there |
- // are return statements in the body but (c) they are all shadowed. |
- function_return_.Bind(); |
- GenerateReturnSequence(); |
- } |
- |
- // Adjust for function-level loop nesting. |
- ASSERT(loop_nesting_ == info->is_in_loop()? 1 : 0); |
- loop_nesting_ = 0; |
- |
- // Code generation state must be reset. |
- ASSERT(!has_cc()); |
- ASSERT(state_ == NULL); |
- ASSERT(loop_nesting() == 0); |
- ASSERT(!function_return_is_shadowed_); |
- function_return_.Unuse(); |
- DeleteFrame(); |
- |
- // Process any deferred code using the register allocator. |
- if (!HasStackOverflow()) { |
- ProcessDeferred(); |
- } |
- |
- allocator_ = NULL; |
- type_info_ = NULL; |
-} |
- |
- |
-int CodeGenerator::NumberOfSlot(Slot* slot) { |
- if (slot == NULL) return kInvalidSlotNumber; |
- switch (slot->type()) { |
- case Slot::PARAMETER: |
- return slot->index(); |
- case Slot::LOCAL: |
- return slot->index() + scope()->num_parameters(); |
- default: |
- break; |
- } |
- return kInvalidSlotNumber; |
-} |
- |
- |
-MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { |
- // Currently, this assertion will fail if we try to assign to |
- // a constant variable that is constant because it is read-only |
- // (such as the variable referring to a named function expression). |
- // We need to implement assignments to read-only variables. |
- // Ideally, we should do this during AST generation (by converting |
- // such assignments into expression statements); however, in general |
- // we may not be able to make the decision until past AST generation, |
- // that is when the entire program is known. |
- ASSERT(slot != NULL); |
- int index = slot->index(); |
- switch (slot->type()) { |
- case Slot::PARAMETER: |
- return frame_->ParameterAt(index); |
- |
- case Slot::LOCAL: |
- return frame_->LocalAt(index); |
- |
- case Slot::CONTEXT: { |
- // Follow the context chain if necessary. |
- ASSERT(!tmp.is(cp)); // do not overwrite context register |
- Register context = cp; |
- int chain_length = scope()->ContextChainLength(slot->var()->scope()); |
- for (int i = 0; i < chain_length; i++) { |
- // Load the closure. |
- // (All contexts, even 'with' contexts, have a closure, |
- // and it is the same for all contexts inside a function. |
- // There is no need to go to the function context first.) |
- __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
- // Load the function context (which is the incoming, outer context). |
- __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
- context = tmp; |
- } |
- // We may have a 'with' context now. Get the function context. |
- // (In fact this mov may never be the needed, since the scope analysis |
- // may not permit a direct context access in this case and thus we are |
- // always at a function context. However it is safe to dereference be- |
- // cause the function context of a function context is itself. Before |
- // deleting this mov we should try to create a counter-example first, |
- // though...) |
- __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
- return ContextOperand(tmp, index); |
- } |
- |
- default: |
- UNREACHABLE(); |
- return MemOperand(r0, 0); |
- } |
-} |
- |
- |
-MemOperand CodeGenerator::ContextSlotOperandCheckExtensions( |
- Slot* slot, |
- Register tmp, |
- Register tmp2, |
- JumpTarget* slow) { |
- ASSERT(slot->type() == Slot::CONTEXT); |
- Register context = cp; |
- |
- for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { |
- if (s->num_heap_slots() > 0) { |
- if (s->calls_eval()) { |
- // Check that extension is NULL. |
- __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
- __ tst(tmp2, tmp2); |
- slow->Branch(ne); |
- } |
- __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
- __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
- context = tmp; |
- } |
- } |
- // Check that last extension is NULL. |
- __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
- __ tst(tmp2, tmp2); |
- slow->Branch(ne); |
- __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
- return ContextOperand(tmp, slot->index()); |
-} |
- |
- |
-// Loads a value on TOS. If it is a boolean value, the result may have been |
-// (partially) translated into branches, or it may have set the condition |
-// code register. If force_cc is set, the value is forced to set the |
-// condition code register and no value is pushed. If the condition code |
-// register was set, has_cc() is true and cc_reg_ contains the condition to |
-// test for 'true'. |
-void CodeGenerator::LoadCondition(Expression* x, |
- JumpTarget* true_target, |
- JumpTarget* false_target, |
- bool force_cc) { |
- ASSERT(!has_cc()); |
- int original_height = frame_->height(); |
- |
- { ConditionCodeGenState new_state(this, true_target, false_target); |
- Visit(x); |
- |
- // If we hit a stack overflow, we may not have actually visited |
- // the expression. In that case, we ensure that we have a |
- // valid-looking frame state because we will continue to generate |
- // code as we unwind the C++ stack. |
- // |
- // It's possible to have both a stack overflow and a valid frame |
- // state (eg, a subexpression overflowed, visiting it returned |
- // with a dummied frame state, and visiting this expression |
- // returned with a normal-looking state). |
- if (HasStackOverflow() && |
- has_valid_frame() && |
- !has_cc() && |
- frame_->height() == original_height) { |
- true_target->Jump(); |
- } |
- } |
- if (force_cc && frame_ != NULL && !has_cc()) { |
- // Convert the TOS value to a boolean in the condition code register. |
- ToBoolean(true_target, false_target); |
- } |
- ASSERT(!force_cc || !has_valid_frame() || has_cc()); |
- ASSERT(!has_valid_frame() || |
- (has_cc() && frame_->height() == original_height) || |
- (!has_cc() && frame_->height() == original_height + 1)); |
-} |
- |
- |
-void CodeGenerator::Load(Expression* expr) { |
- // We generally assume that we are not in a spilled scope for most |
- // of the code generator. A failure to ensure this caused issue 815 |
- // and this assert is designed to catch similar issues. |
- frame_->AssertIsNotSpilled(); |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- JumpTarget true_target; |
- JumpTarget false_target; |
- LoadCondition(expr, &true_target, &false_target, false); |
- |
- if (has_cc()) { |
- // Convert cc_reg_ into a boolean value. |
- JumpTarget loaded; |
- JumpTarget materialize_true; |
- materialize_true.Branch(cc_reg_); |
- frame_->EmitPushRoot(Heap::kFalseValueRootIndex); |
- loaded.Jump(); |
- materialize_true.Bind(); |
- frame_->EmitPushRoot(Heap::kTrueValueRootIndex); |
- loaded.Bind(); |
- cc_reg_ = al; |
- } |
- |
- if (true_target.is_linked() || false_target.is_linked()) { |
- // We have at least one condition value that has been "translated" |
- // into a branch, thus it needs to be loaded explicitly. |
- JumpTarget loaded; |
- if (frame_ != NULL) { |
- loaded.Jump(); // Don't lose the current TOS. |
- } |
- bool both = true_target.is_linked() && false_target.is_linked(); |
- // Load "true" if necessary. |
- if (true_target.is_linked()) { |
- true_target.Bind(); |
- frame_->EmitPushRoot(Heap::kTrueValueRootIndex); |
- } |
- // If both "true" and "false" need to be loaded jump across the code for |
- // "false". |
- if (both) { |
- loaded.Jump(); |
- } |
- // Load "false" if necessary. |
- if (false_target.is_linked()) { |
- false_target.Bind(); |
- frame_->EmitPushRoot(Heap::kFalseValueRootIndex); |
- } |
- // A value is loaded on all paths reaching this point. |
- loaded.Bind(); |
- } |
- ASSERT(has_valid_frame()); |
- ASSERT(!has_cc()); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::LoadGlobal() { |
- Register reg = frame_->GetTOSRegister(); |
- __ ldr(reg, GlobalObjectOperand()); |
- frame_->EmitPush(reg); |
-} |
- |
- |
-void CodeGenerator::LoadGlobalReceiver(Register scratch) { |
- Register reg = frame_->GetTOSRegister(); |
- __ ldr(reg, ContextOperand(cp, Context::GLOBAL_INDEX)); |
- __ ldr(reg, |
- FieldMemOperand(reg, GlobalObject::kGlobalReceiverOffset)); |
- frame_->EmitPush(reg); |
-} |
- |
- |
-ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { |
- if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; |
- |
- // In strict mode there is no need for shadow arguments. |
- ASSERT(scope()->arguments_shadow() != NULL || scope()->is_strict_mode()); |
- // We don't want to do lazy arguments allocation for functions that |
- // have heap-allocated contexts, because it interfers with the |
- // uninitialized const tracking in the context objects. |
- return (scope()->num_heap_slots() > 0 || scope()->is_strict_mode()) |
- ? EAGER_ARGUMENTS_ALLOCATION |
- : LAZY_ARGUMENTS_ALLOCATION; |
-} |
- |
- |
-void CodeGenerator::StoreArgumentsObject(bool initial) { |
- ArgumentsAllocationMode mode = ArgumentsMode(); |
- ASSERT(mode != NO_ARGUMENTS_ALLOCATION); |
- |
- Comment cmnt(masm_, "[ store arguments object"); |
- if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { |
- // When using lazy arguments allocation, we store the hole value |
- // as a sentinel indicating that the arguments object hasn't been |
- // allocated yet. |
- frame_->EmitPushRoot(Heap::kArgumentsMarkerRootIndex); |
- } else { |
- frame_->SpillAll(); |
- ArgumentsAccessStub stub(is_strict_mode() |
- ? ArgumentsAccessStub::NEW_STRICT |
- : ArgumentsAccessStub::NEW_NON_STRICT); |
- __ ldr(r2, frame_->Function()); |
- // The receiver is below the arguments, the return address, and the |
- // frame pointer on the stack. |
- const int kReceiverDisplacement = 2 + scope()->num_parameters(); |
- __ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize)); |
- __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); |
- frame_->Adjust(3); |
- __ Push(r2, r1, r0); |
- frame_->CallStub(&stub, 3); |
- frame_->EmitPush(r0); |
- } |
- |
- Variable* arguments = scope()->arguments(); |
- Variable* shadow = scope()->arguments_shadow(); |
- ASSERT(arguments != NULL && arguments->AsSlot() != NULL); |
- ASSERT((shadow != NULL && shadow->AsSlot() != NULL) || |
- scope()->is_strict_mode()); |
- |
- JumpTarget done; |
- if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { |
- // We have to skip storing into the arguments slot if it has |
- // already been written to. This can happen if the a function |
- // has a local variable named 'arguments'. |
- LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); |
- Register arguments = frame_->PopToRegister(); |
- __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); |
- __ cmp(arguments, ip); |
- done.Branch(ne); |
- } |
- StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT); |
- if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); |
- if (shadow != NULL) { |
- StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT); |
- } |
-} |
- |
- |
-void CodeGenerator::LoadTypeofExpression(Expression* expr) { |
- // Special handling of identifiers as subexpressions of typeof. |
- Variable* variable = expr->AsVariableProxy()->AsVariable(); |
- if (variable != NULL && !variable->is_this() && variable->is_global()) { |
- // For a global variable we build the property reference |
- // <global>.<variable> and perform a (regular non-contextual) property |
- // load to make sure we do not get reference errors. |
- Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); |
- Literal key(variable->name()); |
- Property property(&global, &key, RelocInfo::kNoPosition); |
- Reference ref(this, &property); |
- ref.GetValue(); |
- } else if (variable != NULL && variable->AsSlot() != NULL) { |
- // For a variable that rewrites to a slot, we signal it is the immediate |
- // subexpression of a typeof. |
- LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF); |
- } else { |
- // Anything else can be handled normally. |
- Load(expr); |
- } |
-} |
- |
- |
-Reference::Reference(CodeGenerator* cgen, |
- Expression* expression, |
- bool persist_after_get) |
- : cgen_(cgen), |
- expression_(expression), |
- type_(ILLEGAL), |
- persist_after_get_(persist_after_get) { |
- // We generally assume that we are not in a spilled scope for most |
- // of the code generator. A failure to ensure this caused issue 815 |
- // and this assert is designed to catch similar issues. |
- cgen->frame()->AssertIsNotSpilled(); |
- cgen->LoadReference(this); |
-} |
- |
- |
-Reference::~Reference() { |
- ASSERT(is_unloaded() || is_illegal()); |
-} |
- |
- |
-void CodeGenerator::LoadReference(Reference* ref) { |
- Comment cmnt(masm_, "[ LoadReference"); |
- Expression* e = ref->expression(); |
- Property* property = e->AsProperty(); |
- Variable* var = e->AsVariableProxy()->AsVariable(); |
- |
- if (property != NULL) { |
- // The expression is either a property or a variable proxy that rewrites |
- // to a property. |
- Load(property->obj()); |
- if (property->key()->IsPropertyName()) { |
- ref->set_type(Reference::NAMED); |
- } else { |
- Load(property->key()); |
- ref->set_type(Reference::KEYED); |
- } |
- } else if (var != NULL) { |
- // The expression is a variable proxy that does not rewrite to a |
- // property. Global variables are treated as named property references. |
- if (var->is_global()) { |
- LoadGlobal(); |
- ref->set_type(Reference::NAMED); |
- } else { |
- ASSERT(var->AsSlot() != NULL); |
- ref->set_type(Reference::SLOT); |
- } |
- } else { |
- // Anything else is a runtime error. |
- Load(e); |
- frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
- } |
-} |
- |
- |
-void CodeGenerator::UnloadReference(Reference* ref) { |
- int size = ref->size(); |
- ref->set_unloaded(); |
- if (size == 0) return; |
- |
- // Pop a reference from the stack while preserving TOS. |
- VirtualFrame::RegisterAllocationScope scope(this); |
- Comment cmnt(masm_, "[ UnloadReference"); |
- if (size > 0) { |
- Register tos = frame_->PopToRegister(); |
- frame_->Drop(size); |
- frame_->EmitPush(tos); |
- } |
-} |
- |
- |
-// ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given |
-// register to a boolean in the condition code register. The code |
-// may jump to 'false_target' in case the register converts to 'false'. |
-void CodeGenerator::ToBoolean(JumpTarget* true_target, |
- JumpTarget* false_target) { |
- // Note: The generated code snippet does not change stack variables. |
- // Only the condition code should be set. |
- bool known_smi = frame_->KnownSmiAt(0); |
- Register tos = frame_->PopToRegister(); |
- |
- // Fast case checks |
- |
- // Check if the value is 'false'. |
- if (!known_smi) { |
- __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
- __ cmp(tos, ip); |
- false_target->Branch(eq); |
- |
- // Check if the value is 'true'. |
- __ LoadRoot(ip, Heap::kTrueValueRootIndex); |
- __ cmp(tos, ip); |
- true_target->Branch(eq); |
- |
- // Check if the value is 'undefined'. |
- __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
- __ cmp(tos, ip); |
- false_target->Branch(eq); |
- } |
- |
- // Check if the value is a smi. |
- __ cmp(tos, Operand(Smi::FromInt(0))); |
- |
- if (!known_smi) { |
- false_target->Branch(eq); |
- __ tst(tos, Operand(kSmiTagMask)); |
- true_target->Branch(eq); |
- |
- // Slow case. |
- if (CpuFeatures::IsSupported(VFP3)) { |
- CpuFeatures::Scope scope(VFP3); |
- // Implements the slow case by using ToBooleanStub. |
- // The ToBooleanStub takes a single argument, and |
- // returns a non-zero value for true, or zero for false. |
- // Both the argument value and the return value use the |
- // register assigned to tos_ |
- ToBooleanStub stub(tos); |
- frame_->CallStub(&stub, 0); |
- // Convert the result in "tos" to a condition code. |
- __ cmp(tos, Operand(0, RelocInfo::NONE)); |
- } else { |
- // Implements slow case by calling the runtime. |
- frame_->EmitPush(tos); |
- frame_->CallRuntime(Runtime::kToBool, 1); |
- // Convert the result (r0) to a condition code. |
- __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
- __ cmp(r0, ip); |
- } |
- } |
- |
- cc_reg_ = ne; |
-} |
- |
- |
-void CodeGenerator::GenericBinaryOperation(Token::Value op, |
- OverwriteMode overwrite_mode, |
- GenerateInlineSmi inline_smi, |
- int constant_rhs) { |
- // top of virtual frame: y |
- // 2nd elt. on virtual frame : x |
- // result : top of virtual frame |
- |
- // Stub is entered with a call: 'return address' is in lr. |
- switch (op) { |
- case Token::ADD: |
- case Token::SUB: |
- if (inline_smi) { |
- JumpTarget done; |
- Register rhs = frame_->PopToRegister(); |
- Register lhs = frame_->PopToRegister(rhs); |
- Register scratch = VirtualFrame::scratch0(); |
- __ orr(scratch, rhs, Operand(lhs)); |
- // Check they are both small and positive. |
- __ tst(scratch, Operand(kSmiTagMask | 0xc0000000)); |
- ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now. |
- STATIC_ASSERT(kSmiTag == 0); |
- if (op == Token::ADD) { |
- __ add(r0, lhs, Operand(rhs), LeaveCC, eq); |
- } else { |
- __ sub(r0, lhs, Operand(rhs), LeaveCC, eq); |
- } |
- done.Branch(eq); |
- GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); |
- frame_->SpillAll(); |
- frame_->CallStub(&stub, 0); |
- done.Bind(); |
- frame_->EmitPush(r0); |
- break; |
- } else { |
- // Fall through! |
- } |
- case Token::BIT_OR: |
- case Token::BIT_AND: |
- case Token::BIT_XOR: |
- if (inline_smi) { |
- bool rhs_is_smi = frame_->KnownSmiAt(0); |
- bool lhs_is_smi = frame_->KnownSmiAt(1); |
- Register rhs = frame_->PopToRegister(); |
- Register lhs = frame_->PopToRegister(rhs); |
- Register smi_test_reg; |
- Condition cond; |
- if (!rhs_is_smi || !lhs_is_smi) { |
- if (rhs_is_smi) { |
- smi_test_reg = lhs; |
- } else if (lhs_is_smi) { |
- smi_test_reg = rhs; |
- } else { |
- smi_test_reg = VirtualFrame::scratch0(); |
- __ orr(smi_test_reg, rhs, Operand(lhs)); |
- } |
- // Check they are both Smis. |
- __ tst(smi_test_reg, Operand(kSmiTagMask)); |
- cond = eq; |
- } else { |
- cond = al; |
- } |
- ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now. |
- if (op == Token::BIT_OR) { |
- __ orr(r0, lhs, Operand(rhs), LeaveCC, cond); |
- } else if (op == Token::BIT_AND) { |
- __ and_(r0, lhs, Operand(rhs), LeaveCC, cond); |
- } else { |
- ASSERT(op == Token::BIT_XOR); |
- STATIC_ASSERT(kSmiTag == 0); |
- __ eor(r0, lhs, Operand(rhs), LeaveCC, cond); |
- } |
- if (cond != al) { |
- JumpTarget done; |
- done.Branch(cond); |
- GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); |
- frame_->SpillAll(); |
- frame_->CallStub(&stub, 0); |
- done.Bind(); |
- } |
- frame_->EmitPush(r0); |
- break; |
- } else { |
- // Fall through! |
- } |
- case Token::MUL: |
- case Token::DIV: |
- case Token::MOD: |
- case Token::SHL: |
- case Token::SHR: |
- case Token::SAR: { |
- Register rhs = frame_->PopToRegister(); |
- Register lhs = frame_->PopToRegister(rhs); // Don't pop to rhs register. |
- GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); |
- frame_->SpillAll(); |
- frame_->CallStub(&stub, 0); |
- frame_->EmitPush(r0); |
- break; |
- } |
- |
- case Token::COMMA: { |
- Register scratch = frame_->PopToRegister(); |
- // Simply discard left value. |
- frame_->Drop(); |
- frame_->EmitPush(scratch); |
- break; |
- } |
- |
- default: |
- // Other cases should have been handled before this point. |
- UNREACHABLE(); |
- break; |
- } |
-} |
- |
- |
-class DeferredInlineSmiOperation: public DeferredCode { |
- public: |
- DeferredInlineSmiOperation(Token::Value op, |
- int value, |
- bool reversed, |
- OverwriteMode overwrite_mode, |
- Register tos) |
- : op_(op), |
- value_(value), |
- reversed_(reversed), |
- overwrite_mode_(overwrite_mode), |
- tos_register_(tos) { |
- set_comment("[ DeferredInlinedSmiOperation"); |
- } |
- |
- virtual void Generate(); |
- // This stub makes explicit calls to SaveRegisters(), RestoreRegisters() and |
- // Exit(). Currently on ARM SaveRegisters() and RestoreRegisters() are empty |
- // methods, it is the responsibility of the deferred code to save and restore |
- // registers. |
- virtual bool AutoSaveAndRestore() { return false; } |
- |
- void JumpToNonSmiInput(Condition cond); |
- void JumpToAnswerOutOfRange(Condition cond); |
- |
- private: |
- void GenerateNonSmiInput(); |
- void GenerateAnswerOutOfRange(); |
- void WriteNonSmiAnswer(Register answer, |
- Register heap_number, |
- Register scratch); |
- |
- Token::Value op_; |
- int value_; |
- bool reversed_; |
- OverwriteMode overwrite_mode_; |
- Register tos_register_; |
- Label non_smi_input_; |
- Label answer_out_of_range_; |
-}; |
- |
- |
-// For bit operations we try harder and handle the case where the input is not |
-// a Smi but a 32bits integer without calling the generic stub. |
-void DeferredInlineSmiOperation::JumpToNonSmiInput(Condition cond) { |
- ASSERT(Token::IsBitOp(op_)); |
- |
- __ b(cond, &non_smi_input_); |
-} |
- |
- |
-// For bit operations the result is always 32bits so we handle the case where |
-// the result does not fit in a Smi without calling the generic stub. |
-void DeferredInlineSmiOperation::JumpToAnswerOutOfRange(Condition cond) { |
- ASSERT(Token::IsBitOp(op_)); |
- |
- if ((op_ == Token::SHR) && !CpuFeatures::IsSupported(VFP3)) { |
- // >>> requires an unsigned to double conversion and the non VFP code |
- // does not support this conversion. |
- __ b(cond, entry_label()); |
- } else { |
- __ b(cond, &answer_out_of_range_); |
- } |
-} |
- |
- |
-// On entry the non-constant side of the binary operation is in tos_register_ |
-// and the constant smi side is nowhere. The tos_register_ is not used by the |
-// virtual frame. On exit the answer is in the tos_register_ and the virtual |
-// frame is unchanged. |
-void DeferredInlineSmiOperation::Generate() { |
- VirtualFrame copied_frame(*frame_state()->frame()); |
- copied_frame.SpillAll(); |
- |
- Register lhs = r1; |
- Register rhs = r0; |
- switch (op_) { |
- case Token::ADD: { |
- // Revert optimistic add. |
- if (reversed_) { |
- __ sub(r0, tos_register_, Operand(Smi::FromInt(value_))); |
- __ mov(r1, Operand(Smi::FromInt(value_))); |
- } else { |
- __ sub(r1, tos_register_, Operand(Smi::FromInt(value_))); |
- __ mov(r0, Operand(Smi::FromInt(value_))); |
- } |
- break; |
- } |
- |
- case Token::SUB: { |
- // Revert optimistic sub. |
- if (reversed_) { |
- __ rsb(r0, tos_register_, Operand(Smi::FromInt(value_))); |
- __ mov(r1, Operand(Smi::FromInt(value_))); |
- } else { |
- __ add(r1, tos_register_, Operand(Smi::FromInt(value_))); |
- __ mov(r0, Operand(Smi::FromInt(value_))); |
- } |
- break; |
- } |
- |
- // For these operations there is no optimistic operation that needs to be |
- // reverted. |
- case Token::MUL: |
- case Token::MOD: |
- case Token::BIT_OR: |
- case Token::BIT_XOR: |
- case Token::BIT_AND: |
- case Token::SHL: |
- case Token::SHR: |
- case Token::SAR: { |
- if (tos_register_.is(r1)) { |
- __ mov(r0, Operand(Smi::FromInt(value_))); |
- } else { |
- ASSERT(tos_register_.is(r0)); |
- __ mov(r1, Operand(Smi::FromInt(value_))); |
- } |
- if (reversed_ == tos_register_.is(r1)) { |
- lhs = r0; |
- rhs = r1; |
- } |
- break; |
- } |
- |
- default: |
- // Other cases should have been handled before this point. |
- UNREACHABLE(); |
- break; |
- } |
- |
- GenericBinaryOpStub stub(op_, overwrite_mode_, lhs, rhs, value_); |
- __ CallStub(&stub); |
- |
- // The generic stub returns its value in r0, but that's not |
- // necessarily what we want. We want whatever the inlined code |
- // expected, which is that the answer is in the same register as |
- // the operand was. |
- __ Move(tos_register_, r0); |
- |
- // The tos register was not in use for the virtual frame that we |
- // came into this function with, so we can merge back to that frame |
- // without trashing it. |
- copied_frame.MergeTo(frame_state()->frame()); |
- |
- Exit(); |
- |
- if (non_smi_input_.is_linked()) { |
- GenerateNonSmiInput(); |
- } |
- |
- if (answer_out_of_range_.is_linked()) { |
- GenerateAnswerOutOfRange(); |
- } |
-} |
- |
- |
-// Convert and write the integer answer into heap_number. |
-void DeferredInlineSmiOperation::WriteNonSmiAnswer(Register answer, |
- Register heap_number, |
- Register scratch) { |
- if (CpuFeatures::IsSupported(VFP3)) { |
- CpuFeatures::Scope scope(VFP3); |
- __ vmov(s0, answer); |
- if (op_ == Token::SHR) { |
- __ vcvt_f64_u32(d0, s0); |
- } else { |
- __ vcvt_f64_s32(d0, s0); |
- } |
- __ sub(scratch, heap_number, Operand(kHeapObjectTag)); |
- __ vstr(d0, scratch, HeapNumber::kValueOffset); |
- } else { |
- WriteInt32ToHeapNumberStub stub(answer, heap_number, scratch); |
- __ CallStub(&stub); |
- } |
-} |
- |
- |
-void DeferredInlineSmiOperation::GenerateNonSmiInput() { |
- // We know the left hand side is not a Smi and the right hand side is an |
- // immediate value (value_) which can be represented as a Smi. We only |
- // handle bit operations. |
- ASSERT(Token::IsBitOp(op_)); |
- |
- if (FLAG_debug_code) { |
- __ Abort("Should not fall through!"); |
- } |
- |
- __ bind(&non_smi_input_); |
- if (FLAG_debug_code) { |
- __ AbortIfSmi(tos_register_); |
- } |
- |
- // This routine uses the registers from r2 to r6. At the moment they are |
- // not used by the register allocator, but when they are it should use |
- // SpillAll and MergeTo like DeferredInlineSmiOperation::Generate() above. |
- |
- Register heap_number_map = r7; |
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- __ ldr(r3, FieldMemOperand(tos_register_, HeapNumber::kMapOffset)); |
- __ cmp(r3, heap_number_map); |
- // Not a number, fall back to the GenericBinaryOpStub. |
- __ b(ne, entry_label()); |
- |
- Register int32 = r2; |
- // Not a 32bits signed int, fall back to the GenericBinaryOpStub. |
- __ ConvertToInt32(tos_register_, int32, r4, r5, d0, entry_label()); |
- |
- // tos_register_ (r0 or r1): Original heap number. |
- // int32: signed 32bits int. |
- |
- Label result_not_a_smi; |
- int shift_value = value_ & 0x1f; |
- switch (op_) { |
- case Token::BIT_OR: __ orr(int32, int32, Operand(value_)); break; |
- case Token::BIT_XOR: __ eor(int32, int32, Operand(value_)); break; |
- case Token::BIT_AND: __ and_(int32, int32, Operand(value_)); break; |
- case Token::SAR: |
- ASSERT(!reversed_); |
- if (shift_value != 0) { |
- __ mov(int32, Operand(int32, ASR, shift_value)); |
- } |
- break; |
- case Token::SHR: |
- ASSERT(!reversed_); |
- if (shift_value != 0) { |
- __ mov(int32, Operand(int32, LSR, shift_value), SetCC); |
- } else { |
- // SHR is special because it is required to produce a positive answer. |
- __ cmp(int32, Operand(0, RelocInfo::NONE)); |
- } |
- if (CpuFeatures::IsSupported(VFP3)) { |
- __ b(mi, &result_not_a_smi); |
- } else { |
- // Non VFP code cannot convert from unsigned to double, so fall back |
- // to GenericBinaryOpStub. |
- __ b(mi, entry_label()); |
- } |
- break; |
- case Token::SHL: |
- ASSERT(!reversed_); |
- if (shift_value != 0) { |
- __ mov(int32, Operand(int32, LSL, shift_value)); |
- } |
- break; |
- default: UNREACHABLE(); |
- } |
- // Check that the *signed* result fits in a smi. Not necessary for AND, SAR |
- // if the shift if more than 0 or SHR if the shit is more than 1. |
- if (!( (op_ == Token::AND && value_ >= 0) || |
- ((op_ == Token::SAR) && (shift_value > 0)) || |
- ((op_ == Token::SHR) && (shift_value > 1)))) { |
- __ add(r3, int32, Operand(0x40000000), SetCC); |
- __ b(mi, &result_not_a_smi); |
- } |
- __ mov(tos_register_, Operand(int32, LSL, kSmiTagSize)); |
- Exit(); |
- |
- if (result_not_a_smi.is_linked()) { |
- __ bind(&result_not_a_smi); |
- if (overwrite_mode_ != OVERWRITE_LEFT) { |
- ASSERT((overwrite_mode_ == NO_OVERWRITE) || |
- (overwrite_mode_ == OVERWRITE_RIGHT)); |
- // If the allocation fails, fall back to the GenericBinaryOpStub. |
- __ AllocateHeapNumber(r4, r5, r6, heap_number_map, entry_label()); |
- // Nothing can go wrong now, so overwrite tos. |
- __ mov(tos_register_, Operand(r4)); |
- } |
- |
- // int32: answer as signed 32bits integer. |
- // tos_register_: Heap number to write the answer into. |
- WriteNonSmiAnswer(int32, tos_register_, r3); |
- |
- Exit(); |
- } |
-} |
- |
- |
-void DeferredInlineSmiOperation::GenerateAnswerOutOfRange() { |
- // The input from a bitwise operation were Smis but the result cannot fit |
- // into a Smi, so we store it into a heap number. VirtualFrame::scratch0() |
- // holds the untagged result to be converted. tos_register_ contains the |
- // input. See the calls to JumpToAnswerOutOfRange to see how we got here. |
- ASSERT(Token::IsBitOp(op_)); |
- ASSERT(!reversed_); |
- |
- Register untagged_result = VirtualFrame::scratch0(); |
- |
- if (FLAG_debug_code) { |
- __ Abort("Should not fall through!"); |
- } |
- |
- __ bind(&answer_out_of_range_); |
- if (((value_ & 0x1f) == 0) && (op_ == Token::SHR)) { |
- // >>> 0 is a special case where the untagged_result register is not set up |
- // yet. We untag the input to get it. |
- __ mov(untagged_result, Operand(tos_register_, ASR, kSmiTagSize)); |
- } |
- |
- // This routine uses the registers from r2 to r6. At the moment they are |
- // not used by the register allocator, but when they are it should use |
- // SpillAll and MergeTo like DeferredInlineSmiOperation::Generate() above. |
- |
- // Allocate the result heap number. |
- Register heap_number_map = VirtualFrame::scratch1(); |
- Register heap_number = r4; |
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- // If the allocation fails, fall back to the GenericBinaryOpStub. |
- __ AllocateHeapNumber(heap_number, r5, r6, heap_number_map, entry_label()); |
- WriteNonSmiAnswer(untagged_result, heap_number, r3); |
- __ mov(tos_register_, Operand(heap_number)); |
- |
- Exit(); |
-} |
- |
- |
-static bool PopCountLessThanEqual2(unsigned int x) { |
- x &= x - 1; |
- return (x & (x - 1)) == 0; |
-} |
- |
- |
-// Returns the index of the lowest bit set. |
-static int BitPosition(unsigned x) { |
- int bit_posn = 0; |
- while ((x & 0xf) == 0) { |
- bit_posn += 4; |
- x >>= 4; |
- } |
- while ((x & 1) == 0) { |
- bit_posn++; |
- x >>= 1; |
- } |
- return bit_posn; |
-} |
- |
- |
-// Can we multiply by x with max two shifts and an add. |
-// This answers yes to all integers from 2 to 10. |
-static bool IsEasyToMultiplyBy(int x) { |
- if (x < 2) return false; // Avoid special cases. |
- if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows. |
- if (IsPowerOf2(x)) return true; // Simple shift. |
- if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift. |
- if (IsPowerOf2(x + 1)) return true; // Patterns like 11111. |
- return false; |
-} |
- |
- |
-// Can multiply by anything that IsEasyToMultiplyBy returns true for. |
-// Source and destination may be the same register. This routine does |
-// not set carry and overflow the way a mul instruction would. |
-static void InlineMultiplyByKnownInt(MacroAssembler* masm, |
- Register source, |
- Register destination, |
- int known_int) { |
- if (IsPowerOf2(known_int)) { |
- masm->mov(destination, Operand(source, LSL, BitPosition(known_int))); |
- } else if (PopCountLessThanEqual2(known_int)) { |
- int first_bit = BitPosition(known_int); |
- int second_bit = BitPosition(known_int ^ (1 << first_bit)); |
- masm->add(destination, source, |
- Operand(source, LSL, second_bit - first_bit)); |
- if (first_bit != 0) { |
- masm->mov(destination, Operand(destination, LSL, first_bit)); |
- } |
- } else { |
- ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111. |
- int the_bit = BitPosition(known_int + 1); |
- masm->rsb(destination, source, Operand(source, LSL, the_bit)); |
- } |
-} |
- |
- |
-void CodeGenerator::SmiOperation(Token::Value op, |
- Handle<Object> value, |
- bool reversed, |
- OverwriteMode mode) { |
- int int_value = Smi::cast(*value)->value(); |
- |
- bool both_sides_are_smi = frame_->KnownSmiAt(0); |
- |
- bool something_to_inline; |
- switch (op) { |
- case Token::ADD: |
- case Token::SUB: |
- case Token::BIT_AND: |
- case Token::BIT_OR: |
- case Token::BIT_XOR: { |
- something_to_inline = true; |
- break; |
- } |
- case Token::SHL: { |
- something_to_inline = (both_sides_are_smi || !reversed); |
- break; |
- } |
- case Token::SHR: |
- case Token::SAR: { |
- if (reversed) { |
- something_to_inline = false; |
- } else { |
- something_to_inline = true; |
- } |
- break; |
- } |
- case Token::MOD: { |
- if (reversed || int_value < 2 || !IsPowerOf2(int_value)) { |
- something_to_inline = false; |
- } else { |
- something_to_inline = true; |
- } |
- break; |
- } |
- case Token::MUL: { |
- if (!IsEasyToMultiplyBy(int_value)) { |
- something_to_inline = false; |
- } else { |
- something_to_inline = true; |
- } |
- break; |
- } |
- default: { |
- something_to_inline = false; |
- break; |
- } |
- } |
- |
- if (!something_to_inline) { |
- if (!reversed) { |
- // Push the rhs onto the virtual frame by putting it in a TOS register. |
- Register rhs = frame_->GetTOSRegister(); |
- __ mov(rhs, Operand(value)); |
- frame_->EmitPush(rhs, TypeInfo::Smi()); |
- GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, int_value); |
- } else { |
- // Pop the rhs, then push lhs and rhs in the right order. Only performs |
- // at most one pop, the rest takes place in TOS registers. |
- Register lhs = frame_->GetTOSRegister(); // Get reg for pushing. |
- Register rhs = frame_->PopToRegister(lhs); // Don't use lhs for this. |
- __ mov(lhs, Operand(value)); |
- frame_->EmitPush(lhs, TypeInfo::Smi()); |
- TypeInfo t = both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Unknown(); |
- frame_->EmitPush(rhs, t); |
- GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, |
- GenericBinaryOpStub::kUnknownIntValue); |
- } |
- return; |
- } |
- |
- // We move the top of stack to a register (normally no move is invoved). |
- Register tos = frame_->PopToRegister(); |
- switch (op) { |
- case Token::ADD: { |
- DeferredCode* deferred = |
- new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
- |
- __ add(tos, tos, Operand(value), SetCC); |
- deferred->Branch(vs); |
- if (!both_sides_are_smi) { |
- __ tst(tos, Operand(kSmiTagMask)); |
- deferred->Branch(ne); |
- } |
- deferred->BindExit(); |
- frame_->EmitPush(tos); |
- break; |
- } |
- |
- case Token::SUB: { |
- DeferredCode* deferred = |
- new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
- |
- if (reversed) { |
- __ rsb(tos, tos, Operand(value), SetCC); |
- } else { |
- __ sub(tos, tos, Operand(value), SetCC); |
- } |
- deferred->Branch(vs); |
- if (!both_sides_are_smi) { |
- __ tst(tos, Operand(kSmiTagMask)); |
- deferred->Branch(ne); |
- } |
- deferred->BindExit(); |
- frame_->EmitPush(tos); |
- break; |
- } |
- |
- |
- case Token::BIT_OR: |
- case Token::BIT_XOR: |
- case Token::BIT_AND: { |
- if (both_sides_are_smi) { |
- switch (op) { |
- case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break; |
- case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break; |
- case Token::BIT_AND: __ And(tos, tos, Operand(value)); break; |
- default: UNREACHABLE(); |
- } |
- frame_->EmitPush(tos, TypeInfo::Smi()); |
- } else { |
- DeferredInlineSmiOperation* deferred = |
- new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
- __ tst(tos, Operand(kSmiTagMask)); |
- deferred->JumpToNonSmiInput(ne); |
- switch (op) { |
- case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break; |
- case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break; |
- case Token::BIT_AND: __ And(tos, tos, Operand(value)); break; |
- default: UNREACHABLE(); |
- } |
- deferred->BindExit(); |
- TypeInfo result_type = TypeInfo::Integer32(); |
- if (op == Token::BIT_AND && int_value >= 0) { |
- result_type = TypeInfo::Smi(); |
- } |
- frame_->EmitPush(tos, result_type); |
- } |
- break; |
- } |
- |
- case Token::SHL: |
- if (reversed) { |
- ASSERT(both_sides_are_smi); |
- int max_shift = 0; |
- int max_result = int_value == 0 ? 1 : int_value; |
- while (Smi::IsValid(max_result << 1)) { |
- max_shift++; |
- max_result <<= 1; |
- } |
- DeferredCode* deferred = |
- new DeferredInlineSmiOperation(op, int_value, true, mode, tos); |
- // Mask off the last 5 bits of the shift operand (rhs). This is part |
- // of the definition of shift in JS and we know we have a Smi so we |
- // can safely do this. The masked version gets passed to the |
- // deferred code, but that makes no difference. |
- __ and_(tos, tos, Operand(Smi::FromInt(0x1f))); |
- __ cmp(tos, Operand(Smi::FromInt(max_shift))); |
- deferred->Branch(ge); |
- Register scratch = VirtualFrame::scratch0(); |
- __ mov(scratch, Operand(tos, ASR, kSmiTagSize)); // Untag. |
- __ mov(tos, Operand(Smi::FromInt(int_value))); // Load constant. |
- __ mov(tos, Operand(tos, LSL, scratch)); // Shift constant. |
- deferred->BindExit(); |
- TypeInfo result = TypeInfo::Integer32(); |
- frame_->EmitPush(tos, result); |
- break; |
- } |
- // Fall through! |
- case Token::SHR: |
- case Token::SAR: { |
- ASSERT(!reversed); |
- int shift_value = int_value & 0x1f; |
- TypeInfo result = TypeInfo::Number(); |
- |
- if (op == Token::SHR) { |
- if (shift_value > 1) { |
- result = TypeInfo::Smi(); |
- } else if (shift_value > 0) { |
- result = TypeInfo::Integer32(); |
- } |
- } else if (op == Token::SAR) { |
- if (shift_value > 0) { |
- result = TypeInfo::Smi(); |
- } else { |
- result = TypeInfo::Integer32(); |
- } |
- } else { |
- ASSERT(op == Token::SHL); |
- result = TypeInfo::Integer32(); |
- } |
- |
- DeferredInlineSmiOperation* deferred = |
- new DeferredInlineSmiOperation(op, shift_value, false, mode, tos); |
- if (!both_sides_are_smi) { |
- __ tst(tos, Operand(kSmiTagMask)); |
- deferred->JumpToNonSmiInput(ne); |
- } |
- switch (op) { |
- case Token::SHL: { |
- if (shift_value != 0) { |
- Register untagged_result = VirtualFrame::scratch0(); |
- Register scratch = VirtualFrame::scratch1(); |
- int adjusted_shift = shift_value - kSmiTagSize; |
- ASSERT(adjusted_shift >= 0); |
- |
- if (adjusted_shift != 0) { |
- __ mov(untagged_result, Operand(tos, LSL, adjusted_shift)); |
- } else { |
- __ mov(untagged_result, Operand(tos)); |
- } |
- // Check that the *signed* result fits in a smi. |
- __ add(scratch, untagged_result, Operand(0x40000000), SetCC); |
- deferred->JumpToAnswerOutOfRange(mi); |
- __ mov(tos, Operand(untagged_result, LSL, kSmiTagSize)); |
- } |
- break; |
- } |
- case Token::SHR: { |
- if (shift_value != 0) { |
- Register untagged_result = VirtualFrame::scratch0(); |
- // Remove tag. |
- __ mov(untagged_result, Operand(tos, ASR, kSmiTagSize)); |
- __ mov(untagged_result, Operand(untagged_result, LSR, shift_value)); |
- if (shift_value == 1) { |
- // Check that the *unsigned* result fits in a smi. |
- // Neither of the two high-order bits can be set: |
- // - 0x80000000: high bit would be lost when smi tagging |
- // - 0x40000000: this number would convert to negative when Smi |
- // tagging. |
- // These two cases can only happen with shifts by 0 or 1 when |
- // handed a valid smi. |
- __ tst(untagged_result, Operand(0xc0000000)); |
- deferred->JumpToAnswerOutOfRange(ne); |
- } |
- __ mov(tos, Operand(untagged_result, LSL, kSmiTagSize)); |
- } else { |
- __ cmp(tos, Operand(0, RelocInfo::NONE)); |
- deferred->JumpToAnswerOutOfRange(mi); |
- } |
- break; |
- } |
- case Token::SAR: { |
- if (shift_value != 0) { |
- // Do the shift and the tag removal in one operation. If the shift |
- // is 31 bits (the highest possible value) then we emit the |
- // instruction as a shift by 0 which in the ARM ISA means shift |
- // arithmetically by 32. |
- __ mov(tos, Operand(tos, ASR, (kSmiTagSize + shift_value) & 0x1f)); |
- __ mov(tos, Operand(tos, LSL, kSmiTagSize)); |
- } |
- break; |
- } |
- default: UNREACHABLE(); |
- } |
- deferred->BindExit(); |
- frame_->EmitPush(tos, result); |
- break; |
- } |
- |
- case Token::MOD: { |
- ASSERT(!reversed); |
- ASSERT(int_value >= 2); |
- ASSERT(IsPowerOf2(int_value)); |
- DeferredCode* deferred = |
- new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
- unsigned mask = (0x80000000u | kSmiTagMask); |
- __ tst(tos, Operand(mask)); |
- deferred->Branch(ne); // Go to deferred code on non-Smis and negative. |
- mask = (int_value << kSmiTagSize) - 1; |
- __ and_(tos, tos, Operand(mask)); |
- deferred->BindExit(); |
- // Mod of positive power of 2 Smi gives a Smi if the lhs is an integer. |
- frame_->EmitPush( |
- tos, |
- both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Number()); |
- break; |
- } |
- |
- case Token::MUL: { |
- ASSERT(IsEasyToMultiplyBy(int_value)); |
- DeferredCode* deferred = |
- new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
- unsigned max_smi_that_wont_overflow = Smi::kMaxValue / int_value; |
- max_smi_that_wont_overflow <<= kSmiTagSize; |
- unsigned mask = 0x80000000u; |
- while ((mask & max_smi_that_wont_overflow) == 0) { |
- mask |= mask >> 1; |
- } |
- mask |= kSmiTagMask; |
- // This does a single mask that checks for a too high value in a |
- // conservative way and for a non-Smi. It also filters out negative |
- // numbers, unfortunately, but since this code is inline we prefer |
- // brevity to comprehensiveness. |
- __ tst(tos, Operand(mask)); |
- deferred->Branch(ne); |
- InlineMultiplyByKnownInt(masm_, tos, tos, int_value); |
- deferred->BindExit(); |
- frame_->EmitPush(tos); |
- break; |
- } |
- |
- default: |
- UNREACHABLE(); |
- break; |
- } |
-} |
- |
- |
-void CodeGenerator::Comparison(Condition cond, |
- Expression* left, |
- Expression* right, |
- bool strict) { |
- VirtualFrame::RegisterAllocationScope scope(this); |
- |
- if (left != NULL) Load(left); |
- if (right != NULL) Load(right); |
- |
- // sp[0] : y |
- // sp[1] : x |
- // result : cc register |
- |
- // Strict only makes sense for equality comparisons. |
- ASSERT(!strict || cond == eq); |
- |
- Register lhs; |
- Register rhs; |
- |
- bool lhs_is_smi; |
- bool rhs_is_smi; |
- |
- // We load the top two stack positions into registers chosen by the virtual |
- // frame. This should keep the register shuffling to a minimum. |
- // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. |
- if (cond == gt || cond == le) { |
- cond = ReverseCondition(cond); |
- lhs_is_smi = frame_->KnownSmiAt(0); |
- rhs_is_smi = frame_->KnownSmiAt(1); |
- lhs = frame_->PopToRegister(); |
- rhs = frame_->PopToRegister(lhs); // Don't pop to the same register again! |
- } else { |
- rhs_is_smi = frame_->KnownSmiAt(0); |
- lhs_is_smi = frame_->KnownSmiAt(1); |
- rhs = frame_->PopToRegister(); |
- lhs = frame_->PopToRegister(rhs); // Don't pop to the same register again! |
- } |
- |
- bool both_sides_are_smi = (lhs_is_smi && rhs_is_smi); |
- |
- ASSERT(rhs.is(r0) || rhs.is(r1)); |
- ASSERT(lhs.is(r0) || lhs.is(r1)); |
- |
- JumpTarget exit; |
- |
- if (!both_sides_are_smi) { |
- // Now we have the two sides in r0 and r1. We flush any other registers |
- // because the stub doesn't know about register allocation. |
- frame_->SpillAll(); |
- Register scratch = VirtualFrame::scratch0(); |
- Register smi_test_reg; |
- if (lhs_is_smi) { |
- smi_test_reg = rhs; |
- } else if (rhs_is_smi) { |
- smi_test_reg = lhs; |
- } else { |
- __ orr(scratch, lhs, Operand(rhs)); |
- smi_test_reg = scratch; |
- } |
- __ tst(smi_test_reg, Operand(kSmiTagMask)); |
- JumpTarget smi; |
- smi.Branch(eq); |
- |
- // Perform non-smi comparison by stub. |
- // CompareStub takes arguments in r0 and r1, returns <0, >0 or 0 in r0. |
- // We call with 0 args because there are 0 on the stack. |
- CompareStub stub(cond, strict, NO_SMI_COMPARE_IN_STUB, lhs, rhs); |
- frame_->CallStub(&stub, 0); |
- __ cmp(r0, Operand(0, RelocInfo::NONE)); |
- exit.Jump(); |
- |
- smi.Bind(); |
- } |
- |
- // Do smi comparisons by pointer comparison. |
- __ cmp(lhs, Operand(rhs)); |
- |
- exit.Bind(); |
- cc_reg_ = cond; |
-} |
- |
- |
-// Call the function on the stack with the given arguments. |
-void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, |
- CallFunctionFlags flags, |
- int position) { |
- // Push the arguments ("left-to-right") on the stack. |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- } |
- |
- // Record the position for debugging purposes. |
- CodeForSourcePosition(position); |
- |
- // Use the shared code stub to call the function. |
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
- CallFunctionStub call_function(arg_count, in_loop, flags); |
- frame_->CallStub(&call_function, arg_count + 1); |
- |
- // Restore context and pop function from the stack. |
- __ ldr(cp, frame_->Context()); |
- frame_->Drop(); // discard the TOS |
-} |
- |
- |
-void CodeGenerator::CallApplyLazy(Expression* applicand, |
- Expression* receiver, |
- VariableProxy* arguments, |
- int position) { |
- // An optimized implementation of expressions of the form |
- // x.apply(y, arguments). |
- // If the arguments object of the scope has not been allocated, |
- // and x.apply is Function.prototype.apply, this optimization |
- // just copies y and the arguments of the current function on the |
- // stack, as receiver and arguments, and calls x. |
- // In the implementation comments, we call x the applicand |
- // and y the receiver. |
- |
- ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); |
- ASSERT(arguments->IsArguments()); |
- |
- // Load applicand.apply onto the stack. This will usually |
- // give us a megamorphic load site. Not super, but it works. |
- Load(applicand); |
- Handle<String> name = FACTORY->LookupAsciiSymbol("apply"); |
- frame_->Dup(); |
- frame_->CallLoadIC(name, RelocInfo::CODE_TARGET); |
- frame_->EmitPush(r0); |
- |
- // Load the receiver and the existing arguments object onto the |
- // expression stack. Avoid allocating the arguments object here. |
- Load(receiver); |
- LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); |
- |
- // At this point the top two stack elements are probably in registers |
- // since they were just loaded. Ensure they are in regs and get the |
- // regs. |
- Register receiver_reg = frame_->Peek2(); |
- Register arguments_reg = frame_->Peek(); |
- |
- // From now on the frame is spilled. |
- frame_->SpillAll(); |
- |
- // Emit the source position information after having loaded the |
- // receiver and the arguments. |
- CodeForSourcePosition(position); |
- // Contents of the stack at this point: |
- // sp[0]: arguments object of the current function or the hole. |
- // sp[1]: receiver |
- // sp[2]: applicand.apply |
- // sp[3]: applicand. |
- |
- // Check if the arguments object has been lazily allocated |
- // already. If so, just use that instead of copying the arguments |
- // from the stack. This also deals with cases where a local variable |
- // named 'arguments' has been introduced. |
- JumpTarget slow; |
- Label done; |
- __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); |
- __ cmp(ip, arguments_reg); |
- slow.Branch(ne); |
- |
- Label build_args; |
- // Get rid of the arguments object probe. |
- frame_->Drop(); |
- // Stack now has 3 elements on it. |
- // Contents of stack at this point: |
- // sp[0]: receiver - in the receiver_reg register. |
- // sp[1]: applicand.apply |
- // sp[2]: applicand. |
- |
- // Check that the receiver really is a JavaScript object. |
- __ JumpIfSmi(receiver_reg, &build_args); |
- // We allow all JSObjects including JSFunctions. As long as |
- // JS_FUNCTION_TYPE is the last instance type and it is right |
- // after LAST_JS_OBJECT_TYPE, we do not have to check the upper |
- // bound. |
- STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
- STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
- __ CompareObjectType(receiver_reg, r2, r3, FIRST_JS_OBJECT_TYPE); |
- __ b(lt, &build_args); |
- |
- // Check that applicand.apply is Function.prototype.apply. |
- __ ldr(r0, MemOperand(sp, kPointerSize)); |
- __ JumpIfSmi(r0, &build_args); |
- __ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE); |
- __ b(ne, &build_args); |
- Handle<Code> apply_code( |
- Isolate::Current()->builtins()->builtin(Builtins::kFunctionApply)); |
- __ ldr(r1, FieldMemOperand(r0, JSFunction::kCodeEntryOffset)); |
- __ sub(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); |
- __ cmp(r1, Operand(apply_code)); |
- __ b(ne, &build_args); |
- |
- // Check that applicand is a function. |
- __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); |
- __ JumpIfSmi(r1, &build_args); |
- __ CompareObjectType(r1, r2, r3, JS_FUNCTION_TYPE); |
- __ b(ne, &build_args); |
- |
- // Copy the arguments to this function possibly from the |
- // adaptor frame below it. |
- Label invoke, adapted; |
- __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
- __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
- __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
- __ b(eq, &adapted); |
- |
- // No arguments adaptor frame. Copy fixed number of arguments. |
- __ mov(r0, Operand(scope()->num_parameters())); |
- for (int i = 0; i < scope()->num_parameters(); i++) { |
- __ ldr(r2, frame_->ParameterAt(i)); |
- __ push(r2); |
- } |
- __ jmp(&invoke); |
- |
- // Arguments adaptor frame present. Copy arguments from there, but |
- // avoid copying too many arguments to avoid stack overflows. |
- __ bind(&adapted); |
- static const uint32_t kArgumentsLimit = 1 * KB; |
- __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- __ mov(r0, Operand(r0, LSR, kSmiTagSize)); |
- __ mov(r3, r0); |
- __ cmp(r0, Operand(kArgumentsLimit)); |
- __ b(gt, &build_args); |
- |
- // Loop through the arguments pushing them onto the execution |
- // stack. We don't inform the virtual frame of the push, so we don't |
- // have to worry about getting rid of the elements from the virtual |
- // frame. |
- Label loop; |
- // r3 is a small non-negative integer, due to the test above. |
- __ cmp(r3, Operand(0, RelocInfo::NONE)); |
- __ b(eq, &invoke); |
- // Compute the address of the first argument. |
- __ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2)); |
- __ add(r2, r2, Operand(kPointerSize)); |
- __ bind(&loop); |
- // Post-decrement argument address by kPointerSize on each iteration. |
- __ ldr(r4, MemOperand(r2, kPointerSize, NegPostIndex)); |
- __ push(r4); |
- __ sub(r3, r3, Operand(1), SetCC); |
- __ b(gt, &loop); |
- |
- // Invoke the function. |
- __ bind(&invoke); |
- ParameterCount actual(r0); |
- __ InvokeFunction(r1, actual, CALL_FUNCTION); |
- // Drop applicand.apply and applicand from the stack, and push |
- // the result of the function call, but leave the spilled frame |
- // unchanged, with 3 elements, so it is correct when we compile the |
- // slow-case code. |
- __ add(sp, sp, Operand(2 * kPointerSize)); |
- __ push(r0); |
- // Stack now has 1 element: |
- // sp[0]: result |
- __ jmp(&done); |
- |
- // Slow-case: Allocate the arguments object since we know it isn't |
- // there, and fall-through to the slow-case where we call |
- // applicand.apply. |
- __ bind(&build_args); |
- // Stack now has 3 elements, because we have jumped from where: |
- // sp[0]: receiver |
- // sp[1]: applicand.apply |
- // sp[2]: applicand. |
- StoreArgumentsObject(false); |
- |
- // Stack and frame now have 4 elements. |
- slow.Bind(); |
- |
- // Generic computation of x.apply(y, args) with no special optimization. |
- // Flip applicand.apply and applicand on the stack, so |
- // applicand looks like the receiver of the applicand.apply call. |
- // Then process it as a normal function call. |
- __ ldr(r0, MemOperand(sp, 3 * kPointerSize)); |
- __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); |
- __ Strd(r0, r1, MemOperand(sp, 2 * kPointerSize)); |
- |
- CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); |
- frame_->CallStub(&call_function, 3); |
- // The function and its two arguments have been dropped. |
- frame_->Drop(); // Drop the receiver as well. |
- frame_->EmitPush(r0); |
- frame_->SpillAll(); // A spilled frame is also jumping to label done. |
- // Stack now has 1 element: |
- // sp[0]: result |
- __ bind(&done); |
- |
- // Restore the context register after a call. |
- __ ldr(cp, frame_->Context()); |
-} |
- |
- |
-void CodeGenerator::Branch(bool if_true, JumpTarget* target) { |
- ASSERT(has_cc()); |
- Condition cond = if_true ? cc_reg_ : NegateCondition(cc_reg_); |
- target->Branch(cond); |
- cc_reg_ = al; |
-} |
- |
- |
-void CodeGenerator::CheckStack() { |
- frame_->SpillAll(); |
- Comment cmnt(masm_, "[ check stack"); |
- __ LoadRoot(ip, Heap::kStackLimitRootIndex); |
- masm_->cmp(sp, Operand(ip)); |
- StackCheckStub stub; |
- // Call the stub if lower. |
- masm_->mov(ip, |
- Operand(reinterpret_cast<intptr_t>(stub.GetCode().location()), |
- RelocInfo::CODE_TARGET), |
- LeaveCC, |
- lo); |
- masm_->Call(ip, lo); |
-} |
- |
- |
-void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- for (int i = 0; frame_ != NULL && i < statements->length(); i++) { |
- Visit(statements->at(i)); |
- } |
- ASSERT(!has_valid_frame() || frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitBlock(Block* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ Block"); |
- CodeForStatementPosition(node); |
- node->break_target()->SetExpectedHeight(); |
- VisitStatements(node->statements()); |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- node->break_target()->Unuse(); |
- ASSERT(!has_valid_frame() || frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { |
- frame_->EmitPush(cp); |
- frame_->EmitPush(Operand(pairs)); |
- frame_->EmitPush(Operand(Smi::FromInt(is_eval() ? 1 : 0))); |
- frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); |
- |
- frame_->CallRuntime(Runtime::kDeclareGlobals, 4); |
- // The result is discarded. |
-} |
- |
- |
-void CodeGenerator::VisitDeclaration(Declaration* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ Declaration"); |
- Variable* var = node->proxy()->var(); |
- ASSERT(var != NULL); // must have been resolved |
- Slot* slot = var->AsSlot(); |
- |
- // If it was not possible to allocate the variable at compile time, |
- // we need to "declare" it at runtime to make sure it actually |
- // exists in the local context. |
- if (slot != NULL && slot->type() == Slot::LOOKUP) { |
- // Variables with a "LOOKUP" slot were introduced as non-locals |
- // during variable resolution and must have mode DYNAMIC. |
- ASSERT(var->is_dynamic()); |
- // For now, just do a runtime call. |
- frame_->EmitPush(cp); |
- frame_->EmitPush(Operand(var->name())); |
- // Declaration nodes are always declared in only two modes. |
- ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); |
- PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; |
- frame_->EmitPush(Operand(Smi::FromInt(attr))); |
- // Push initial value, if any. |
- // Note: For variables we must not push an initial value (such as |
- // 'undefined') because we may have a (legal) redeclaration and we |
- // must not destroy the current value. |
- if (node->mode() == Variable::CONST) { |
- frame_->EmitPushRoot(Heap::kTheHoleValueRootIndex); |
- } else if (node->fun() != NULL) { |
- Load(node->fun()); |
- } else { |
- frame_->EmitPush(Operand(0, RelocInfo::NONE)); |
- } |
- |
- frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); |
- // Ignore the return value (declarations are statements). |
- |
- ASSERT(frame_->height() == original_height); |
- return; |
- } |
- |
- ASSERT(!var->is_global()); |
- |
- // If we have a function or a constant, we need to initialize the variable. |
- Expression* val = NULL; |
- if (node->mode() == Variable::CONST) { |
- val = new Literal(FACTORY->the_hole_value()); |
- } else { |
- val = node->fun(); // NULL if we don't have a function |
- } |
- |
- |
- if (val != NULL) { |
- WriteBarrierCharacter wb_info = |
- val->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI; |
- if (val->AsLiteral() != NULL) wb_info = NEVER_NEWSPACE; |
- // Set initial value. |
- Reference target(this, node->proxy()); |
- Load(val); |
- target.SetValue(NOT_CONST_INIT, wb_info); |
- |
- // Get rid of the assigned value (declarations are statements). |
- frame_->Drop(); |
- } |
- ASSERT(frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ ExpressionStatement"); |
- CodeForStatementPosition(node); |
- Expression* expression = node->expression(); |
- expression->MarkAsStatement(); |
- Load(expression); |
- frame_->Drop(); |
- ASSERT(frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "// EmptyStatement"); |
- CodeForStatementPosition(node); |
- // nothing to do |
- ASSERT(frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitIfStatement(IfStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ IfStatement"); |
- // Generate different code depending on which parts of the if statement |
- // are present or not. |
- bool has_then_stm = node->HasThenStatement(); |
- bool has_else_stm = node->HasElseStatement(); |
- |
- CodeForStatementPosition(node); |
- |
- JumpTarget exit; |
- if (has_then_stm && has_else_stm) { |
- Comment cmnt(masm_, "[ IfThenElse"); |
- JumpTarget then; |
- JumpTarget else_; |
- // if (cond) |
- LoadCondition(node->condition(), &then, &else_, true); |
- if (frame_ != NULL) { |
- Branch(false, &else_); |
- } |
- // then |
- if (frame_ != NULL || then.is_linked()) { |
- then.Bind(); |
- Visit(node->then_statement()); |
- } |
- if (frame_ != NULL) { |
- exit.Jump(); |
- } |
- // else |
- if (else_.is_linked()) { |
- else_.Bind(); |
- Visit(node->else_statement()); |
- } |
- |
- } else if (has_then_stm) { |
- Comment cmnt(masm_, "[ IfThen"); |
- ASSERT(!has_else_stm); |
- JumpTarget then; |
- // if (cond) |
- LoadCondition(node->condition(), &then, &exit, true); |
- if (frame_ != NULL) { |
- Branch(false, &exit); |
- } |
- // then |
- if (frame_ != NULL || then.is_linked()) { |
- then.Bind(); |
- Visit(node->then_statement()); |
- } |
- |
- } else if (has_else_stm) { |
- Comment cmnt(masm_, "[ IfElse"); |
- ASSERT(!has_then_stm); |
- JumpTarget else_; |
- // if (!cond) |
- LoadCondition(node->condition(), &exit, &else_, true); |
- if (frame_ != NULL) { |
- Branch(true, &exit); |
- } |
- // else |
- if (frame_ != NULL || else_.is_linked()) { |
- else_.Bind(); |
- Visit(node->else_statement()); |
- } |
- |
- } else { |
- Comment cmnt(masm_, "[ If"); |
- ASSERT(!has_then_stm && !has_else_stm); |
- // if (cond) |
- LoadCondition(node->condition(), &exit, &exit, false); |
- if (frame_ != NULL) { |
- if (has_cc()) { |
- cc_reg_ = al; |
- } else { |
- frame_->Drop(); |
- } |
- } |
- } |
- |
- // end |
- if (exit.is_linked()) { |
- exit.Bind(); |
- } |
- ASSERT(!has_valid_frame() || frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { |
- Comment cmnt(masm_, "[ ContinueStatement"); |
- CodeForStatementPosition(node); |
- node->target()->continue_target()->Jump(); |
-} |
- |
- |
-void CodeGenerator::VisitBreakStatement(BreakStatement* node) { |
- Comment cmnt(masm_, "[ BreakStatement"); |
- CodeForStatementPosition(node); |
- node->target()->break_target()->Jump(); |
-} |
- |
- |
-void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { |
- Comment cmnt(masm_, "[ ReturnStatement"); |
- |
- CodeForStatementPosition(node); |
- Load(node->expression()); |
- frame_->PopToR0(); |
- frame_->PrepareForReturn(); |
- if (function_return_is_shadowed_) { |
- function_return_.Jump(); |
- } else { |
- // Pop the result from the frame and prepare the frame for |
- // returning thus making it easier to merge. |
- if (function_return_.is_bound()) { |
- // If the function return label is already bound we reuse the |
- // code by jumping to the return site. |
- function_return_.Jump(); |
- } else { |
- function_return_.Bind(); |
- GenerateReturnSequence(); |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::GenerateReturnSequence() { |
- if (FLAG_trace) { |
- // Push the return value on the stack as the parameter. |
- // Runtime::TraceExit returns the parameter as it is. |
- frame_->EmitPush(r0); |
- frame_->CallRuntime(Runtime::kTraceExit, 1); |
- } |
- |
-#ifdef DEBUG |
- // Add a label for checking the size of the code used for returning. |
- Label check_exit_codesize; |
- masm_->bind(&check_exit_codesize); |
-#endif |
- // Make sure that the constant pool is not emitted inside of the return |
- // sequence. |
- { Assembler::BlockConstPoolScope block_const_pool(masm_); |
- // Tear down the frame which will restore the caller's frame pointer and |
- // the link register. |
- frame_->Exit(); |
- |
- // Here we use masm_-> instead of the __ macro to avoid the code coverage |
- // tool from instrumenting as we rely on the code size here. |
- int32_t sp_delta = (scope()->num_parameters() + 1) * kPointerSize; |
- masm_->add(sp, sp, Operand(sp_delta)); |
- masm_->Jump(lr); |
- DeleteFrame(); |
- |
-#ifdef DEBUG |
- // Check that the size of the code used for returning is large enough |
- // for the debugger's requirements. |
- ASSERT(Assembler::kJSReturnSequenceInstructions <= |
- masm_->InstructionsGeneratedSince(&check_exit_codesize)); |
-#endif |
- } |
-} |
- |
- |
-void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ WithEnterStatement"); |
- CodeForStatementPosition(node); |
- Load(node->expression()); |
- if (node->is_catch_block()) { |
- frame_->CallRuntime(Runtime::kPushCatchContext, 1); |
- } else { |
- frame_->CallRuntime(Runtime::kPushContext, 1); |
- } |
-#ifdef DEBUG |
- JumpTarget verified_true; |
- __ cmp(r0, cp); |
- verified_true.Branch(eq); |
- __ stop("PushContext: r0 is expected to be the same as cp"); |
- verified_true.Bind(); |
-#endif |
- // Update context local. |
- __ str(cp, frame_->Context()); |
- ASSERT(frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ WithExitStatement"); |
- CodeForStatementPosition(node); |
- // Pop context. |
- __ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX)); |
- // Update context local. |
- __ str(cp, frame_->Context()); |
- ASSERT(frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ SwitchStatement"); |
- CodeForStatementPosition(node); |
- node->break_target()->SetExpectedHeight(); |
- |
- Load(node->tag()); |
- |
- JumpTarget next_test; |
- JumpTarget fall_through; |
- JumpTarget default_entry; |
- JumpTarget default_exit(JumpTarget::BIDIRECTIONAL); |
- ZoneList<CaseClause*>* cases = node->cases(); |
- int length = cases->length(); |
- CaseClause* default_clause = NULL; |
- |
- for (int i = 0; i < length; i++) { |
- CaseClause* clause = cases->at(i); |
- if (clause->is_default()) { |
- // Remember the default clause and compile it at the end. |
- default_clause = clause; |
- continue; |
- } |
- |
- Comment cmnt(masm_, "[ Case clause"); |
- // Compile the test. |
- next_test.Bind(); |
- next_test.Unuse(); |
- // Duplicate TOS. |
- frame_->Dup(); |
- Comparison(eq, NULL, clause->label(), true); |
- Branch(false, &next_test); |
- |
- // Before entering the body from the test, remove the switch value from |
- // the stack. |
- frame_->Drop(); |
- |
- // Label the body so that fall through is enabled. |
- if (i > 0 && cases->at(i - 1)->is_default()) { |
- default_exit.Bind(); |
- } else { |
- fall_through.Bind(); |
- fall_through.Unuse(); |
- } |
- VisitStatements(clause->statements()); |
- |
- // If control flow can fall through from the body, jump to the next body |
- // or the end of the statement. |
- if (frame_ != NULL) { |
- if (i < length - 1 && cases->at(i + 1)->is_default()) { |
- default_entry.Jump(); |
- } else { |
- fall_through.Jump(); |
- } |
- } |
- } |
- |
- // The final "test" removes the switch value. |
- next_test.Bind(); |
- frame_->Drop(); |
- |
- // If there is a default clause, compile it. |
- if (default_clause != NULL) { |
- Comment cmnt(masm_, "[ Default clause"); |
- default_entry.Bind(); |
- VisitStatements(default_clause->statements()); |
- // If control flow can fall out of the default and there is a case after |
- // it, jump to that case's body. |
- if (frame_ != NULL && default_exit.is_bound()) { |
- default_exit.Jump(); |
- } |
- } |
- |
- if (fall_through.is_linked()) { |
- fall_through.Bind(); |
- } |
- |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- node->break_target()->Unuse(); |
- ASSERT(!has_valid_frame() || frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ DoWhileStatement"); |
- CodeForStatementPosition(node); |
- node->break_target()->SetExpectedHeight(); |
- JumpTarget body(JumpTarget::BIDIRECTIONAL); |
- IncrementLoopNesting(); |
- |
- // Label the top of the loop for the backward CFG edge. If the test |
- // is always true we can use the continue target, and if the test is |
- // always false there is no need. |
- ConditionAnalysis info = AnalyzeCondition(node->cond()); |
- switch (info) { |
- case ALWAYS_TRUE: |
- node->continue_target()->SetExpectedHeight(); |
- node->continue_target()->Bind(); |
- break; |
- case ALWAYS_FALSE: |
- node->continue_target()->SetExpectedHeight(); |
- break; |
- case DONT_KNOW: |
- node->continue_target()->SetExpectedHeight(); |
- body.Bind(); |
- break; |
- } |
- |
- CheckStack(); // TODO(1222600): ignore if body contains calls. |
- Visit(node->body()); |
- |
- // Compile the test. |
- switch (info) { |
- case ALWAYS_TRUE: |
- // If control can fall off the end of the body, jump back to the |
- // top. |
- if (has_valid_frame()) { |
- node->continue_target()->Jump(); |
- } |
- break; |
- case ALWAYS_FALSE: |
- // If we have a continue in the body, we only have to bind its |
- // jump target. |
- if (node->continue_target()->is_linked()) { |
- node->continue_target()->Bind(); |
- } |
- break; |
- case DONT_KNOW: |
- // We have to compile the test expression if it can be reached by |
- // control flow falling out of the body or via continue. |
- if (node->continue_target()->is_linked()) { |
- node->continue_target()->Bind(); |
- } |
- if (has_valid_frame()) { |
- Comment cmnt(masm_, "[ DoWhileCondition"); |
- CodeForDoWhileConditionPosition(node); |
- LoadCondition(node->cond(), &body, node->break_target(), true); |
- if (has_valid_frame()) { |
- // A invalid frame here indicates that control did not |
- // fall out of the test expression. |
- Branch(true, &body); |
- } |
- } |
- break; |
- } |
- |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- DecrementLoopNesting(); |
- ASSERT(!has_valid_frame() || frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitWhileStatement(WhileStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ WhileStatement"); |
- CodeForStatementPosition(node); |
- |
- // If the test is never true and has no side effects there is no need |
- // to compile the test or body. |
- ConditionAnalysis info = AnalyzeCondition(node->cond()); |
- if (info == ALWAYS_FALSE) return; |
- |
- node->break_target()->SetExpectedHeight(); |
- IncrementLoopNesting(); |
- |
- // Label the top of the loop with the continue target for the backward |
- // CFG edge. |
- node->continue_target()->SetExpectedHeight(); |
- node->continue_target()->Bind(); |
- |
- if (info == DONT_KNOW) { |
- JumpTarget body(JumpTarget::BIDIRECTIONAL); |
- LoadCondition(node->cond(), &body, node->break_target(), true); |
- if (has_valid_frame()) { |
- // A NULL frame indicates that control did not fall out of the |
- // test expression. |
- Branch(false, node->break_target()); |
- } |
- if (has_valid_frame() || body.is_linked()) { |
- body.Bind(); |
- } |
- } |
- |
- if (has_valid_frame()) { |
- CheckStack(); // TODO(1222600): ignore if body contains calls. |
- Visit(node->body()); |
- |
- // If control flow can fall out of the body, jump back to the top. |
- if (has_valid_frame()) { |
- node->continue_target()->Jump(); |
- } |
- } |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- DecrementLoopNesting(); |
- ASSERT(!has_valid_frame() || frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitForStatement(ForStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ ForStatement"); |
- CodeForStatementPosition(node); |
- if (node->init() != NULL) { |
- Visit(node->init()); |
- } |
- |
- // If the test is never true there is no need to compile the test or |
- // body. |
- ConditionAnalysis info = AnalyzeCondition(node->cond()); |
- if (info == ALWAYS_FALSE) return; |
- |
- node->break_target()->SetExpectedHeight(); |
- IncrementLoopNesting(); |
- |
- // We know that the loop index is a smi if it is not modified in the |
- // loop body and it is checked against a constant limit in the loop |
- // condition. In this case, we reset the static type information of the |
- // loop index to smi before compiling the body, the update expression, and |
- // the bottom check of the loop condition. |
- TypeInfoCodeGenState type_info_scope(this, |
- node->is_fast_smi_loop() ? |
- node->loop_variable()->AsSlot() : |
- NULL, |
- TypeInfo::Smi()); |
- |
- // If there is no update statement, label the top of the loop with the |
- // continue target, otherwise with the loop target. |
- JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
- if (node->next() == NULL) { |
- node->continue_target()->SetExpectedHeight(); |
- node->continue_target()->Bind(); |
- } else { |
- node->continue_target()->SetExpectedHeight(); |
- loop.Bind(); |
- } |
- |
- // If the test is always true, there is no need to compile it. |
- if (info == DONT_KNOW) { |
- JumpTarget body; |
- LoadCondition(node->cond(), &body, node->break_target(), true); |
- if (has_valid_frame()) { |
- Branch(false, node->break_target()); |
- } |
- if (has_valid_frame() || body.is_linked()) { |
- body.Bind(); |
- } |
- } |
- |
- if (has_valid_frame()) { |
- CheckStack(); // TODO(1222600): ignore if body contains calls. |
- Visit(node->body()); |
- |
- if (node->next() == NULL) { |
- // If there is no update statement and control flow can fall out |
- // of the loop, jump directly to the continue label. |
- if (has_valid_frame()) { |
- node->continue_target()->Jump(); |
- } |
- } else { |
- // If there is an update statement and control flow can reach it |
- // via falling out of the body of the loop or continuing, we |
- // compile the update statement. |
- if (node->continue_target()->is_linked()) { |
- node->continue_target()->Bind(); |
- } |
- if (has_valid_frame()) { |
- // Record source position of the statement as this code which is |
- // after the code for the body actually belongs to the loop |
- // statement and not the body. |
- CodeForStatementPosition(node); |
- Visit(node->next()); |
- loop.Jump(); |
- } |
- } |
- } |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- DecrementLoopNesting(); |
- ASSERT(!has_valid_frame() || frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitForInStatement(ForInStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ ForInStatement"); |
- CodeForStatementPosition(node); |
- |
- JumpTarget primitive; |
- JumpTarget jsobject; |
- JumpTarget fixed_array; |
- JumpTarget entry(JumpTarget::BIDIRECTIONAL); |
- JumpTarget end_del_check; |
- JumpTarget exit; |
- |
- // Get the object to enumerate over (converted to JSObject). |
- Load(node->enumerable()); |
- |
- VirtualFrame::SpilledScope spilled_scope(frame_); |
- // Both SpiderMonkey and kjs ignore null and undefined in contrast |
- // to the specification. 12.6.4 mandates a call to ToObject. |
- frame_->EmitPop(r0); |
- __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
- __ cmp(r0, ip); |
- exit.Branch(eq); |
- __ LoadRoot(ip, Heap::kNullValueRootIndex); |
- __ cmp(r0, ip); |
- exit.Branch(eq); |
- |
- // Stack layout in body: |
- // [iteration counter (Smi)] |
- // [length of array] |
- // [FixedArray] |
- // [Map or 0] |
- // [Object] |
- |
- // Check if enumerable is already a JSObject |
- __ tst(r0, Operand(kSmiTagMask)); |
- primitive.Branch(eq); |
- __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE); |
- jsobject.Branch(hs); |
- |
- primitive.Bind(); |
- frame_->EmitPush(r0); |
- frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, 1); |
- |
- jsobject.Bind(); |
- // Get the set of properties (as a FixedArray or Map). |
- // r0: value to be iterated over |
- frame_->EmitPush(r0); // Push the object being iterated over. |
- |
- // Check cache validity in generated code. This is a fast case for |
- // the JSObject::IsSimpleEnum cache validity checks. If we cannot |
- // guarantee cache validity, call the runtime system to check cache |
- // validity or get the property names in a fixed array. |
- JumpTarget call_runtime; |
- JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
- JumpTarget check_prototype; |
- JumpTarget use_cache; |
- __ mov(r1, Operand(r0)); |
- loop.Bind(); |
- // Check that there are no elements. |
- __ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset)); |
- __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex); |
- __ cmp(r2, r4); |
- call_runtime.Branch(ne); |
- // Check that instance descriptors are not empty so that we can |
- // check for an enum cache. Leave the map in r3 for the subsequent |
- // prototype load. |
- __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); |
- __ ldr(r2, FieldMemOperand(r3, Map::kInstanceDescriptorsOffset)); |
- __ LoadRoot(ip, Heap::kEmptyDescriptorArrayRootIndex); |
- __ cmp(r2, ip); |
- call_runtime.Branch(eq); |
- // Check that there in an enum cache in the non-empty instance |
- // descriptors. This is the case if the next enumeration index |
- // field does not contain a smi. |
- __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumerationIndexOffset)); |
- __ tst(r2, Operand(kSmiTagMask)); |
- call_runtime.Branch(eq); |
- // For all objects but the receiver, check that the cache is empty. |
- // r4: empty fixed array root. |
- __ cmp(r1, r0); |
- check_prototype.Branch(eq); |
- __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
- __ cmp(r2, r4); |
- call_runtime.Branch(ne); |
- check_prototype.Bind(); |
- // Load the prototype from the map and loop if non-null. |
- __ ldr(r1, FieldMemOperand(r3, Map::kPrototypeOffset)); |
- __ LoadRoot(ip, Heap::kNullValueRootIndex); |
- __ cmp(r1, ip); |
- loop.Branch(ne); |
- // The enum cache is valid. Load the map of the object being |
- // iterated over and use the cache for the iteration. |
- __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); |
- use_cache.Jump(); |
- |
- call_runtime.Bind(); |
- // Call the runtime to get the property names for the object. |
- frame_->EmitPush(r0); // push the object (slot 4) for the runtime call |
- frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); |
- |
- // If we got a map from the runtime call, we can do a fast |
- // modification check. Otherwise, we got a fixed array, and we have |
- // to do a slow check. |
- // r0: map or fixed array (result from call to |
- // Runtime::kGetPropertyNamesFast) |
- __ mov(r2, Operand(r0)); |
- __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); |
- __ LoadRoot(ip, Heap::kMetaMapRootIndex); |
- __ cmp(r1, ip); |
- fixed_array.Branch(ne); |
- |
- use_cache.Bind(); |
- // Get enum cache |
- // r0: map (either the result from a call to |
- // Runtime::kGetPropertyNamesFast or has been fetched directly from |
- // the object) |
- __ mov(r1, Operand(r0)); |
- __ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset)); |
- __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset)); |
- __ ldr(r2, |
- FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
- |
- frame_->EmitPush(r0); // map |
- frame_->EmitPush(r2); // enum cache bridge cache |
- __ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset)); |
- frame_->EmitPush(r0); |
- __ mov(r0, Operand(Smi::FromInt(0))); |
- frame_->EmitPush(r0); |
- entry.Jump(); |
- |
- fixed_array.Bind(); |
- __ mov(r1, Operand(Smi::FromInt(0))); |
- frame_->EmitPush(r1); // insert 0 in place of Map |
- frame_->EmitPush(r0); |
- |
- // Push the length of the array and the initial index onto the stack. |
- __ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset)); |
- frame_->EmitPush(r0); |
- __ mov(r0, Operand(Smi::FromInt(0))); // init index |
- frame_->EmitPush(r0); |
- |
- // Condition. |
- entry.Bind(); |
- // sp[0] : index |
- // sp[1] : array/enum cache length |
- // sp[2] : array or enum cache |
- // sp[3] : 0 or map |
- // sp[4] : enumerable |
- // Grab the current frame's height for the break and continue |
- // targets only after all the state is pushed on the frame. |
- node->break_target()->SetExpectedHeight(); |
- node->continue_target()->SetExpectedHeight(); |
- |
- // Load the current count to r0, load the length to r1. |
- __ Ldrd(r0, r1, frame_->ElementAt(0)); |
- __ cmp(r0, r1); // compare to the array length |
- node->break_target()->Branch(hs); |
- |
- // Get the i'th entry of the array. |
- __ ldr(r2, frame_->ElementAt(2)); |
- __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
- __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
- |
- // Get Map or 0. |
- __ ldr(r2, frame_->ElementAt(3)); |
- // Check if this (still) matches the map of the enumerable. |
- // If not, we have to filter the key. |
- __ ldr(r1, frame_->ElementAt(4)); |
- __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
- __ cmp(r1, Operand(r2)); |
- end_del_check.Branch(eq); |
- |
- // Convert the entry to a string (or null if it isn't a property anymore). |
- __ ldr(r0, frame_->ElementAt(4)); // push enumerable |
- frame_->EmitPush(r0); |
- frame_->EmitPush(r3); // push entry |
- frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS, 2); |
- __ mov(r3, Operand(r0), SetCC); |
- // If the property has been removed while iterating, we just skip it. |
- node->continue_target()->Branch(eq); |
- |
- end_del_check.Bind(); |
- // Store the entry in the 'each' expression and take another spin in the |
- // loop. r3: i'th entry of the enum cache (or string there of) |
- frame_->EmitPush(r3); // push entry |
- { VirtualFrame::RegisterAllocationScope scope(this); |
- Reference each(this, node->each()); |
- if (!each.is_illegal()) { |
- if (each.size() > 0) { |
- // Loading a reference may leave the frame in an unspilled state. |
- frame_->SpillAll(); // Sync stack to memory. |
- // Get the value (under the reference on the stack) from memory. |
- __ ldr(r0, frame_->ElementAt(each.size())); |
- frame_->EmitPush(r0); |
- each.SetValue(NOT_CONST_INIT, UNLIKELY_SMI); |
- frame_->Drop(2); // The result of the set and the extra pushed value. |
- } else { |
- // If the reference was to a slot we rely on the convenient property |
- // that it doesn't matter whether a value (eg, ebx pushed above) is |
- // right on top of or right underneath a zero-sized reference. |
- each.SetValue(NOT_CONST_INIT, UNLIKELY_SMI); |
- frame_->Drop(1); // Drop the result of the set operation. |
- } |
- } |
- } |
- // Body. |
- CheckStack(); // TODO(1222600): ignore if body contains calls. |
- { VirtualFrame::RegisterAllocationScope scope(this); |
- Visit(node->body()); |
- } |
- |
- // Next. Reestablish a spilled frame in case we are coming here via |
- // a continue in the body. |
- node->continue_target()->Bind(); |
- frame_->SpillAll(); |
- frame_->EmitPop(r0); |
- __ add(r0, r0, Operand(Smi::FromInt(1))); |
- frame_->EmitPush(r0); |
- entry.Jump(); |
- |
- // Cleanup. No need to spill because VirtualFrame::Drop is safe for |
- // any frame. |
- node->break_target()->Bind(); |
- frame_->Drop(5); |
- |
- // Exit. |
- exit.Bind(); |
- node->continue_target()->Unuse(); |
- node->break_target()->Unuse(); |
- ASSERT(frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- VirtualFrame::SpilledScope spilled_scope(frame_); |
- Comment cmnt(masm_, "[ TryCatchStatement"); |
- CodeForStatementPosition(node); |
- |
- JumpTarget try_block; |
- JumpTarget exit; |
- |
- try_block.Call(); |
- // --- Catch block --- |
- frame_->EmitPush(r0); |
- |
- // Store the caught exception in the catch variable. |
- Variable* catch_var = node->catch_var()->var(); |
- ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL); |
- StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT); |
- |
- // Remove the exception from the stack. |
- frame_->Drop(); |
- |
- { VirtualFrame::RegisterAllocationScope scope(this); |
- VisitStatements(node->catch_block()->statements()); |
- } |
- if (frame_ != NULL) { |
- exit.Jump(); |
- } |
- |
- |
- // --- Try block --- |
- try_block.Bind(); |
- |
- frame_->PushTryHandler(TRY_CATCH_HANDLER); |
- int handler_height = frame_->height(); |
- |
- // Shadow the labels for all escapes from the try block, including |
- // returns. During shadowing, the original label is hidden as the |
- // LabelShadow and operations on the original actually affect the |
- // shadowing label. |
- // |
- // We should probably try to unify the escaping labels and the return |
- // label. |
- int nof_escapes = node->escaping_targets()->length(); |
- List<ShadowTarget*> shadows(1 + nof_escapes); |
- |
- // Add the shadow target for the function return. |
- static const int kReturnShadowIndex = 0; |
- shadows.Add(new ShadowTarget(&function_return_)); |
- bool function_return_was_shadowed = function_return_is_shadowed_; |
- function_return_is_shadowed_ = true; |
- ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
- |
- // Add the remaining shadow targets. |
- for (int i = 0; i < nof_escapes; i++) { |
- shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
- } |
- |
- // Generate code for the statements in the try block. |
- { VirtualFrame::RegisterAllocationScope scope(this); |
- VisitStatements(node->try_block()->statements()); |
- } |
- |
- // Stop the introduced shadowing and count the number of required unlinks. |
- // After shadowing stops, the original labels are unshadowed and the |
- // LabelShadows represent the formerly shadowing labels. |
- bool has_unlinks = false; |
- for (int i = 0; i < shadows.length(); i++) { |
- shadows[i]->StopShadowing(); |
- has_unlinks = has_unlinks || shadows[i]->is_linked(); |
- } |
- function_return_is_shadowed_ = function_return_was_shadowed; |
- |
- // Get an external reference to the handler address. |
- ExternalReference handler_address(Isolate::k_handler_address, isolate()); |
- |
- // If we can fall off the end of the try block, unlink from try chain. |
- if (has_valid_frame()) { |
- // The next handler address is on top of the frame. Unlink from |
- // the handler list and drop the rest of this handler from the |
- // frame. |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
- frame_->EmitPop(r1); // r0 can contain the return value. |
- __ mov(r3, Operand(handler_address)); |
- __ str(r1, MemOperand(r3)); |
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
- if (has_unlinks) { |
- exit.Jump(); |
- } |
- } |
- |
- // Generate unlink code for the (formerly) shadowing labels that have been |
- // jumped to. Deallocate each shadow target. |
- for (int i = 0; i < shadows.length(); i++) { |
- if (shadows[i]->is_linked()) { |
- // Unlink from try chain; |
- shadows[i]->Bind(); |
- // Because we can be jumping here (to spilled code) from unspilled |
- // code, we need to reestablish a spilled frame at this block. |
- frame_->SpillAll(); |
- |
- // Reload sp from the top handler, because some statements that we |
- // break from (eg, for...in) may have left stuff on the stack. |
- __ mov(r3, Operand(handler_address)); |
- __ ldr(sp, MemOperand(r3)); |
- frame_->Forget(frame_->height() - handler_height); |
- |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
- frame_->EmitPop(r1); // r0 can contain the return value. |
- __ str(r1, MemOperand(r3)); |
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
- |
- if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { |
- frame_->PrepareForReturn(); |
- } |
- shadows[i]->other_target()->Jump(); |
- } |
- } |
- |
- exit.Bind(); |
- ASSERT(!has_valid_frame() || frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- VirtualFrame::SpilledScope spilled_scope(frame_); |
- Comment cmnt(masm_, "[ TryFinallyStatement"); |
- CodeForStatementPosition(node); |
- |
- // State: Used to keep track of reason for entering the finally |
- // block. Should probably be extended to hold information for |
- // break/continue from within the try block. |
- enum { FALLING, THROWING, JUMPING }; |
- |
- JumpTarget try_block; |
- JumpTarget finally_block; |
- |
- try_block.Call(); |
- |
- frame_->EmitPush(r0); // save exception object on the stack |
- // In case of thrown exceptions, this is where we continue. |
- __ mov(r2, Operand(Smi::FromInt(THROWING))); |
- finally_block.Jump(); |
- |
- // --- Try block --- |
- try_block.Bind(); |
- |
- frame_->PushTryHandler(TRY_FINALLY_HANDLER); |
- int handler_height = frame_->height(); |
- |
- // Shadow the labels for all escapes from the try block, including |
- // returns. Shadowing hides the original label as the LabelShadow and |
- // operations on the original actually affect the shadowing label. |
- // |
- // We should probably try to unify the escaping labels and the return |
- // label. |
- int nof_escapes = node->escaping_targets()->length(); |
- List<ShadowTarget*> shadows(1 + nof_escapes); |
- |
- // Add the shadow target for the function return. |
- static const int kReturnShadowIndex = 0; |
- shadows.Add(new ShadowTarget(&function_return_)); |
- bool function_return_was_shadowed = function_return_is_shadowed_; |
- function_return_is_shadowed_ = true; |
- ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
- |
- // Add the remaining shadow targets. |
- for (int i = 0; i < nof_escapes; i++) { |
- shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
- } |
- |
- // Generate code for the statements in the try block. |
- { VirtualFrame::RegisterAllocationScope scope(this); |
- VisitStatements(node->try_block()->statements()); |
- } |
- |
- // Stop the introduced shadowing and count the number of required unlinks. |
- // After shadowing stops, the original labels are unshadowed and the |
- // LabelShadows represent the formerly shadowing labels. |
- int nof_unlinks = 0; |
- for (int i = 0; i < shadows.length(); i++) { |
- shadows[i]->StopShadowing(); |
- if (shadows[i]->is_linked()) nof_unlinks++; |
- } |
- function_return_is_shadowed_ = function_return_was_shadowed; |
- |
- // Get an external reference to the handler address. |
- ExternalReference handler_address(Isolate::k_handler_address, isolate()); |
- |
- // If we can fall off the end of the try block, unlink from the try |
- // chain and set the state on the frame to FALLING. |
- if (has_valid_frame()) { |
- // The next handler address is on top of the frame. |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
- frame_->EmitPop(r1); |
- __ mov(r3, Operand(handler_address)); |
- __ str(r1, MemOperand(r3)); |
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
- |
- // Fake a top of stack value (unneeded when FALLING) and set the |
- // state in r2, then jump around the unlink blocks if any. |
- __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
- frame_->EmitPush(r0); |
- __ mov(r2, Operand(Smi::FromInt(FALLING))); |
- if (nof_unlinks > 0) { |
- finally_block.Jump(); |
- } |
- } |
- |
- // Generate code to unlink and set the state for the (formerly) |
- // shadowing targets that have been jumped to. |
- for (int i = 0; i < shadows.length(); i++) { |
- if (shadows[i]->is_linked()) { |
- // If we have come from the shadowed return, the return value is |
- // in (a non-refcounted reference to) r0. We must preserve it |
- // until it is pushed. |
- // |
- // Because we can be jumping here (to spilled code) from |
- // unspilled code, we need to reestablish a spilled frame at |
- // this block. |
- shadows[i]->Bind(); |
- frame_->SpillAll(); |
- |
- // Reload sp from the top handler, because some statements that |
- // we break from (eg, for...in) may have left stuff on the |
- // stack. |
- __ mov(r3, Operand(handler_address)); |
- __ ldr(sp, MemOperand(r3)); |
- frame_->Forget(frame_->height() - handler_height); |
- |
- // Unlink this handler and drop it from the frame. The next |
- // handler address is currently on top of the frame. |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
- frame_->EmitPop(r1); |
- __ str(r1, MemOperand(r3)); |
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
- |
- if (i == kReturnShadowIndex) { |
- // If this label shadowed the function return, materialize the |
- // return value on the stack. |
- frame_->EmitPush(r0); |
- } else { |
- // Fake TOS for targets that shadowed breaks and continues. |
- __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
- frame_->EmitPush(r0); |
- } |
- __ mov(r2, Operand(Smi::FromInt(JUMPING + i))); |
- if (--nof_unlinks > 0) { |
- // If this is not the last unlink block, jump around the next. |
- finally_block.Jump(); |
- } |
- } |
- } |
- |
- // --- Finally block --- |
- finally_block.Bind(); |
- |
- // Push the state on the stack. |
- frame_->EmitPush(r2); |
- |
- // We keep two elements on the stack - the (possibly faked) result |
- // and the state - while evaluating the finally block. |
- // |
- // Generate code for the statements in the finally block. |
- { VirtualFrame::RegisterAllocationScope scope(this); |
- VisitStatements(node->finally_block()->statements()); |
- } |
- |
- if (has_valid_frame()) { |
- // Restore state and return value or faked TOS. |
- frame_->EmitPop(r2); |
- frame_->EmitPop(r0); |
- } |
- |
- // Generate code to jump to the right destination for all used |
- // formerly shadowing targets. Deallocate each shadow target. |
- for (int i = 0; i < shadows.length(); i++) { |
- if (has_valid_frame() && shadows[i]->is_bound()) { |
- JumpTarget* original = shadows[i]->other_target(); |
- __ cmp(r2, Operand(Smi::FromInt(JUMPING + i))); |
- if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { |
- JumpTarget skip; |
- skip.Branch(ne); |
- frame_->PrepareForReturn(); |
- original->Jump(); |
- skip.Bind(); |
- } else { |
- original->Branch(eq); |
- } |
- } |
- } |
- |
- if (has_valid_frame()) { |
- // Check if we need to rethrow the exception. |
- JumpTarget exit; |
- __ cmp(r2, Operand(Smi::FromInt(THROWING))); |
- exit.Branch(ne); |
- |
- // Rethrow exception. |
- frame_->EmitPush(r0); |
- frame_->CallRuntime(Runtime::kReThrow, 1); |
- |
- // Done. |
- exit.Bind(); |
- } |
- ASSERT(!has_valid_frame() || frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ DebuggerStatament"); |
- CodeForStatementPosition(node); |
-#ifdef ENABLE_DEBUGGER_SUPPORT |
- frame_->DebugBreak(); |
-#endif |
- // Ignore the return value. |
- ASSERT(frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::InstantiateFunction( |
- Handle<SharedFunctionInfo> function_info, |
- bool pretenure) { |
- // Use the fast case closure allocation code that allocates in new |
- // space for nested functions that don't need literals cloning. |
- if (!pretenure && |
- scope()->is_function_scope() && |
- function_info->num_literals() == 0) { |
- FastNewClosureStub stub( |
- function_info->strict_mode() ? kStrictMode : kNonStrictMode); |
- frame_->EmitPush(Operand(function_info)); |
- frame_->SpillAll(); |
- frame_->CallStub(&stub, 1); |
- frame_->EmitPush(r0); |
- } else { |
- // Create a new closure. |
- frame_->EmitPush(cp); |
- frame_->EmitPush(Operand(function_info)); |
- frame_->EmitPush(Operand(pretenure |
- ? FACTORY->true_value() |
- : FACTORY->false_value())); |
- frame_->CallRuntime(Runtime::kNewClosure, 3); |
- frame_->EmitPush(r0); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ FunctionLiteral"); |
- |
- // Build the function info and instantiate it. |
- Handle<SharedFunctionInfo> function_info = |
- Compiler::BuildFunctionInfo(node, script()); |
- if (function_info.is_null()) { |
- SetStackOverflow(); |
- ASSERT(frame_->height() == original_height); |
- return; |
- } |
- InstantiateFunction(function_info, node->pretenure()); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitSharedFunctionInfoLiteral( |
- SharedFunctionInfoLiteral* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ SharedFunctionInfoLiteral"); |
- InstantiateFunction(node->shared_function_info(), false); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitConditional(Conditional* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ Conditional"); |
- JumpTarget then; |
- JumpTarget else_; |
- LoadCondition(node->condition(), &then, &else_, true); |
- if (has_valid_frame()) { |
- Branch(false, &else_); |
- } |
- if (has_valid_frame() || then.is_linked()) { |
- then.Bind(); |
- Load(node->then_expression()); |
- } |
- if (else_.is_linked()) { |
- JumpTarget exit; |
- if (has_valid_frame()) exit.Jump(); |
- else_.Bind(); |
- Load(node->else_expression()); |
- if (exit.is_linked()) exit.Bind(); |
- } |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { |
- if (slot->type() == Slot::LOOKUP) { |
- ASSERT(slot->var()->is_dynamic()); |
- |
- // JumpTargets do not yet support merging frames so the frame must be |
- // spilled when jumping to these targets. |
- JumpTarget slow; |
- JumpTarget done; |
- |
- // Generate fast case for loading from slots that correspond to |
- // local/global variables or arguments unless they are shadowed by |
- // eval-introduced bindings. |
- EmitDynamicLoadFromSlotFastCase(slot, |
- typeof_state, |
- &slow, |
- &done); |
- |
- slow.Bind(); |
- frame_->EmitPush(cp); |
- frame_->EmitPush(Operand(slot->var()->name())); |
- |
- if (typeof_state == INSIDE_TYPEOF) { |
- frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); |
- } else { |
- frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
- } |
- |
- done.Bind(); |
- frame_->EmitPush(r0); |
- |
- } else { |
- Register scratch = VirtualFrame::scratch0(); |
- TypeInfo info = type_info(slot); |
- frame_->EmitPush(SlotOperand(slot, scratch), info); |
- |
- if (slot->var()->mode() == Variable::CONST) { |
- // Const slots may contain 'the hole' value (the constant hasn't been |
- // initialized yet) which needs to be converted into the 'undefined' |
- // value. |
- Comment cmnt(masm_, "[ Unhole const"); |
- Register tos = frame_->PopToRegister(); |
- __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
- __ cmp(tos, ip); |
- __ LoadRoot(tos, Heap::kUndefinedValueRootIndex, eq); |
- frame_->EmitPush(tos); |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, |
- TypeofState state) { |
- VirtualFrame::RegisterAllocationScope scope(this); |
- LoadFromSlot(slot, state); |
- |
- // Bail out quickly if we're not using lazy arguments allocation. |
- if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; |
- |
- // ... or if the slot isn't a non-parameter arguments slot. |
- if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; |
- |
- // Load the loaded value from the stack into a register but leave it on the |
- // stack. |
- Register tos = frame_->Peek(); |
- |
- // If the loaded value is the sentinel that indicates that we |
- // haven't loaded the arguments object yet, we need to do it now. |
- JumpTarget exit; |
- __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); |
- __ cmp(tos, ip); |
- exit.Branch(ne); |
- frame_->Drop(); |
- StoreArgumentsObject(false); |
- exit.Bind(); |
-} |
- |
- |
-void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { |
- ASSERT(slot != NULL); |
- VirtualFrame::RegisterAllocationScope scope(this); |
- if (slot->type() == Slot::LOOKUP) { |
- ASSERT(slot->var()->is_dynamic()); |
- |
- // For now, just do a runtime call. |
- frame_->EmitPush(cp); |
- frame_->EmitPush(Operand(slot->var()->name())); |
- |
- if (init_state == CONST_INIT) { |
- // Same as the case for a normal store, but ignores attribute |
- // (e.g. READ_ONLY) of context slot so that we can initialize |
- // const properties (introduced via eval("const foo = (some |
- // expr);")). Also, uses the current function context instead of |
- // the top context. |
- // |
- // Note that we must declare the foo upon entry of eval(), via a |
- // context slot declaration, but we cannot initialize it at the |
- // same time, because the const declaration may be at the end of |
- // the eval code (sigh...) and the const variable may have been |
- // used before (where its value is 'undefined'). Thus, we can only |
- // do the initialization when we actually encounter the expression |
- // and when the expression operands are defined and valid, and |
- // thus we need the split into 2 operations: declaration of the |
- // context slot followed by initialization. |
- frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); |
- } else { |
- frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); |
- frame_->CallRuntime(Runtime::kStoreContextSlot, 4); |
- } |
- // Storing a variable must keep the (new) value on the expression |
- // stack. This is necessary for compiling assignment expressions. |
- frame_->EmitPush(r0); |
- |
- } else { |
- ASSERT(!slot->var()->is_dynamic()); |
- Register scratch = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- |
- // The frame must be spilled when branching to this target. |
- JumpTarget exit; |
- |
- if (init_state == CONST_INIT) { |
- ASSERT(slot->var()->mode() == Variable::CONST); |
- // Only the first const initialization must be executed (the slot |
- // still contains 'the hole' value). When the assignment is |
- // executed, the code is identical to a normal store (see below). |
- Comment cmnt(masm_, "[ Init const"); |
- __ ldr(scratch, SlotOperand(slot, scratch)); |
- __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
- __ cmp(scratch, ip); |
- exit.Branch(ne); |
- } |
- |
- // We must execute the store. Storing a variable must keep the |
- // (new) value on the stack. This is necessary for compiling |
- // assignment expressions. |
- // |
- // Note: We will reach here even with slot->var()->mode() == |
- // Variable::CONST because of const declarations which will |
- // initialize consts to 'the hole' value and by doing so, end up |
- // calling this code. r2 may be loaded with context; used below in |
- // RecordWrite. |
- Register tos = frame_->Peek(); |
- __ str(tos, SlotOperand(slot, scratch)); |
- if (slot->type() == Slot::CONTEXT) { |
- // Skip write barrier if the written value is a smi. |
- __ tst(tos, Operand(kSmiTagMask)); |
- // We don't use tos any more after here. |
- exit.Branch(eq); |
- // scratch is loaded with context when calling SlotOperand above. |
- int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; |
- // We need an extra register. Until we have a way to do that in the |
- // virtual frame we will cheat and ask for a free TOS register. |
- Register scratch3 = frame_->GetTOSRegister(); |
- __ RecordWrite(scratch, Operand(offset), scratch2, scratch3); |
- } |
- // If we definitely did not jump over the assignment, we do not need |
- // to bind the exit label. Doing so can defeat peephole |
- // optimization. |
- if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) { |
- exit.Bind(); |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot, |
- TypeofState typeof_state, |
- JumpTarget* slow) { |
- // Check that no extension objects have been created by calls to |
- // eval from the current scope to the global scope. |
- Register tmp = frame_->scratch0(); |
- Register tmp2 = frame_->scratch1(); |
- Register context = cp; |
- Scope* s = scope(); |
- while (s != NULL) { |
- if (s->num_heap_slots() > 0) { |
- if (s->calls_eval()) { |
- frame_->SpillAll(); |
- // Check that extension is NULL. |
- __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
- __ tst(tmp2, tmp2); |
- slow->Branch(ne); |
- } |
- // Load next context in chain. |
- __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
- __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
- context = tmp; |
- } |
- // If no outer scope calls eval, we do not need to check more |
- // context extensions. |
- if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; |
- s = s->outer_scope(); |
- } |
- |
- if (s->is_eval_scope()) { |
- frame_->SpillAll(); |
- Label next, fast; |
- __ Move(tmp, context); |
- __ bind(&next); |
- // Terminate at global context. |
- __ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset)); |
- __ LoadRoot(ip, Heap::kGlobalContextMapRootIndex); |
- __ cmp(tmp2, ip); |
- __ b(eq, &fast); |
- // Check that extension is NULL. |
- __ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX)); |
- __ tst(tmp2, tmp2); |
- slow->Branch(ne); |
- // Load next context in chain. |
- __ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX)); |
- __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
- __ b(&next); |
- __ bind(&fast); |
- } |
- |
- // Load the global object. |
- LoadGlobal(); |
- // Setup the name register and call load IC. |
- frame_->CallLoadIC(slot->var()->name(), |
- typeof_state == INSIDE_TYPEOF |
- ? RelocInfo::CODE_TARGET |
- : RelocInfo::CODE_TARGET_CONTEXT); |
-} |
- |
- |
-void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot, |
- TypeofState typeof_state, |
- JumpTarget* slow, |
- JumpTarget* done) { |
- // Generate fast-case code for variables that might be shadowed by |
- // eval-introduced variables. Eval is used a lot without |
- // introducing variables. In those cases, we do not want to |
- // perform a runtime call for all variables in the scope |
- // containing the eval. |
- if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { |
- LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow); |
- frame_->SpillAll(); |
- done->Jump(); |
- |
- } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { |
- frame_->SpillAll(); |
- Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot(); |
- Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); |
- if (potential_slot != NULL) { |
- // Generate fast case for locals that rewrite to slots. |
- __ ldr(r0, |
- ContextSlotOperandCheckExtensions(potential_slot, |
- r1, |
- r2, |
- slow)); |
- if (potential_slot->var()->mode() == Variable::CONST) { |
- __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
- __ cmp(r0, ip); |
- __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); |
- } |
- done->Jump(); |
- } else if (rewrite != NULL) { |
- // Generate fast case for argument loads. |
- Property* property = rewrite->AsProperty(); |
- if (property != NULL) { |
- VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); |
- Literal* key_literal = property->key()->AsLiteral(); |
- if (obj_proxy != NULL && |
- key_literal != NULL && |
- obj_proxy->IsArguments() && |
- key_literal->handle()->IsSmi()) { |
- // Load arguments object if there are no eval-introduced |
- // variables. Then load the argument from the arguments |
- // object using keyed load. |
- __ ldr(r0, |
- ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(), |
- r1, |
- r2, |
- slow)); |
- frame_->EmitPush(r0); |
- __ mov(r1, Operand(key_literal->handle())); |
- frame_->EmitPush(r1); |
- EmitKeyedLoad(); |
- done->Jump(); |
- } |
- } |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::VisitSlot(Slot* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ Slot"); |
- LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitVariableProxy(VariableProxy* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ VariableProxy"); |
- |
- Variable* var = node->var(); |
- Expression* expr = var->rewrite(); |
- if (expr != NULL) { |
- Visit(expr); |
- } else { |
- ASSERT(var->is_global()); |
- Reference ref(this, node); |
- ref.GetValue(); |
- } |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitLiteral(Literal* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ Literal"); |
- Register reg = frame_->GetTOSRegister(); |
- bool is_smi = node->handle()->IsSmi(); |
- __ mov(reg, Operand(node->handle())); |
- frame_->EmitPush(reg, is_smi ? TypeInfo::Smi() : TypeInfo::Unknown()); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ RexExp Literal"); |
- |
- Register tmp = VirtualFrame::scratch0(); |
- // Free up a TOS register that can be used to push the literal. |
- Register literal = frame_->GetTOSRegister(); |
- |
- // Retrieve the literal array and check the allocated entry. |
- |
- // Load the function of this activation. |
- __ ldr(tmp, frame_->Function()); |
- |
- // Load the literals array of the function. |
- __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kLiteralsOffset)); |
- |
- // Load the literal at the ast saved index. |
- int literal_offset = |
- FixedArray::kHeaderSize + node->literal_index() * kPointerSize; |
- __ ldr(literal, FieldMemOperand(tmp, literal_offset)); |
- |
- JumpTarget materialized; |
- __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
- __ cmp(literal, ip); |
- // This branch locks the virtual frame at the done label to match the |
- // one we have here, where the literal register is not on the stack and |
- // nothing is spilled. |
- materialized.Branch(ne); |
- |
- // If the entry is undefined we call the runtime system to compute |
- // the literal. |
- // literal array (0) |
- frame_->EmitPush(tmp); |
- // literal index (1) |
- frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); |
- // RegExp pattern (2) |
- frame_->EmitPush(Operand(node->pattern())); |
- // RegExp flags (3) |
- frame_->EmitPush(Operand(node->flags())); |
- frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); |
- __ Move(literal, r0); |
- |
- materialized.Bind(); |
- |
- frame_->EmitPush(literal); |
- int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; |
- frame_->EmitPush(Operand(Smi::FromInt(size))); |
- frame_->CallRuntime(Runtime::kAllocateInNewSpace, 1); |
- // TODO(lrn): Use AllocateInNewSpace macro with fallback to runtime. |
- // r0 is newly allocated space. |
- |
- // Reuse literal variable with (possibly) a new register, still holding |
- // the materialized boilerplate. |
- literal = frame_->PopToRegister(r0); |
- |
- __ CopyFields(r0, literal, tmp.bit(), size / kPointerSize); |
- |
- // Push the clone. |
- frame_->EmitPush(r0); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ ObjectLiteral"); |
- |
- Register literal = frame_->GetTOSRegister(); |
- // Load the function of this activation. |
- __ ldr(literal, frame_->Function()); |
- // Literal array. |
- __ ldr(literal, FieldMemOperand(literal, JSFunction::kLiteralsOffset)); |
- frame_->EmitPush(literal); |
- // Literal index. |
- frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); |
- // Constant properties. |
- frame_->EmitPush(Operand(node->constant_properties())); |
- // Should the object literal have fast elements? |
- frame_->EmitPush(Operand(Smi::FromInt(node->fast_elements() ? 1 : 0))); |
- if (node->depth() > 1) { |
- frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4); |
- } else { |
- frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); |
- } |
- frame_->EmitPush(r0); // save the result |
- |
- // Mark all computed expressions that are bound to a key that |
- // is shadowed by a later occurrence of the same key. For the |
- // marked expressions, no store code is emitted. |
- node->CalculateEmitStore(); |
- |
- for (int i = 0; i < node->properties()->length(); i++) { |
- // At the start of each iteration, the top of stack contains |
- // the newly created object literal. |
- ObjectLiteral::Property* property = node->properties()->at(i); |
- Literal* key = property->key(); |
- Expression* value = property->value(); |
- switch (property->kind()) { |
- case ObjectLiteral::Property::CONSTANT: |
- break; |
- case ObjectLiteral::Property::MATERIALIZED_LITERAL: |
- if (CompileTimeValue::IsCompileTimeValue(property->value())) break; |
- // else fall through |
- case ObjectLiteral::Property::COMPUTED: |
- if (key->handle()->IsSymbol()) { |
- Handle<Code> ic(Isolate::Current()->builtins()->builtin( |
- Builtins::kStoreIC_Initialize)); |
- Load(value); |
- if (property->emit_store()) { |
- frame_->PopToR0(); |
- // Fetch the object literal. |
- frame_->SpillAllButCopyTOSToR1(); |
- __ mov(r2, Operand(key->handle())); |
- frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, 0); |
- } else { |
- frame_->Drop(); |
- } |
- break; |
- } |
- // else fall through |
- case ObjectLiteral::Property::PROTOTYPE: { |
- frame_->Dup(); |
- Load(key); |
- Load(value); |
- if (property->emit_store()) { |
- frame_->EmitPush(Operand(Smi::FromInt(NONE))); // PropertyAttributes |
- frame_->CallRuntime(Runtime::kSetProperty, 4); |
- } else { |
- frame_->Drop(3); |
- } |
- break; |
- } |
- case ObjectLiteral::Property::SETTER: { |
- frame_->Dup(); |
- Load(key); |
- frame_->EmitPush(Operand(Smi::FromInt(1))); |
- Load(value); |
- frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
- break; |
- } |
- case ObjectLiteral::Property::GETTER: { |
- frame_->Dup(); |
- Load(key); |
- frame_->EmitPush(Operand(Smi::FromInt(0))); |
- Load(value); |
- frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
- break; |
- } |
- } |
- } |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ ArrayLiteral"); |
- |
- Register tos = frame_->GetTOSRegister(); |
- // Load the function of this activation. |
- __ ldr(tos, frame_->Function()); |
- // Load the literals array of the function. |
- __ ldr(tos, FieldMemOperand(tos, JSFunction::kLiteralsOffset)); |
- frame_->EmitPush(tos); |
- frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); |
- frame_->EmitPush(Operand(node->constant_elements())); |
- int length = node->values()->length(); |
- if (node->constant_elements()->map() == HEAP->fixed_cow_array_map()) { |
- FastCloneShallowArrayStub stub( |
- FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); |
- frame_->CallStub(&stub, 3); |
- __ IncrementCounter(masm_->isolate()->counters()->cow_arrays_created_stub(), |
- 1, r1, r2); |
- } else if (node->depth() > 1) { |
- frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); |
- } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { |
- frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); |
- } else { |
- FastCloneShallowArrayStub stub( |
- FastCloneShallowArrayStub::CLONE_ELEMENTS, length); |
- frame_->CallStub(&stub, 3); |
- } |
- frame_->EmitPush(r0); // save the result |
- // r0: created object literal |
- |
- // Generate code to set the elements in the array that are not |
- // literals. |
- for (int i = 0; i < node->values()->length(); i++) { |
- Expression* value = node->values()->at(i); |
- |
- // If value is a literal the property value is already set in the |
- // boilerplate object. |
- if (value->AsLiteral() != NULL) continue; |
- // If value is a materialized literal the property value is already set |
- // in the boilerplate object if it is simple. |
- if (CompileTimeValue::IsCompileTimeValue(value)) continue; |
- |
- // The property must be set by generated code. |
- Load(value); |
- frame_->PopToR0(); |
- // Fetch the object literal. |
- frame_->SpillAllButCopyTOSToR1(); |
- |
- // Get the elements array. |
- __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); |
- |
- // Write to the indexed properties array. |
- int offset = i * kPointerSize + FixedArray::kHeaderSize; |
- __ str(r0, FieldMemOperand(r1, offset)); |
- |
- // Update the write barrier for the array address. |
- __ RecordWrite(r1, Operand(offset), r3, r2); |
- } |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- // Call runtime routine to allocate the catch extension object and |
- // assign the exception value to the catch variable. |
- Comment cmnt(masm_, "[ CatchExtensionObject"); |
- Load(node->key()); |
- Load(node->value()); |
- frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); |
- frame_->EmitPush(r0); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::EmitSlotAssignment(Assignment* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm(), "[ Variable Assignment"); |
- Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
- ASSERT(var != NULL); |
- Slot* slot = var->AsSlot(); |
- ASSERT(slot != NULL); |
- |
- // Evaluate the right-hand side. |
- if (node->is_compound()) { |
- // For a compound assignment the right-hand side is a binary operation |
- // between the current property value and the actual right-hand side. |
- LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); |
- |
- // Perform the binary operation. |
- Literal* literal = node->value()->AsLiteral(); |
- bool overwrite_value = node->value()->ResultOverwriteAllowed(); |
- if (literal != NULL && literal->handle()->IsSmi()) { |
- SmiOperation(node->binary_op(), |
- literal->handle(), |
- false, |
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
- } else { |
- GenerateInlineSmi inline_smi = |
- loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
- if (literal != NULL) { |
- ASSERT(!literal->handle()->IsSmi()); |
- inline_smi = DONT_GENERATE_INLINE_SMI; |
- } |
- Load(node->value()); |
- GenericBinaryOperation(node->binary_op(), |
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, |
- inline_smi); |
- } |
- } else { |
- Load(node->value()); |
- } |
- |
- // Perform the assignment. |
- if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) { |
- CodeForSourcePosition(node->position()); |
- StoreToSlot(slot, |
- node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT); |
- } |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm(), "[ Named Property Assignment"); |
- Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
- Property* prop = node->target()->AsProperty(); |
- ASSERT(var == NULL || (prop == NULL && var->is_global())); |
- |
- // Initialize name and evaluate the receiver sub-expression if necessary. If |
- // the receiver is trivial it is not placed on the stack at this point, but |
- // loaded whenever actually needed. |
- Handle<String> name; |
- bool is_trivial_receiver = false; |
- if (var != NULL) { |
- name = var->name(); |
- } else { |
- Literal* lit = prop->key()->AsLiteral(); |
- ASSERT_NOT_NULL(lit); |
- name = Handle<String>::cast(lit->handle()); |
- // Do not materialize the receiver on the frame if it is trivial. |
- is_trivial_receiver = prop->obj()->IsTrivial(); |
- if (!is_trivial_receiver) Load(prop->obj()); |
- } |
- |
- // Change to slow case in the beginning of an initialization block to |
- // avoid the quadratic behavior of repeatedly adding fast properties. |
- if (node->starts_initialization_block()) { |
- // Initialization block consists of assignments of the form expr.x = ..., so |
- // this will never be an assignment to a variable, so there must be a |
- // receiver object. |
- ASSERT_EQ(NULL, var); |
- if (is_trivial_receiver) { |
- Load(prop->obj()); |
- } else { |
- frame_->Dup(); |
- } |
- frame_->CallRuntime(Runtime::kToSlowProperties, 1); |
- } |
- |
- // Change to fast case at the end of an initialization block. To prepare for |
- // that add an extra copy of the receiver to the frame, so that it can be |
- // converted back to fast case after the assignment. |
- if (node->ends_initialization_block() && !is_trivial_receiver) { |
- frame_->Dup(); |
- } |
- |
- // Stack layout: |
- // [tos] : receiver (only materialized if non-trivial) |
- // [tos+1] : receiver if at the end of an initialization block |
- |
- // Evaluate the right-hand side. |
- if (node->is_compound()) { |
- // For a compound assignment the right-hand side is a binary operation |
- // between the current property value and the actual right-hand side. |
- if (is_trivial_receiver) { |
- Load(prop->obj()); |
- } else if (var != NULL) { |
- LoadGlobal(); |
- } else { |
- frame_->Dup(); |
- } |
- EmitNamedLoad(name, var != NULL); |
- |
- // Perform the binary operation. |
- Literal* literal = node->value()->AsLiteral(); |
- bool overwrite_value = node->value()->ResultOverwriteAllowed(); |
- if (literal != NULL && literal->handle()->IsSmi()) { |
- SmiOperation(node->binary_op(), |
- literal->handle(), |
- false, |
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
- } else { |
- GenerateInlineSmi inline_smi = |
- loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
- if (literal != NULL) { |
- ASSERT(!literal->handle()->IsSmi()); |
- inline_smi = DONT_GENERATE_INLINE_SMI; |
- } |
- Load(node->value()); |
- GenericBinaryOperation(node->binary_op(), |
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, |
- inline_smi); |
- } |
- } else { |
- // For non-compound assignment just load the right-hand side. |
- Load(node->value()); |
- } |
- |
- // Stack layout: |
- // [tos] : value |
- // [tos+1] : receiver (only materialized if non-trivial) |
- // [tos+2] : receiver if at the end of an initialization block |
- |
- // Perform the assignment. It is safe to ignore constants here. |
- ASSERT(var == NULL || var->mode() != Variable::CONST); |
- ASSERT_NE(Token::INIT_CONST, node->op()); |
- if (is_trivial_receiver) { |
- // Load the receiver and swap with the value. |
- Load(prop->obj()); |
- Register t0 = frame_->PopToRegister(); |
- Register t1 = frame_->PopToRegister(t0); |
- frame_->EmitPush(t0); |
- frame_->EmitPush(t1); |
- } |
- CodeForSourcePosition(node->position()); |
- bool is_contextual = (var != NULL); |
- EmitNamedStore(name, is_contextual); |
- frame_->EmitPush(r0); |
- |
- // Change to fast case at the end of an initialization block. |
- if (node->ends_initialization_block()) { |
- ASSERT_EQ(NULL, var); |
- // The argument to the runtime call is the receiver. |
- if (is_trivial_receiver) { |
- Load(prop->obj()); |
- } else { |
- // A copy of the receiver is below the value of the assignment. Swap |
- // the receiver and the value of the assignment expression. |
- Register t0 = frame_->PopToRegister(); |
- Register t1 = frame_->PopToRegister(t0); |
- frame_->EmitPush(t0); |
- frame_->EmitPush(t1); |
- } |
- frame_->CallRuntime(Runtime::kToFastProperties, 1); |
- } |
- |
- // Stack layout: |
- // [tos] : result |
- |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ Keyed Property Assignment"); |
- Property* prop = node->target()->AsProperty(); |
- ASSERT_NOT_NULL(prop); |
- |
- // Evaluate the receiver subexpression. |
- Load(prop->obj()); |
- |
- WriteBarrierCharacter wb_info; |
- |
- // Change to slow case in the beginning of an initialization block to |
- // avoid the quadratic behavior of repeatedly adding fast properties. |
- if (node->starts_initialization_block()) { |
- frame_->Dup(); |
- frame_->CallRuntime(Runtime::kToSlowProperties, 1); |
- } |
- |
- // Change to fast case at the end of an initialization block. To prepare for |
- // that add an extra copy of the receiver to the frame, so that it can be |
- // converted back to fast case after the assignment. |
- if (node->ends_initialization_block()) { |
- frame_->Dup(); |
- } |
- |
- // Evaluate the key subexpression. |
- Load(prop->key()); |
- |
- // Stack layout: |
- // [tos] : key |
- // [tos+1] : receiver |
- // [tos+2] : receiver if at the end of an initialization block |
- // |
- // Evaluate the right-hand side. |
- if (node->is_compound()) { |
- // For a compound assignment the right-hand side is a binary operation |
- // between the current property value and the actual right-hand side. |
- // Duplicate receiver and key for loading the current property value. |
- frame_->Dup2(); |
- EmitKeyedLoad(); |
- frame_->EmitPush(r0); |
- |
- // Perform the binary operation. |
- Literal* literal = node->value()->AsLiteral(); |
- bool overwrite_value = node->value()->ResultOverwriteAllowed(); |
- if (literal != NULL && literal->handle()->IsSmi()) { |
- SmiOperation(node->binary_op(), |
- literal->handle(), |
- false, |
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
- } else { |
- GenerateInlineSmi inline_smi = |
- loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
- if (literal != NULL) { |
- ASSERT(!literal->handle()->IsSmi()); |
- inline_smi = DONT_GENERATE_INLINE_SMI; |
- } |
- Load(node->value()); |
- GenericBinaryOperation(node->binary_op(), |
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, |
- inline_smi); |
- } |
- wb_info = node->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI; |
- } else { |
- // For non-compound assignment just load the right-hand side. |
- Load(node->value()); |
- wb_info = node->value()->AsLiteral() != NULL ? |
- NEVER_NEWSPACE : |
- (node->value()->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI); |
- } |
- |
- // Stack layout: |
- // [tos] : value |
- // [tos+1] : key |
- // [tos+2] : receiver |
- // [tos+3] : receiver if at the end of an initialization block |
- |
- // Perform the assignment. It is safe to ignore constants here. |
- ASSERT(node->op() != Token::INIT_CONST); |
- CodeForSourcePosition(node->position()); |
- EmitKeyedStore(prop->key()->type(), wb_info); |
- frame_->EmitPush(r0); |
- |
- // Stack layout: |
- // [tos] : result |
- // [tos+1] : receiver if at the end of an initialization block |
- |
- // Change to fast case at the end of an initialization block. |
- if (node->ends_initialization_block()) { |
- // The argument to the runtime call is the extra copy of the receiver, |
- // which is below the value of the assignment. Swap the receiver and |
- // the value of the assignment expression. |
- Register t0 = frame_->PopToRegister(); |
- Register t1 = frame_->PopToRegister(t0); |
- frame_->EmitPush(t1); |
- frame_->EmitPush(t0); |
- frame_->CallRuntime(Runtime::kToFastProperties, 1); |
- } |
- |
- // Stack layout: |
- // [tos] : result |
- |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitAssignment(Assignment* node) { |
- VirtualFrame::RegisterAllocationScope scope(this); |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ Assignment"); |
- |
- Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
- Property* prop = node->target()->AsProperty(); |
- |
- if (var != NULL && !var->is_global()) { |
- EmitSlotAssignment(node); |
- |
- } else if ((prop != NULL && prop->key()->IsPropertyName()) || |
- (var != NULL && var->is_global())) { |
- // Properties whose keys are property names and global variables are |
- // treated as named property references. We do not need to consider |
- // global 'this' because it is not a valid left-hand side. |
- EmitNamedPropertyAssignment(node); |
- |
- } else if (prop != NULL) { |
- // Other properties (including rewritten parameters for a function that |
- // uses arguments) are keyed property assignments. |
- EmitKeyedPropertyAssignment(node); |
- |
- } else { |
- // Invalid left-hand side. |
- Load(node->target()); |
- frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
- // The runtime call doesn't actually return but the code generator will |
- // still generate code and expects a certain frame height. |
- frame_->EmitPush(r0); |
- } |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitThrow(Throw* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ Throw"); |
- |
- Load(node->exception()); |
- CodeForSourcePosition(node->position()); |
- frame_->CallRuntime(Runtime::kThrow, 1); |
- frame_->EmitPush(r0); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitProperty(Property* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ Property"); |
- |
- { Reference property(this, node); |
- property.GetValue(); |
- } |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitCall(Call* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ Call"); |
- |
- Expression* function = node->expression(); |
- ZoneList<Expression*>* args = node->arguments(); |
- |
- // Standard function call. |
- // Check if the function is a variable or a property. |
- Variable* var = function->AsVariableProxy()->AsVariable(); |
- Property* property = function->AsProperty(); |
- |
- // ------------------------------------------------------------------------ |
- // Fast-case: Use inline caching. |
- // --- |
- // According to ECMA-262, section 11.2.3, page 44, the function to call |
- // must be resolved after the arguments have been evaluated. The IC code |
- // automatically handles this by loading the arguments before the function |
- // is resolved in cache misses (this also holds for megamorphic calls). |
- // ------------------------------------------------------------------------ |
- |
- if (var != NULL && var->is_possibly_eval()) { |
- // ---------------------------------- |
- // JavaScript example: 'eval(arg)' // eval is not known to be shadowed |
- // ---------------------------------- |
- |
- // In a call to eval, we first call %ResolvePossiblyDirectEval to |
- // resolve the function we need to call and the receiver of the |
- // call. Then we call the resolved function using the given |
- // arguments. |
- |
- // Prepare stack for call to resolved function. |
- Load(function); |
- |
- // Allocate a frame slot for the receiver. |
- frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); |
- |
- // Load the arguments. |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- } |
- |
- VirtualFrame::SpilledScope spilled_scope(frame_); |
- |
- // If we know that eval can only be shadowed by eval-introduced |
- // variables we attempt to load the global eval function directly |
- // in generated code. If we succeed, there is no need to perform a |
- // context lookup in the runtime system. |
- JumpTarget done; |
- if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) { |
- ASSERT(var->AsSlot()->type() == Slot::LOOKUP); |
- JumpTarget slow; |
- // Prepare the stack for the call to |
- // ResolvePossiblyDirectEvalNoLookup by pushing the loaded |
- // function, the first argument to the eval call and the |
- // receiver. |
- LoadFromGlobalSlotCheckExtensions(var->AsSlot(), |
- NOT_INSIDE_TYPEOF, |
- &slow); |
- frame_->EmitPush(r0); |
- if (arg_count > 0) { |
- __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); |
- frame_->EmitPush(r1); |
- } else { |
- frame_->EmitPush(r2); |
- } |
- __ ldr(r1, frame_->Receiver()); |
- frame_->EmitPush(r1); |
- |
- // Push the strict mode flag. |
- frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); |
- |
- frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 4); |
- |
- done.Jump(); |
- slow.Bind(); |
- } |
- |
- // Prepare the stack for the call to ResolvePossiblyDirectEval by |
- // pushing the loaded function, the first argument to the eval |
- // call and the receiver. |
- __ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize)); |
- frame_->EmitPush(r1); |
- if (arg_count > 0) { |
- __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); |
- frame_->EmitPush(r1); |
- } else { |
- frame_->EmitPush(r2); |
- } |
- __ ldr(r1, frame_->Receiver()); |
- frame_->EmitPush(r1); |
- |
- // Push the strict mode flag. |
- frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); |
- |
- // Resolve the call. |
- frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 4); |
- |
- // If we generated fast-case code bind the jump-target where fast |
- // and slow case merge. |
- if (done.is_linked()) done.Bind(); |
- |
- // Touch up stack with the right values for the function and the receiver. |
- __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize)); |
- __ str(r1, MemOperand(sp, arg_count * kPointerSize)); |
- |
- // Call the function. |
- CodeForSourcePosition(node->position()); |
- |
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
- CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); |
- frame_->CallStub(&call_function, arg_count + 1); |
- |
- __ ldr(cp, frame_->Context()); |
- // Remove the function from the stack. |
- frame_->Drop(); |
- frame_->EmitPush(r0); |
- |
- } else if (var != NULL && !var->is_this() && var->is_global()) { |
- // ---------------------------------- |
- // JavaScript example: 'foo(1, 2, 3)' // foo is global |
- // ---------------------------------- |
- // Pass the global object as the receiver and let the IC stub |
- // patch the stack to use the global proxy as 'this' in the |
- // invoked function. |
- LoadGlobal(); |
- |
- // Load the arguments. |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- } |
- |
- VirtualFrame::SpilledScope spilled_scope(frame_); |
- // Setup the name register and call the IC initialization code. |
- __ mov(r2, Operand(var->name())); |
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
- Handle<Code> stub = |
- ISOLATE->stub_cache()->ComputeCallInitialize(arg_count, in_loop); |
- CodeForSourcePosition(node->position()); |
- frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT, |
- arg_count + 1); |
- __ ldr(cp, frame_->Context()); |
- frame_->EmitPush(r0); |
- |
- } else if (var != NULL && var->AsSlot() != NULL && |
- var->AsSlot()->type() == Slot::LOOKUP) { |
- // ---------------------------------- |
- // JavaScript examples: |
- // |
- // with (obj) foo(1, 2, 3) // foo may be in obj. |
- // |
- // function f() {}; |
- // function g() { |
- // eval(...); |
- // f(); // f could be in extension object. |
- // } |
- // ---------------------------------- |
- |
- JumpTarget slow, done; |
- |
- // Generate fast case for loading functions from slots that |
- // correspond to local/global variables or arguments unless they |
- // are shadowed by eval-introduced bindings. |
- EmitDynamicLoadFromSlotFastCase(var->AsSlot(), |
- NOT_INSIDE_TYPEOF, |
- &slow, |
- &done); |
- |
- slow.Bind(); |
- // Load the function |
- frame_->EmitPush(cp); |
- frame_->EmitPush(Operand(var->name())); |
- frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
- // r0: slot value; r1: receiver |
- |
- // Load the receiver. |
- frame_->EmitPush(r0); // function |
- frame_->EmitPush(r1); // receiver |
- |
- // If fast case code has been generated, emit code to push the |
- // function and receiver and have the slow path jump around this |
- // code. |
- if (done.is_linked()) { |
- JumpTarget call; |
- call.Jump(); |
- done.Bind(); |
- frame_->EmitPush(r0); // function |
- LoadGlobalReceiver(VirtualFrame::scratch0()); // receiver |
- call.Bind(); |
- } |
- |
- // Call the function. At this point, everything is spilled but the |
- // function and receiver are in r0 and r1. |
- CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
- frame_->EmitPush(r0); |
- |
- } else if (property != NULL) { |
- // Check if the key is a literal string. |
- Literal* literal = property->key()->AsLiteral(); |
- |
- if (literal != NULL && literal->handle()->IsSymbol()) { |
- // ------------------------------------------------------------------ |
- // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' |
- // ------------------------------------------------------------------ |
- |
- Handle<String> name = Handle<String>::cast(literal->handle()); |
- |
- if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && |
- name->IsEqualTo(CStrVector("apply")) && |
- args->length() == 2 && |
- args->at(1)->AsVariableProxy() != NULL && |
- args->at(1)->AsVariableProxy()->IsArguments()) { |
- // Use the optimized Function.prototype.apply that avoids |
- // allocating lazily allocated arguments objects. |
- CallApplyLazy(property->obj(), |
- args->at(0), |
- args->at(1)->AsVariableProxy(), |
- node->position()); |
- |
- } else { |
- Load(property->obj()); // Receiver. |
- // Load the arguments. |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- } |
- |
- VirtualFrame::SpilledScope spilled_scope(frame_); |
- // Set the name register and call the IC initialization code. |
- __ mov(r2, Operand(name)); |
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
- Handle<Code> stub = |
- ISOLATE->stub_cache()->ComputeCallInitialize(arg_count, in_loop); |
- CodeForSourcePosition(node->position()); |
- frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
- __ ldr(cp, frame_->Context()); |
- frame_->EmitPush(r0); |
- } |
- |
- } else { |
- // ------------------------------------------- |
- // JavaScript example: 'array[index](1, 2, 3)' |
- // ------------------------------------------- |
- |
- // Load the receiver and name of the function. |
- Load(property->obj()); |
- Load(property->key()); |
- |
- if (property->is_synthetic()) { |
- EmitKeyedLoad(); |
- // Put the function below the receiver. |
- // Use the global receiver. |
- frame_->EmitPush(r0); // Function. |
- LoadGlobalReceiver(VirtualFrame::scratch0()); |
- // Call the function. |
- CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); |
- frame_->EmitPush(r0); |
- } else { |
- // Swap the name of the function and the receiver on the stack to follow |
- // the calling convention for call ICs. |
- Register key = frame_->PopToRegister(); |
- Register receiver = frame_->PopToRegister(key); |
- frame_->EmitPush(key); |
- frame_->EmitPush(receiver); |
- |
- // Load the arguments. |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- } |
- |
- // Load the key into r2 and call the IC initialization code. |
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
- Handle<Code> stub = |
- ISOLATE->stub_cache()->ComputeKeyedCallInitialize(arg_count, |
- in_loop); |
- CodeForSourcePosition(node->position()); |
- frame_->SpillAll(); |
- __ ldr(r2, frame_->ElementAt(arg_count + 1)); |
- frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
- frame_->Drop(); // Drop the key still on the stack. |
- __ ldr(cp, frame_->Context()); |
- frame_->EmitPush(r0); |
- } |
- } |
- |
- } else { |
- // ---------------------------------- |
- // JavaScript example: 'foo(1, 2, 3)' // foo is not global |
- // ---------------------------------- |
- |
- // Load the function. |
- Load(function); |
- |
- // Pass the global proxy as the receiver. |
- LoadGlobalReceiver(VirtualFrame::scratch0()); |
- |
- // Call the function. |
- CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
- frame_->EmitPush(r0); |
- } |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitCallNew(CallNew* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ CallNew"); |
- |
- // According to ECMA-262, section 11.2.2, page 44, the function |
- // expression in new calls must be evaluated before the |
- // arguments. This is different from ordinary calls, where the |
- // actual function to call is resolved after the arguments have been |
- // evaluated. |
- |
- // Push constructor on the stack. If it's not a function it's used as |
- // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is |
- // ignored. |
- Load(node->expression()); |
- |
- // Push the arguments ("left-to-right") on the stack. |
- ZoneList<Expression*>* args = node->arguments(); |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- } |
- |
- // Spill everything from here to simplify the implementation. |
- VirtualFrame::SpilledScope spilled_scope(frame_); |
- |
- // Load the argument count into r0 and the function into r1 as per |
- // calling convention. |
- __ mov(r0, Operand(arg_count)); |
- __ ldr(r1, frame_->ElementAt(arg_count)); |
- |
- // Call the construct call builtin that handles allocation and |
- // constructor invocation. |
- CodeForSourcePosition(node->position()); |
- Handle<Code> ic(Isolate::Current()->builtins()->builtin( |
- Builtins::kJSConstructCall)); |
- frame_->CallCodeObject(ic, RelocInfo::CONSTRUCT_CALL, arg_count + 1); |
- frame_->EmitPush(r0); |
- |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { |
- Register scratch = VirtualFrame::scratch0(); |
- JumpTarget null, function, leave, non_function_constructor; |
- |
- // Load the object into register. |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Register tos = frame_->PopToRegister(); |
- |
- // If the object is a smi, we return null. |
- __ tst(tos, Operand(kSmiTagMask)); |
- null.Branch(eq); |
- |
- // Check that the object is a JS object but take special care of JS |
- // functions to make sure they have 'Function' as their class. |
- __ CompareObjectType(tos, tos, scratch, FIRST_JS_OBJECT_TYPE); |
- null.Branch(lt); |
- |
- // As long as JS_FUNCTION_TYPE is the last instance type and it is |
- // right after LAST_JS_OBJECT_TYPE, we can avoid checking for |
- // LAST_JS_OBJECT_TYPE. |
- STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
- STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
- __ cmp(scratch, Operand(JS_FUNCTION_TYPE)); |
- function.Branch(eq); |
- |
- // Check if the constructor in the map is a function. |
- __ ldr(tos, FieldMemOperand(tos, Map::kConstructorOffset)); |
- __ CompareObjectType(tos, scratch, scratch, JS_FUNCTION_TYPE); |
- non_function_constructor.Branch(ne); |
- |
- // The tos register now contains the constructor function. Grab the |
- // instance class name from there. |
- __ ldr(tos, FieldMemOperand(tos, JSFunction::kSharedFunctionInfoOffset)); |
- __ ldr(tos, |
- FieldMemOperand(tos, SharedFunctionInfo::kInstanceClassNameOffset)); |
- frame_->EmitPush(tos); |
- leave.Jump(); |
- |
- // Functions have class 'Function'. |
- function.Bind(); |
- __ mov(tos, Operand(FACTORY->function_class_symbol())); |
- frame_->EmitPush(tos); |
- leave.Jump(); |
- |
- // Objects with a non-function constructor have class 'Object'. |
- non_function_constructor.Bind(); |
- __ mov(tos, Operand(FACTORY->Object_symbol())); |
- frame_->EmitPush(tos); |
- leave.Jump(); |
- |
- // Non-JS objects have class null. |
- null.Bind(); |
- __ LoadRoot(tos, Heap::kNullValueRootIndex); |
- frame_->EmitPush(tos); |
- |
- // All done. |
- leave.Bind(); |
-} |
- |
- |
-void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { |
- Register scratch = VirtualFrame::scratch0(); |
- JumpTarget leave; |
- |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Register tos = frame_->PopToRegister(); // tos contains object. |
- // if (object->IsSmi()) return the object. |
- __ tst(tos, Operand(kSmiTagMask)); |
- leave.Branch(eq); |
- // It is a heap object - get map. If (!object->IsJSValue()) return the object. |
- __ CompareObjectType(tos, scratch, scratch, JS_VALUE_TYPE); |
- leave.Branch(ne); |
- // Load the value. |
- __ ldr(tos, FieldMemOperand(tos, JSValue::kValueOffset)); |
- leave.Bind(); |
- frame_->EmitPush(tos); |
-} |
- |
- |
-void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { |
- Register scratch1 = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- JumpTarget leave; |
- |
- ASSERT(args->length() == 2); |
- Load(args->at(0)); // Load the object. |
- Load(args->at(1)); // Load the value. |
- Register value = frame_->PopToRegister(); |
- Register object = frame_->PopToRegister(value); |
- // if (object->IsSmi()) return object. |
- __ tst(object, Operand(kSmiTagMask)); |
- leave.Branch(eq); |
- // It is a heap object - get map. If (!object->IsJSValue()) return the object. |
- __ CompareObjectType(object, scratch1, scratch1, JS_VALUE_TYPE); |
- leave.Branch(ne); |
- // Store the value. |
- __ str(value, FieldMemOperand(object, JSValue::kValueOffset)); |
- // Update the write barrier. |
- __ RecordWrite(object, |
- Operand(JSValue::kValueOffset - kHeapObjectTag), |
- scratch1, |
- scratch2); |
- // Leave. |
- leave.Bind(); |
- frame_->EmitPush(value); |
-} |
- |
- |
-void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Register reg = frame_->PopToRegister(); |
- __ tst(reg, Operand(kSmiTagMask)); |
- cc_reg_ = eq; |
-} |
- |
- |
-void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { |
- // See comment in CodeGenerator::GenerateLog in codegen-ia32.cc. |
- ASSERT_EQ(args->length(), 3); |
-#ifdef ENABLE_LOGGING_AND_PROFILING |
- if (ShouldGenerateLog(args->at(0))) { |
- Load(args->at(1)); |
- Load(args->at(2)); |
- frame_->CallRuntime(Runtime::kLog, 2); |
- } |
-#endif |
- frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); |
-} |
- |
- |
-void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Register reg = frame_->PopToRegister(); |
- __ tst(reg, Operand(kSmiTagMask | 0x80000000u)); |
- cc_reg_ = eq; |
-} |
- |
- |
-// Generates the Math.pow method. |
-void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 2); |
- Load(args->at(0)); |
- Load(args->at(1)); |
- |
- if (!CpuFeatures::IsSupported(VFP3)) { |
- frame_->CallRuntime(Runtime::kMath_pow, 2); |
- frame_->EmitPush(r0); |
- } else { |
- CpuFeatures::Scope scope(VFP3); |
- JumpTarget runtime, done; |
- Label exponent_nonsmi, base_nonsmi, powi, not_minus_half, allocate_return; |
- |
- Register scratch1 = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- |
- // Get base and exponent to registers. |
- Register exponent = frame_->PopToRegister(); |
- Register base = frame_->PopToRegister(exponent); |
- Register heap_number_map = no_reg; |
- |
- // Set the frame for the runtime jump target. The code below jumps to the |
- // jump target label so the frame needs to be established before that. |
- ASSERT(runtime.entry_frame() == NULL); |
- runtime.set_entry_frame(frame_); |
- |
- __ JumpIfNotSmi(exponent, &exponent_nonsmi); |
- __ JumpIfNotSmi(base, &base_nonsmi); |
- |
- heap_number_map = r6; |
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- |
- // Exponent is a smi and base is a smi. Get the smi value into vfp register |
- // d1. |
- __ SmiToDoubleVFPRegister(base, d1, scratch1, s0); |
- __ b(&powi); |
- |
- __ bind(&base_nonsmi); |
- // Exponent is smi and base is non smi. Get the double value from the base |
- // into vfp register d1. |
- __ ObjectToDoubleVFPRegister(base, d1, |
- scratch1, scratch2, heap_number_map, s0, |
- runtime.entry_label()); |
- |
- __ bind(&powi); |
- |
- // Load 1.0 into d0. |
- __ vmov(d0, 1.0); |
- |
- // Get the absolute untagged value of the exponent and use that for the |
- // calculation. |
- __ mov(scratch1, Operand(exponent, ASR, kSmiTagSize), SetCC); |
- // Negate if negative. |
- __ rsb(scratch1, scratch1, Operand(0, RelocInfo::NONE), LeaveCC, mi); |
- __ vmov(d2, d0, mi); // 1.0 needed in d2 later if exponent is negative. |
- |
- // Run through all the bits in the exponent. The result is calculated in d0 |
- // and d1 holds base^(bit^2). |
- Label more_bits; |
- __ bind(&more_bits); |
- __ mov(scratch1, Operand(scratch1, LSR, 1), SetCC); |
- __ vmul(d0, d0, d1, cs); // Multiply with base^(bit^2) if bit is set. |
- __ vmul(d1, d1, d1, ne); // Don't bother calculating next d1 if done. |
- __ b(ne, &more_bits); |
- |
- // If exponent is positive we are done. |
- __ cmp(exponent, Operand(0, RelocInfo::NONE)); |
- __ b(ge, &allocate_return); |
- |
- // If exponent is negative result is 1/result (d2 already holds 1.0 in that |
- // case). However if d0 has reached infinity this will not provide the |
- // correct result, so call runtime if that is the case. |
- __ mov(scratch2, Operand(0x7FF00000)); |
- __ mov(scratch1, Operand(0, RelocInfo::NONE)); |
- __ vmov(d1, scratch1, scratch2); // Load infinity into d1. |
- __ VFPCompareAndSetFlags(d0, d1); |
- runtime.Branch(eq); // d0 reached infinity. |
- __ vdiv(d0, d2, d0); |
- __ b(&allocate_return); |
- |
- __ bind(&exponent_nonsmi); |
- // Special handling of raising to the power of -0.5 and 0.5. First check |
- // that the value is a heap number and that the lower bits (which for both |
- // values are zero). |
- heap_number_map = r6; |
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- __ ldr(scratch1, FieldMemOperand(exponent, HeapObject::kMapOffset)); |
- __ ldr(scratch2, FieldMemOperand(exponent, HeapNumber::kMantissaOffset)); |
- __ cmp(scratch1, heap_number_map); |
- runtime.Branch(ne); |
- __ tst(scratch2, scratch2); |
- runtime.Branch(ne); |
- |
- // Load the higher bits (which contains the floating point exponent). |
- __ ldr(scratch1, FieldMemOperand(exponent, HeapNumber::kExponentOffset)); |
- |
- // Compare exponent with -0.5. |
- __ cmp(scratch1, Operand(0xbfe00000)); |
- __ b(ne, ¬_minus_half); |
- |
- // Get the double value from the base into vfp register d0. |
- __ ObjectToDoubleVFPRegister(base, d0, |
- scratch1, scratch2, heap_number_map, s0, |
- runtime.entry_label(), |
- AVOID_NANS_AND_INFINITIES); |
- |
- // Convert -0 into +0 by adding +0. |
- __ vmov(d2, 0.0); |
- __ vadd(d0, d2, d0); |
- // Load 1.0 into d2. |
- __ vmov(d2, 1.0); |
- |
- // Calculate the reciprocal of the square root. |
- __ vsqrt(d0, d0); |
- __ vdiv(d0, d2, d0); |
- |
- __ b(&allocate_return); |
- |
- __ bind(¬_minus_half); |
- // Compare exponent with 0.5. |
- __ cmp(scratch1, Operand(0x3fe00000)); |
- runtime.Branch(ne); |
- |
- // Get the double value from the base into vfp register d0. |
- __ ObjectToDoubleVFPRegister(base, d0, |
- scratch1, scratch2, heap_number_map, s0, |
- runtime.entry_label(), |
- AVOID_NANS_AND_INFINITIES); |
- // Convert -0 into +0 by adding +0. |
- __ vmov(d2, 0.0); |
- __ vadd(d0, d2, d0); |
- __ vsqrt(d0, d0); |
- |
- __ bind(&allocate_return); |
- Register scratch3 = r5; |
- __ AllocateHeapNumberWithValue(scratch3, d0, scratch1, scratch2, |
- heap_number_map, runtime.entry_label()); |
- __ mov(base, scratch3); |
- done.Jump(); |
- |
- runtime.Bind(); |
- |
- // Push back the arguments again for the runtime call. |
- frame_->EmitPush(base); |
- frame_->EmitPush(exponent); |
- frame_->CallRuntime(Runtime::kMath_pow, 2); |
- __ Move(base, r0); |
- |
- done.Bind(); |
- frame_->EmitPush(base); |
- } |
-} |
- |
- |
-// Generates the Math.sqrt method. |
-void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- |
- if (!CpuFeatures::IsSupported(VFP3)) { |
- frame_->CallRuntime(Runtime::kMath_sqrt, 1); |
- frame_->EmitPush(r0); |
- } else { |
- CpuFeatures::Scope scope(VFP3); |
- JumpTarget runtime, done; |
- |
- Register scratch1 = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- |
- // Get the value from the frame. |
- Register tos = frame_->PopToRegister(); |
- |
- // Set the frame for the runtime jump target. The code below jumps to the |
- // jump target label so the frame needs to be established before that. |
- ASSERT(runtime.entry_frame() == NULL); |
- runtime.set_entry_frame(frame_); |
- |
- Register heap_number_map = r6; |
- Register new_heap_number = r5; |
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- |
- // Get the double value from the heap number into vfp register d0. |
- __ ObjectToDoubleVFPRegister(tos, d0, |
- scratch1, scratch2, heap_number_map, s0, |
- runtime.entry_label()); |
- |
- // Calculate the square root of d0 and place result in a heap number object. |
- __ vsqrt(d0, d0); |
- __ AllocateHeapNumberWithValue(new_heap_number, |
- d0, |
- scratch1, scratch2, |
- heap_number_map, |
- runtime.entry_label()); |
- __ mov(tos, Operand(new_heap_number)); |
- done.Jump(); |
- |
- runtime.Bind(); |
- // Push back the argument again for the runtime call. |
- frame_->EmitPush(tos); |
- frame_->CallRuntime(Runtime::kMath_sqrt, 1); |
- __ Move(tos, r0); |
- |
- done.Bind(); |
- frame_->EmitPush(tos); |
- } |
-} |
- |
- |
-class DeferredStringCharCodeAt : public DeferredCode { |
- public: |
- DeferredStringCharCodeAt(Register object, |
- Register index, |
- Register scratch, |
- Register result) |
- : result_(result), |
- char_code_at_generator_(object, |
- index, |
- scratch, |
- result, |
- &need_conversion_, |
- &need_conversion_, |
- &index_out_of_range_, |
- STRING_INDEX_IS_NUMBER) {} |
- |
- StringCharCodeAtGenerator* fast_case_generator() { |
- return &char_code_at_generator_; |
- } |
- |
- virtual void Generate() { |
- VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
- char_code_at_generator_.GenerateSlow(masm(), call_helper); |
- |
- __ bind(&need_conversion_); |
- // Move the undefined value into the result register, which will |
- // trigger conversion. |
- __ LoadRoot(result_, Heap::kUndefinedValueRootIndex); |
- __ jmp(exit_label()); |
- |
- __ bind(&index_out_of_range_); |
- // When the index is out of range, the spec requires us to return |
- // NaN. |
- __ LoadRoot(result_, Heap::kNanValueRootIndex); |
- __ jmp(exit_label()); |
- } |
- |
- private: |
- Register result_; |
- |
- Label need_conversion_; |
- Label index_out_of_range_; |
- |
- StringCharCodeAtGenerator char_code_at_generator_; |
-}; |
- |
- |
-// This generates code that performs a String.prototype.charCodeAt() call |
-// or returns a smi in order to trigger conversion. |
-void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) { |
- Comment(masm_, "[ GenerateStringCharCodeAt"); |
- ASSERT(args->length() == 2); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- |
- Register index = frame_->PopToRegister(); |
- Register object = frame_->PopToRegister(index); |
- |
- // We need two extra registers. |
- Register scratch = VirtualFrame::scratch0(); |
- Register result = VirtualFrame::scratch1(); |
- |
- DeferredStringCharCodeAt* deferred = |
- new DeferredStringCharCodeAt(object, |
- index, |
- scratch, |
- result); |
- deferred->fast_case_generator()->GenerateFast(masm_); |
- deferred->BindExit(); |
- frame_->EmitPush(result); |
-} |
- |
- |
-class DeferredStringCharFromCode : public DeferredCode { |
- public: |
- DeferredStringCharFromCode(Register code, |
- Register result) |
- : char_from_code_generator_(code, result) {} |
- |
- StringCharFromCodeGenerator* fast_case_generator() { |
- return &char_from_code_generator_; |
- } |
- |
- virtual void Generate() { |
- VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
- char_from_code_generator_.GenerateSlow(masm(), call_helper); |
- } |
- |
- private: |
- StringCharFromCodeGenerator char_from_code_generator_; |
-}; |
- |
- |
-// Generates code for creating a one-char string from a char code. |
-void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) { |
- Comment(masm_, "[ GenerateStringCharFromCode"); |
- ASSERT(args->length() == 1); |
- |
- Load(args->at(0)); |
- |
- Register result = frame_->GetTOSRegister(); |
- Register code = frame_->PopToRegister(result); |
- |
- DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode( |
- code, result); |
- deferred->fast_case_generator()->GenerateFast(masm_); |
- deferred->BindExit(); |
- frame_->EmitPush(result); |
-} |
- |
- |
-class DeferredStringCharAt : public DeferredCode { |
- public: |
- DeferredStringCharAt(Register object, |
- Register index, |
- Register scratch1, |
- Register scratch2, |
- Register result) |
- : result_(result), |
- char_at_generator_(object, |
- index, |
- scratch1, |
- scratch2, |
- result, |
- &need_conversion_, |
- &need_conversion_, |
- &index_out_of_range_, |
- STRING_INDEX_IS_NUMBER) {} |
- |
- StringCharAtGenerator* fast_case_generator() { |
- return &char_at_generator_; |
- } |
- |
- virtual void Generate() { |
- VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
- char_at_generator_.GenerateSlow(masm(), call_helper); |
- |
- __ bind(&need_conversion_); |
- // Move smi zero into the result register, which will trigger |
- // conversion. |
- __ mov(result_, Operand(Smi::FromInt(0))); |
- __ jmp(exit_label()); |
- |
- __ bind(&index_out_of_range_); |
- // When the index is out of range, the spec requires us to return |
- // the empty string. |
- __ LoadRoot(result_, Heap::kEmptyStringRootIndex); |
- __ jmp(exit_label()); |
- } |
- |
- private: |
- Register result_; |
- |
- Label need_conversion_; |
- Label index_out_of_range_; |
- |
- StringCharAtGenerator char_at_generator_; |
-}; |
- |
- |
-// This generates code that performs a String.prototype.charAt() call |
-// or returns a smi in order to trigger conversion. |
-void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) { |
- Comment(masm_, "[ GenerateStringCharAt"); |
- ASSERT(args->length() == 2); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- |
- Register index = frame_->PopToRegister(); |
- Register object = frame_->PopToRegister(index); |
- |
- // We need three extra registers. |
- Register scratch1 = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- // Use r6 without notifying the virtual frame. |
- Register result = r6; |
- |
- DeferredStringCharAt* deferred = |
- new DeferredStringCharAt(object, |
- index, |
- scratch1, |
- scratch2, |
- result); |
- deferred->fast_case_generator()->GenerateFast(masm_); |
- deferred->BindExit(); |
- frame_->EmitPush(result); |
-} |
- |
- |
-void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- JumpTarget answer; |
- // We need the CC bits to come out as not_equal in the case where the |
- // object is a smi. This can't be done with the usual test opcode so |
- // we use XOR to get the right CC bits. |
- Register possible_array = frame_->PopToRegister(); |
- Register scratch = VirtualFrame::scratch0(); |
- __ and_(scratch, possible_array, Operand(kSmiTagMask)); |
- __ eor(scratch, scratch, Operand(kSmiTagMask), SetCC); |
- answer.Branch(ne); |
- // It is a heap object - get the map. Check if the object is a JS array. |
- __ CompareObjectType(possible_array, scratch, scratch, JS_ARRAY_TYPE); |
- answer.Bind(); |
- cc_reg_ = eq; |
-} |
- |
- |
-void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- JumpTarget answer; |
- // We need the CC bits to come out as not_equal in the case where the |
- // object is a smi. This can't be done with the usual test opcode so |
- // we use XOR to get the right CC bits. |
- Register possible_regexp = frame_->PopToRegister(); |
- Register scratch = VirtualFrame::scratch0(); |
- __ and_(scratch, possible_regexp, Operand(kSmiTagMask)); |
- __ eor(scratch, scratch, Operand(kSmiTagMask), SetCC); |
- answer.Branch(ne); |
- // It is a heap object - get the map. Check if the object is a regexp. |
- __ CompareObjectType(possible_regexp, scratch, scratch, JS_REGEXP_TYPE); |
- answer.Bind(); |
- cc_reg_ = eq; |
-} |
- |
- |
-void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { |
- // This generates a fast version of: |
- // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Register possible_object = frame_->PopToRegister(); |
- __ tst(possible_object, Operand(kSmiTagMask)); |
- false_target()->Branch(eq); |
- |
- __ LoadRoot(ip, Heap::kNullValueRootIndex); |
- __ cmp(possible_object, ip); |
- true_target()->Branch(eq); |
- |
- Register map_reg = VirtualFrame::scratch0(); |
- __ ldr(map_reg, FieldMemOperand(possible_object, HeapObject::kMapOffset)); |
- // Undetectable objects behave like undefined when tested with typeof. |
- __ ldrb(possible_object, FieldMemOperand(map_reg, Map::kBitFieldOffset)); |
- __ tst(possible_object, Operand(1 << Map::kIsUndetectable)); |
- false_target()->Branch(ne); |
- |
- __ ldrb(possible_object, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); |
- __ cmp(possible_object, Operand(FIRST_JS_OBJECT_TYPE)); |
- false_target()->Branch(lt); |
- __ cmp(possible_object, Operand(LAST_JS_OBJECT_TYPE)); |
- cc_reg_ = le; |
-} |
- |
- |
-void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) { |
- // This generates a fast version of: |
- // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' || |
- // typeof(arg) == function). |
- // It includes undetectable objects (as opposed to IsObject). |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Register value = frame_->PopToRegister(); |
- __ tst(value, Operand(kSmiTagMask)); |
- false_target()->Branch(eq); |
- // Check that this is an object. |
- __ ldr(value, FieldMemOperand(value, HeapObject::kMapOffset)); |
- __ ldrb(value, FieldMemOperand(value, Map::kInstanceTypeOffset)); |
- __ cmp(value, Operand(FIRST_JS_OBJECT_TYPE)); |
- cc_reg_ = ge; |
-} |
- |
- |
-// Deferred code to check whether the String JavaScript object is safe for using |
-// default value of. This code is called after the bit caching this information |
-// in the map has been checked with the map for the object in the map_result_ |
-// register. On return the register map_result_ contains 1 for true and 0 for |
-// false. |
-class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode { |
- public: |
- DeferredIsStringWrapperSafeForDefaultValueOf(Register object, |
- Register map_result, |
- Register scratch1, |
- Register scratch2) |
- : object_(object), |
- map_result_(map_result), |
- scratch1_(scratch1), |
- scratch2_(scratch2) { } |
- |
- virtual void Generate() { |
- Label false_result; |
- |
- // Check that map is loaded as expected. |
- if (FLAG_debug_code) { |
- __ ldr(ip, FieldMemOperand(object_, HeapObject::kMapOffset)); |
- __ cmp(map_result_, ip); |
- __ Assert(eq, "Map not in expected register"); |
- } |
- |
- // Check for fast case object. Generate false result for slow case object. |
- __ ldr(scratch1_, FieldMemOperand(object_, JSObject::kPropertiesOffset)); |
- __ ldr(scratch1_, FieldMemOperand(scratch1_, HeapObject::kMapOffset)); |
- __ LoadRoot(ip, Heap::kHashTableMapRootIndex); |
- __ cmp(scratch1_, ip); |
- __ b(eq, &false_result); |
- |
- // Look for valueOf symbol in the descriptor array, and indicate false if |
- // found. The type is not checked, so if it is a transition it is a false |
- // negative. |
- __ ldr(map_result_, |
- FieldMemOperand(map_result_, Map::kInstanceDescriptorsOffset)); |
- __ ldr(scratch2_, FieldMemOperand(map_result_, FixedArray::kLengthOffset)); |
- // map_result_: descriptor array |
- // scratch2_: length of descriptor array |
- // Calculate the end of the descriptor array. |
- STATIC_ASSERT(kSmiTag == 0); |
- STATIC_ASSERT(kSmiTagSize == 1); |
- STATIC_ASSERT(kPointerSize == 4); |
- __ add(scratch1_, |
- map_result_, |
- Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
- __ add(scratch1_, |
- scratch1_, |
- Operand(scratch2_, LSL, kPointerSizeLog2 - kSmiTagSize)); |
- |
- // Calculate location of the first key name. |
- __ add(map_result_, |
- map_result_, |
- Operand(FixedArray::kHeaderSize - kHeapObjectTag + |
- DescriptorArray::kFirstIndex * kPointerSize)); |
- // Loop through all the keys in the descriptor array. If one of these is the |
- // symbol valueOf the result is false. |
- Label entry, loop; |
- // The use of ip to store the valueOf symbol asumes that it is not otherwise |
- // used in the loop below. |
- __ mov(ip, Operand(FACTORY->value_of_symbol())); |
- __ jmp(&entry); |
- __ bind(&loop); |
- __ ldr(scratch2_, MemOperand(map_result_, 0)); |
- __ cmp(scratch2_, ip); |
- __ b(eq, &false_result); |
- __ add(map_result_, map_result_, Operand(kPointerSize)); |
- __ bind(&entry); |
- __ cmp(map_result_, Operand(scratch1_)); |
- __ b(ne, &loop); |
- |
- // Reload map as register map_result_ was used as temporary above. |
- __ ldr(map_result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
- |
- // If a valueOf property is not found on the object check that it's |
- // prototype is the un-modified String prototype. If not result is false. |
- __ ldr(scratch1_, FieldMemOperand(map_result_, Map::kPrototypeOffset)); |
- __ tst(scratch1_, Operand(kSmiTagMask)); |
- __ b(eq, &false_result); |
- __ ldr(scratch1_, FieldMemOperand(scratch1_, HeapObject::kMapOffset)); |
- __ ldr(scratch2_, |
- ContextOperand(cp, Context::GLOBAL_INDEX)); |
- __ ldr(scratch2_, |
- FieldMemOperand(scratch2_, GlobalObject::kGlobalContextOffset)); |
- __ ldr(scratch2_, |
- ContextOperand( |
- scratch2_, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); |
- __ cmp(scratch1_, scratch2_); |
- __ b(ne, &false_result); |
- |
- // Set the bit in the map to indicate that it has been checked safe for |
- // default valueOf and set true result. |
- __ ldrb(scratch1_, FieldMemOperand(map_result_, Map::kBitField2Offset)); |
- __ orr(scratch1_, |
- scratch1_, |
- Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); |
- __ strb(scratch1_, FieldMemOperand(map_result_, Map::kBitField2Offset)); |
- __ mov(map_result_, Operand(1)); |
- __ jmp(exit_label()); |
- __ bind(&false_result); |
- // Set false result. |
- __ mov(map_result_, Operand(0, RelocInfo::NONE)); |
- } |
- |
- private: |
- Register object_; |
- Register map_result_; |
- Register scratch1_; |
- Register scratch2_; |
-}; |
- |
- |
-void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf( |
- ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Register obj = frame_->PopToRegister(); // Pop the string wrapper. |
- if (FLAG_debug_code) { |
- __ AbortIfSmi(obj); |
- } |
- |
- // Check whether this map has already been checked to be safe for default |
- // valueOf. |
- Register map_result = VirtualFrame::scratch0(); |
- __ ldr(map_result, FieldMemOperand(obj, HeapObject::kMapOffset)); |
- __ ldrb(ip, FieldMemOperand(map_result, Map::kBitField2Offset)); |
- __ tst(ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); |
- true_target()->Branch(ne); |
- |
- // We need an additional two scratch registers for the deferred code. |
- Register scratch1 = VirtualFrame::scratch1(); |
- // Use r6 without notifying the virtual frame. |
- Register scratch2 = r6; |
- |
- DeferredIsStringWrapperSafeForDefaultValueOf* deferred = |
- new DeferredIsStringWrapperSafeForDefaultValueOf( |
- obj, map_result, scratch1, scratch2); |
- deferred->Branch(eq); |
- deferred->BindExit(); |
- __ tst(map_result, Operand(map_result)); |
- cc_reg_ = ne; |
-} |
- |
- |
-void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { |
- // This generates a fast version of: |
- // (%_ClassOf(arg) === 'Function') |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Register possible_function = frame_->PopToRegister(); |
- __ tst(possible_function, Operand(kSmiTagMask)); |
- false_target()->Branch(eq); |
- Register map_reg = VirtualFrame::scratch0(); |
- Register scratch = VirtualFrame::scratch1(); |
- __ CompareObjectType(possible_function, map_reg, scratch, JS_FUNCTION_TYPE); |
- cc_reg_ = eq; |
-} |
- |
- |
-void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Register possible_undetectable = frame_->PopToRegister(); |
- __ tst(possible_undetectable, Operand(kSmiTagMask)); |
- false_target()->Branch(eq); |
- Register scratch = VirtualFrame::scratch0(); |
- __ ldr(scratch, |
- FieldMemOperand(possible_undetectable, HeapObject::kMapOffset)); |
- __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); |
- __ tst(scratch, Operand(1 << Map::kIsUndetectable)); |
- cc_reg_ = ne; |
-} |
- |
- |
-void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 0); |
- |
- Register scratch0 = VirtualFrame::scratch0(); |
- Register scratch1 = VirtualFrame::scratch1(); |
- // Get the frame pointer for the calling frame. |
- __ ldr(scratch0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
- |
- // Skip the arguments adaptor frame if it exists. |
- __ ldr(scratch1, |
- MemOperand(scratch0, StandardFrameConstants::kContextOffset)); |
- __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
- __ ldr(scratch0, |
- MemOperand(scratch0, StandardFrameConstants::kCallerFPOffset), eq); |
- |
- // Check the marker in the calling frame. |
- __ ldr(scratch1, |
- MemOperand(scratch0, StandardFrameConstants::kMarkerOffset)); |
- __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); |
- cc_reg_ = eq; |
-} |
- |
- |
-void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 0); |
- |
- Register tos = frame_->GetTOSRegister(); |
- Register scratch0 = VirtualFrame::scratch0(); |
- Register scratch1 = VirtualFrame::scratch1(); |
- |
- // Check if the calling frame is an arguments adaptor frame. |
- __ ldr(scratch0, |
- MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
- __ ldr(scratch1, |
- MemOperand(scratch0, StandardFrameConstants::kContextOffset)); |
- __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
- |
- // Get the number of formal parameters. |
- __ mov(tos, Operand(Smi::FromInt(scope()->num_parameters())), LeaveCC, ne); |
- |
- // Arguments adaptor case: Read the arguments length from the |
- // adaptor frame. |
- __ ldr(tos, |
- MemOperand(scratch0, ArgumentsAdaptorFrameConstants::kLengthOffset), |
- eq); |
- |
- frame_->EmitPush(tos); |
-} |
- |
- |
-void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- |
- // Satisfy contract with ArgumentsAccessStub: |
- // Load the key into r1 and the formal parameters count into r0. |
- Load(args->at(0)); |
- frame_->PopToR1(); |
- frame_->SpillAll(); |
- __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); |
- |
- // Call the shared stub to get to arguments[key]. |
- ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); |
- frame_->CallStub(&stub, 0); |
- frame_->EmitPush(r0); |
-} |
- |
- |
-void CodeGenerator::GenerateRandomHeapNumber( |
- ZoneList<Expression*>* args) { |
- VirtualFrame::SpilledScope spilled_scope(frame_); |
- ASSERT(args->length() == 0); |
- |
- Label slow_allocate_heapnumber; |
- Label heapnumber_allocated; |
- |
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(r4, r1, r2, r6, &slow_allocate_heapnumber); |
- __ jmp(&heapnumber_allocated); |
- |
- __ bind(&slow_allocate_heapnumber); |
- // Allocate a heap number. |
- __ CallRuntime(Runtime::kNumberAlloc, 0); |
- __ mov(r4, Operand(r0)); |
- |
- __ bind(&heapnumber_allocated); |
- |
- // Convert 32 random bits in r0 to 0.(32 random bits) in a double |
- // by computing: |
- // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). |
- if (CpuFeatures::IsSupported(VFP3)) { |
- __ PrepareCallCFunction(1, r0); |
- __ mov(r0, Operand(ExternalReference::isolate_address())); |
- __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1); |
- |
- CpuFeatures::Scope scope(VFP3); |
- // 0x41300000 is the top half of 1.0 x 2^20 as a double. |
- // Create this constant using mov/orr to avoid PC relative load. |
- __ mov(r1, Operand(0x41000000)); |
- __ orr(r1, r1, Operand(0x300000)); |
- // Move 0x41300000xxxxxxxx (x = random bits) to VFP. |
- __ vmov(d7, r0, r1); |
- // Move 0x4130000000000000 to VFP. |
- __ mov(r0, Operand(0, RelocInfo::NONE)); |
- __ vmov(d8, r0, r1); |
- // Subtract and store the result in the heap number. |
- __ vsub(d7, d7, d8); |
- __ sub(r0, r4, Operand(kHeapObjectTag)); |
- __ vstr(d7, r0, HeapNumber::kValueOffset); |
- frame_->EmitPush(r4); |
- } else { |
- __ PrepareCallCFunction(2, r0); |
- __ mov(r0, Operand(r4)); |
- __ mov(r1, Operand(ExternalReference::isolate_address())); |
- __ CallCFunction( |
- ExternalReference::fill_heap_number_with_random_function(isolate()), 2); |
- frame_->EmitPush(r0); |
- } |
-} |
- |
- |
-void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { |
- ASSERT_EQ(2, args->length()); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- |
- StringAddStub stub(NO_STRING_ADD_FLAGS); |
- frame_->SpillAll(); |
- frame_->CallStub(&stub, 2); |
- frame_->EmitPush(r0); |
-} |
- |
- |
-void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { |
- ASSERT_EQ(3, args->length()); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Load(args->at(2)); |
- |
- SubStringStub stub; |
- frame_->SpillAll(); |
- frame_->CallStub(&stub, 3); |
- frame_->EmitPush(r0); |
-} |
- |
- |
-void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { |
- ASSERT_EQ(2, args->length()); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- |
- StringCompareStub stub; |
- frame_->SpillAll(); |
- frame_->CallStub(&stub, 2); |
- frame_->EmitPush(r0); |
-} |
- |
- |
-void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { |
- ASSERT_EQ(4, args->length()); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Load(args->at(2)); |
- Load(args->at(3)); |
- RegExpExecStub stub; |
- frame_->SpillAll(); |
- frame_->CallStub(&stub, 4); |
- frame_->EmitPush(r0); |
-} |
- |
- |
-void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) { |
- ASSERT_EQ(3, args->length()); |
- |
- Load(args->at(0)); // Size of array, smi. |
- Load(args->at(1)); // "index" property value. |
- Load(args->at(2)); // "input" property value. |
- RegExpConstructResultStub stub; |
- frame_->SpillAll(); |
- frame_->CallStub(&stub, 3); |
- frame_->EmitPush(r0); |
-} |
- |
- |
-class DeferredSearchCache: public DeferredCode { |
- public: |
- DeferredSearchCache(Register dst, Register cache, Register key) |
- : dst_(dst), cache_(cache), key_(key) { |
- set_comment("[ DeferredSearchCache"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_, cache_, key_; |
-}; |
- |
- |
-void DeferredSearchCache::Generate() { |
- __ Push(cache_, key_); |
- __ CallRuntime(Runtime::kGetFromCache, 2); |
- __ Move(dst_, r0); |
-} |
- |
- |
-void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) { |
- ASSERT_EQ(2, args->length()); |
- |
- ASSERT_NE(NULL, args->at(0)->AsLiteral()); |
- int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); |
- |
- Handle<FixedArray> jsfunction_result_caches( |
- Isolate::Current()->global_context()->jsfunction_result_caches()); |
- if (jsfunction_result_caches->length() <= cache_id) { |
- __ Abort("Attempt to use undefined cache."); |
- frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); |
- return; |
- } |
- |
- Load(args->at(1)); |
- |
- frame_->PopToR1(); |
- frame_->SpillAll(); |
- Register key = r1; // Just poped to r1 |
- Register result = r0; // Free, as frame has just been spilled. |
- Register scratch1 = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- |
- __ ldr(scratch1, ContextOperand(cp, Context::GLOBAL_INDEX)); |
- __ ldr(scratch1, |
- FieldMemOperand(scratch1, GlobalObject::kGlobalContextOffset)); |
- __ ldr(scratch1, |
- ContextOperand(scratch1, Context::JSFUNCTION_RESULT_CACHES_INDEX)); |
- __ ldr(scratch1, |
- FieldMemOperand(scratch1, FixedArray::OffsetOfElementAt(cache_id))); |
- |
- DeferredSearchCache* deferred = |
- new DeferredSearchCache(result, scratch1, key); |
- |
- const int kFingerOffset = |
- FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex); |
- STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
- __ ldr(result, FieldMemOperand(scratch1, kFingerOffset)); |
- // result now holds finger offset as a smi. |
- __ add(scratch2, scratch1, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
- // scratch2 now points to the start of fixed array elements. |
- __ ldr(result, |
- MemOperand( |
- scratch2, result, LSL, kPointerSizeLog2 - kSmiTagSize, PreIndex)); |
- // Note side effect of PreIndex: scratch2 now points to the key of the pair. |
- __ cmp(key, result); |
- deferred->Branch(ne); |
- |
- __ ldr(result, MemOperand(scratch2, kPointerSize)); |
- |
- deferred->BindExit(); |
- frame_->EmitPush(result); |
-} |
- |
- |
-void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) { |
- ASSERT_EQ(args->length(), 1); |
- |
- // Load the argument on the stack and jump to the runtime. |
- Load(args->at(0)); |
- |
- NumberToStringStub stub; |
- frame_->SpillAll(); |
- frame_->CallStub(&stub, 1); |
- frame_->EmitPush(r0); |
-} |
- |
- |
-class DeferredSwapElements: public DeferredCode { |
- public: |
- DeferredSwapElements(Register object, Register index1, Register index2) |
- : object_(object), index1_(index1), index2_(index2) { |
- set_comment("[ DeferredSwapElements"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register object_, index1_, index2_; |
-}; |
- |
- |
-void DeferredSwapElements::Generate() { |
- __ push(object_); |
- __ push(index1_); |
- __ push(index2_); |
- __ CallRuntime(Runtime::kSwapElements, 3); |
-} |
- |
- |
-void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) { |
- Comment cmnt(masm_, "[ GenerateSwapElements"); |
- |
- ASSERT_EQ(3, args->length()); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Load(args->at(2)); |
- |
- VirtualFrame::SpilledScope spilled_scope(frame_); |
- |
- Register index2 = r2; |
- Register index1 = r1; |
- Register object = r0; |
- Register tmp1 = r3; |
- Register tmp2 = r4; |
- |
- frame_->EmitPop(index2); |
- frame_->EmitPop(index1); |
- frame_->EmitPop(object); |
- |
- DeferredSwapElements* deferred = |
- new DeferredSwapElements(object, index1, index2); |
- |
- // Fetch the map and check if array is in fast case. |
- // Check that object doesn't require security checks and |
- // has no indexed interceptor. |
- __ CompareObjectType(object, tmp1, tmp2, JS_ARRAY_TYPE); |
- deferred->Branch(ne); |
- __ ldrb(tmp2, FieldMemOperand(tmp1, Map::kBitFieldOffset)); |
- __ tst(tmp2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask)); |
- deferred->Branch(ne); |
- |
- // Check the object's elements are in fast case and writable. |
- __ ldr(tmp1, FieldMemOperand(object, JSObject::kElementsOffset)); |
- __ ldr(tmp2, FieldMemOperand(tmp1, HeapObject::kMapOffset)); |
- __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
- __ cmp(tmp2, ip); |
- deferred->Branch(ne); |
- |
- // Smi-tagging is equivalent to multiplying by 2. |
- STATIC_ASSERT(kSmiTag == 0); |
- STATIC_ASSERT(kSmiTagSize == 1); |
- |
- // Check that both indices are smis. |
- __ mov(tmp2, index1); |
- __ orr(tmp2, tmp2, index2); |
- __ tst(tmp2, Operand(kSmiTagMask)); |
- deferred->Branch(ne); |
- |
- // Check that both indices are valid. |
- __ ldr(tmp2, FieldMemOperand(object, JSArray::kLengthOffset)); |
- __ cmp(tmp2, index1); |
- __ cmp(tmp2, index2, hi); |
- deferred->Branch(ls); |
- |
- // Bring the offsets into the fixed array in tmp1 into index1 and |
- // index2. |
- __ mov(tmp2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
- __ add(index1, tmp2, Operand(index1, LSL, kPointerSizeLog2 - kSmiTagSize)); |
- __ add(index2, tmp2, Operand(index2, LSL, kPointerSizeLog2 - kSmiTagSize)); |
- |
- // Swap elements. |
- Register tmp3 = object; |
- object = no_reg; |
- __ ldr(tmp3, MemOperand(tmp1, index1)); |
- __ ldr(tmp2, MemOperand(tmp1, index2)); |
- __ str(tmp3, MemOperand(tmp1, index2)); |
- __ str(tmp2, MemOperand(tmp1, index1)); |
- |
- Label done; |
- __ InNewSpace(tmp1, tmp2, eq, &done); |
- // Possible optimization: do a check that both values are Smis |
- // (or them and test against Smi mask.) |
- |
- __ mov(tmp2, tmp1); |
- __ add(index1, index1, tmp1); |
- __ add(index2, index2, tmp1); |
- __ RecordWriteHelper(tmp1, index1, tmp3); |
- __ RecordWriteHelper(tmp2, index2, tmp3); |
- __ bind(&done); |
- |
- deferred->BindExit(); |
- __ LoadRoot(tmp1, Heap::kUndefinedValueRootIndex); |
- frame_->EmitPush(tmp1); |
-} |
- |
- |
-void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) { |
- Comment cmnt(masm_, "[ GenerateCallFunction"); |
- |
- ASSERT(args->length() >= 2); |
- |
- int n_args = args->length() - 2; // for receiver and function. |
- Load(args->at(0)); // receiver |
- for (int i = 0; i < n_args; i++) { |
- Load(args->at(i + 1)); |
- } |
- Load(args->at(n_args + 1)); // function |
- frame_->CallJSFunction(n_args); |
- frame_->EmitPush(r0); |
-} |
- |
- |
-void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { |
- ASSERT_EQ(args->length(), 1); |
- Load(args->at(0)); |
- if (CpuFeatures::IsSupported(VFP3)) { |
- TranscendentalCacheStub stub(TranscendentalCache::SIN, |
- TranscendentalCacheStub::TAGGED); |
- frame_->SpillAllButCopyTOSToR0(); |
- frame_->CallStub(&stub, 1); |
- } else { |
- frame_->CallRuntime(Runtime::kMath_sin, 1); |
- } |
- frame_->EmitPush(r0); |
-} |
- |
- |
-void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { |
- ASSERT_EQ(args->length(), 1); |
- Load(args->at(0)); |
- if (CpuFeatures::IsSupported(VFP3)) { |
- TranscendentalCacheStub stub(TranscendentalCache::COS, |
- TranscendentalCacheStub::TAGGED); |
- frame_->SpillAllButCopyTOSToR0(); |
- frame_->CallStub(&stub, 1); |
- } else { |
- frame_->CallRuntime(Runtime::kMath_cos, 1); |
- } |
- frame_->EmitPush(r0); |
-} |
- |
- |
-void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) { |
- ASSERT_EQ(args->length(), 1); |
- Load(args->at(0)); |
- if (CpuFeatures::IsSupported(VFP3)) { |
- TranscendentalCacheStub stub(TranscendentalCache::LOG, |
- TranscendentalCacheStub::TAGGED); |
- frame_->SpillAllButCopyTOSToR0(); |
- frame_->CallStub(&stub, 1); |
- } else { |
- frame_->CallRuntime(Runtime::kMath_log, 1); |
- } |
- frame_->EmitPush(r0); |
-} |
- |
- |
-void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 2); |
- |
- // Load the two objects into registers and perform the comparison. |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Register lhs = frame_->PopToRegister(); |
- Register rhs = frame_->PopToRegister(lhs); |
- __ cmp(lhs, rhs); |
- cc_reg_ = eq; |
-} |
- |
- |
-void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 2); |
- |
- // Load the two objects into registers and perform the comparison. |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Register right = frame_->PopToRegister(); |
- Register left = frame_->PopToRegister(right); |
- Register tmp = frame_->scratch0(); |
- Register tmp2 = frame_->scratch1(); |
- |
- // Jumps to done must have the eq flag set if the test is successful |
- // and clear if the test has failed. |
- Label done; |
- |
- // Fail if either is a non-HeapObject. |
- __ cmp(left, Operand(right)); |
- __ b(eq, &done); |
- __ and_(tmp, left, Operand(right)); |
- __ eor(tmp, tmp, Operand(kSmiTagMask)); |
- __ tst(tmp, Operand(kSmiTagMask)); |
- __ b(ne, &done); |
- __ ldr(tmp, FieldMemOperand(left, HeapObject::kMapOffset)); |
- __ ldrb(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset)); |
- __ cmp(tmp2, Operand(JS_REGEXP_TYPE)); |
- __ b(ne, &done); |
- __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
- __ cmp(tmp, Operand(tmp2)); |
- __ b(ne, &done); |
- __ ldr(tmp, FieldMemOperand(left, JSRegExp::kDataOffset)); |
- __ ldr(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset)); |
- __ cmp(tmp, tmp2); |
- __ bind(&done); |
- cc_reg_ = eq; |
-} |
- |
- |
-void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Register value = frame_->PopToRegister(); |
- Register tmp = frame_->scratch0(); |
- __ ldr(tmp, FieldMemOperand(value, String::kHashFieldOffset)); |
- __ tst(tmp, Operand(String::kContainsCachedArrayIndexMask)); |
- cc_reg_ = eq; |
-} |
- |
- |
-void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Register value = frame_->PopToRegister(); |
- |
- __ ldr(value, FieldMemOperand(value, String::kHashFieldOffset)); |
- __ IndexFromHash(value, value); |
- frame_->EmitPush(value); |
-} |
- |
- |
-void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 2); |
- Load(args->at(0)); |
- Register value = frame_->PopToRegister(); |
- __ LoadRoot(value, Heap::kUndefinedValueRootIndex); |
- frame_->EmitPush(value); |
-} |
- |
- |
-void CodeGenerator::VisitCallRuntime(CallRuntime* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- if (CheckForInlineRuntimeCall(node)) { |
- ASSERT((has_cc() && frame_->height() == original_height) || |
- (!has_cc() && frame_->height() == original_height + 1)); |
- return; |
- } |
- |
- ZoneList<Expression*>* args = node->arguments(); |
- Comment cmnt(masm_, "[ CallRuntime"); |
- const Runtime::Function* function = node->function(); |
- |
- if (function == NULL) { |
- // Prepare stack for calling JS runtime function. |
- // Push the builtins object found in the current global object. |
- Register scratch = VirtualFrame::scratch0(); |
- __ ldr(scratch, GlobalObjectOperand()); |
- Register builtins = frame_->GetTOSRegister(); |
- __ ldr(builtins, FieldMemOperand(scratch, GlobalObject::kBuiltinsOffset)); |
- frame_->EmitPush(builtins); |
- } |
- |
- // Push the arguments ("left-to-right"). |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- } |
- |
- VirtualFrame::SpilledScope spilled_scope(frame_); |
- |
- if (function == NULL) { |
- // Call the JS runtime function. |
- __ mov(r2, Operand(node->name())); |
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
- Handle<Code> stub = |
- ISOLATE->stub_cache()->ComputeCallInitialize(arg_count, in_loop); |
- frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
- __ ldr(cp, frame_->Context()); |
- frame_->EmitPush(r0); |
- } else { |
- // Call the C runtime function. |
- frame_->CallRuntime(function, arg_count); |
- frame_->EmitPush(r0); |
- } |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ UnaryOperation"); |
- |
- Token::Value op = node->op(); |
- |
- if (op == Token::NOT) { |
- LoadCondition(node->expression(), false_target(), true_target(), true); |
- // LoadCondition may (and usually does) leave a test and branch to |
- // be emitted by the caller. In that case, negate the condition. |
- if (has_cc()) cc_reg_ = NegateCondition(cc_reg_); |
- |
- } else if (op == Token::DELETE) { |
- Property* property = node->expression()->AsProperty(); |
- Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); |
- if (property != NULL) { |
- Load(property->obj()); |
- Load(property->key()); |
- frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); |
- frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 3); |
- frame_->EmitPush(r0); |
- |
- } else if (variable != NULL) { |
- // Delete of an unqualified identifier is disallowed in strict mode |
- // but "delete this" is. |
- ASSERT(strict_mode_flag() == kNonStrictMode || variable->is_this()); |
- Slot* slot = variable->AsSlot(); |
- if (variable->is_global()) { |
- LoadGlobal(); |
- frame_->EmitPush(Operand(variable->name())); |
- frame_->EmitPush(Operand(Smi::FromInt(kNonStrictMode))); |
- frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 3); |
- frame_->EmitPush(r0); |
- |
- } else if (slot != NULL && slot->type() == Slot::LOOKUP) { |
- // Delete from the context holding the named variable. |
- frame_->EmitPush(cp); |
- frame_->EmitPush(Operand(variable->name())); |
- frame_->CallRuntime(Runtime::kDeleteContextSlot, 2); |
- frame_->EmitPush(r0); |
- |
- } else { |
- // Default: Result of deleting non-global, not dynamically |
- // introduced variables is false. |
- frame_->EmitPushRoot(Heap::kFalseValueRootIndex); |
- } |
- |
- } else { |
- // Default: Result of deleting expressions is true. |
- Load(node->expression()); // may have side-effects |
- frame_->Drop(); |
- frame_->EmitPushRoot(Heap::kTrueValueRootIndex); |
- } |
- |
- } else if (op == Token::TYPEOF) { |
- // Special case for loading the typeof expression; see comment on |
- // LoadTypeofExpression(). |
- LoadTypeofExpression(node->expression()); |
- frame_->CallRuntime(Runtime::kTypeof, 1); |
- frame_->EmitPush(r0); // r0 has result |
- |
- } else { |
- bool can_overwrite = node->expression()->ResultOverwriteAllowed(); |
- UnaryOverwriteMode overwrite = |
- can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; |
- |
- bool no_negative_zero = node->expression()->no_negative_zero(); |
- Load(node->expression()); |
- switch (op) { |
- case Token::NOT: |
- case Token::DELETE: |
- case Token::TYPEOF: |
- UNREACHABLE(); // handled above |
- break; |
- |
- case Token::SUB: { |
- frame_->PopToR0(); |
- GenericUnaryOpStub stub( |
- Token::SUB, |
- overwrite, |
- NO_UNARY_FLAGS, |
- no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero); |
- frame_->CallStub(&stub, 0); |
- frame_->EmitPush(r0); // r0 has result |
- break; |
- } |
- |
- case Token::BIT_NOT: { |
- Register tos = frame_->PopToRegister(); |
- JumpTarget not_smi_label; |
- JumpTarget continue_label; |
- // Smi check. |
- __ tst(tos, Operand(kSmiTagMask)); |
- not_smi_label.Branch(ne); |
- |
- __ mvn(tos, Operand(tos)); |
- __ bic(tos, tos, Operand(kSmiTagMask)); // Bit-clear inverted smi-tag. |
- frame_->EmitPush(tos); |
- // The fast case is the first to jump to the continue label, so it gets |
- // to decide the virtual frame layout. |
- continue_label.Jump(); |
- |
- not_smi_label.Bind(); |
- frame_->SpillAll(); |
- __ Move(r0, tos); |
- GenericUnaryOpStub stub(Token::BIT_NOT, |
- overwrite, |
- NO_UNARY_SMI_CODE_IN_STUB); |
- frame_->CallStub(&stub, 0); |
- frame_->EmitPush(r0); |
- |
- continue_label.Bind(); |
- break; |
- } |
- |
- case Token::VOID: |
- frame_->Drop(); |
- frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); |
- break; |
- |
- case Token::ADD: { |
- Register tos = frame_->Peek(); |
- // Smi check. |
- JumpTarget continue_label; |
- __ tst(tos, Operand(kSmiTagMask)); |
- continue_label.Branch(eq); |
- |
- frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); |
- frame_->EmitPush(r0); |
- |
- continue_label.Bind(); |
- break; |
- } |
- default: |
- UNREACHABLE(); |
- } |
- } |
- ASSERT(!has_valid_frame() || |
- (has_cc() && frame_->height() == original_height) || |
- (!has_cc() && frame_->height() == original_height + 1)); |
-} |
- |
- |
-class DeferredCountOperation: public DeferredCode { |
- public: |
- DeferredCountOperation(Register value, |
- bool is_increment, |
- bool is_postfix, |
- int target_size) |
- : value_(value), |
- is_increment_(is_increment), |
- is_postfix_(is_postfix), |
- target_size_(target_size) {} |
- |
- virtual void Generate() { |
- VirtualFrame copied_frame(*frame_state()->frame()); |
- |
- Label slow; |
- // Check for smi operand. |
- __ tst(value_, Operand(kSmiTagMask)); |
- __ b(ne, &slow); |
- |
- // Revert optimistic increment/decrement. |
- if (is_increment_) { |
- __ sub(value_, value_, Operand(Smi::FromInt(1))); |
- } else { |
- __ add(value_, value_, Operand(Smi::FromInt(1))); |
- } |
- |
- // Slow case: Convert to number. At this point the |
- // value to be incremented is in the value register.. |
- __ bind(&slow); |
- |
- // Convert the operand to a number. |
- copied_frame.EmitPush(value_); |
- |
- copied_frame.InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); |
- |
- if (is_postfix_) { |
- // Postfix: store to result (on the stack). |
- __ str(r0, MemOperand(sp, target_size_ * kPointerSize)); |
- } |
- |
- copied_frame.EmitPush(r0); |
- copied_frame.EmitPush(Operand(Smi::FromInt(1))); |
- |
- if (is_increment_) { |
- copied_frame.CallRuntime(Runtime::kNumberAdd, 2); |
- } else { |
- copied_frame.CallRuntime(Runtime::kNumberSub, 2); |
- } |
- |
- __ Move(value_, r0); |
- |
- copied_frame.MergeTo(frame_state()->frame()); |
- } |
- |
- private: |
- Register value_; |
- bool is_increment_; |
- bool is_postfix_; |
- int target_size_; |
-}; |
- |
- |
-void CodeGenerator::VisitCountOperation(CountOperation* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ CountOperation"); |
- VirtualFrame::RegisterAllocationScope scope(this); |
- |
- bool is_postfix = node->is_postfix(); |
- bool is_increment = node->op() == Token::INC; |
- |
- Variable* var = node->expression()->AsVariableProxy()->AsVariable(); |
- bool is_const = (var != NULL && var->mode() == Variable::CONST); |
- bool is_slot = (var != NULL && var->mode() == Variable::VAR); |
- |
- if (!is_const && is_slot && type_info(var->AsSlot()).IsSmi()) { |
- // The type info declares that this variable is always a Smi. That |
- // means it is a Smi both before and after the increment/decrement. |
- // Lets make use of that to make a very minimal count. |
- Reference target(this, node->expression(), !is_const); |
- ASSERT(!target.is_illegal()); |
- target.GetValue(); // Pushes the value. |
- Register value = frame_->PopToRegister(); |
- if (is_postfix) frame_->EmitPush(value); |
- if (is_increment) { |
- __ add(value, value, Operand(Smi::FromInt(1))); |
- } else { |
- __ sub(value, value, Operand(Smi::FromInt(1))); |
- } |
- frame_->EmitPush(value); |
- target.SetValue(NOT_CONST_INIT, LIKELY_SMI); |
- if (is_postfix) frame_->Pop(); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
- return; |
- } |
- |
- // If it's a postfix expression and its result is not ignored and the |
- // reference is non-trivial, then push a placeholder on the stack now |
- // to hold the result of the expression. |
- bool placeholder_pushed = false; |
- if (!is_slot && is_postfix) { |
- frame_->EmitPush(Operand(Smi::FromInt(0))); |
- placeholder_pushed = true; |
- } |
- |
- // A constant reference is not saved to, so a constant reference is not a |
- // compound assignment reference. |
- { Reference target(this, node->expression(), !is_const); |
- if (target.is_illegal()) { |
- // Spoof the virtual frame to have the expected height (one higher |
- // than on entry). |
- if (!placeholder_pushed) frame_->EmitPush(Operand(Smi::FromInt(0))); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
- return; |
- } |
- |
- // This pushes 0, 1 or 2 words on the object to be used later when updating |
- // the target. It also pushes the current value of the target. |
- target.GetValue(); |
- |
- bool value_is_known_smi = frame_->KnownSmiAt(0); |
- Register value = frame_->PopToRegister(); |
- |
- // Postfix: Store the old value as the result. |
- if (placeholder_pushed) { |
- frame_->SetElementAt(value, target.size()); |
- } else if (is_postfix) { |
- frame_->EmitPush(value); |
- __ mov(VirtualFrame::scratch0(), value); |
- value = VirtualFrame::scratch0(); |
- } |
- |
- // We can't use any type information here since the virtual frame from the |
- // deferred code may have lost information and we can't merge a virtual |
- // frame with less specific type knowledge to a virtual frame with more |
- // specific knowledge that has already used that specific knowledge to |
- // generate code. |
- frame_->ForgetTypeInfo(); |
- |
- // The constructor here will capture the current virtual frame and use it to |
- // merge to after the deferred code has run. No virtual frame changes are |
- // allowed from here until the 'BindExit' below. |
- DeferredCode* deferred = |
- new DeferredCountOperation(value, |
- is_increment, |
- is_postfix, |
- target.size()); |
- if (!value_is_known_smi) { |
- // Check for smi operand. |
- __ tst(value, Operand(kSmiTagMask)); |
- |
- deferred->Branch(ne); |
- } |
- |
- // Perform optimistic increment/decrement. |
- if (is_increment) { |
- __ add(value, value, Operand(Smi::FromInt(1)), SetCC); |
- } else { |
- __ sub(value, value, Operand(Smi::FromInt(1)), SetCC); |
- } |
- |
- // If increment/decrement overflows, go to deferred code. |
- deferred->Branch(vs); |
- |
- deferred->BindExit(); |
- |
- // Store the new value in the target if not const. |
- // At this point the answer is in the value register. |
- frame_->EmitPush(value); |
- // Set the target with the result, leaving the result on |
- // top of the stack. Removes the target from the stack if |
- // it has a non-zero size. |
- if (!is_const) target.SetValue(NOT_CONST_INIT, LIKELY_SMI); |
- } |
- |
- // Postfix: Discard the new value and use the old. |
- if (is_postfix) frame_->Pop(); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) { |
- // According to ECMA-262 section 11.11, page 58, the binary logical |
- // operators must yield the result of one of the two expressions |
- // before any ToBoolean() conversions. This means that the value |
- // produced by a && or || operator is not necessarily a boolean. |
- |
- // NOTE: If the left hand side produces a materialized value (not in |
- // the CC register), we force the right hand side to do the |
- // same. This is necessary because we may have to branch to the exit |
- // after evaluating the left hand side (due to the shortcut |
- // semantics), but the compiler must (statically) know if the result |
- // of compiling the binary operation is materialized or not. |
- if (node->op() == Token::AND) { |
- JumpTarget is_true; |
- LoadCondition(node->left(), &is_true, false_target(), false); |
- if (has_valid_frame() && !has_cc()) { |
- // The left-hand side result is on top of the virtual frame. |
- JumpTarget pop_and_continue; |
- JumpTarget exit; |
- |
- frame_->Dup(); |
- // Avoid popping the result if it converts to 'false' using the |
- // standard ToBoolean() conversion as described in ECMA-262, |
- // section 9.2, page 30. |
- ToBoolean(&pop_and_continue, &exit); |
- Branch(false, &exit); |
- |
- // Pop the result of evaluating the first part. |
- pop_and_continue.Bind(); |
- frame_->Pop(); |
- |
- // Evaluate right side expression. |
- is_true.Bind(); |
- Load(node->right()); |
- |
- // Exit (always with a materialized value). |
- exit.Bind(); |
- } else if (has_cc() || is_true.is_linked()) { |
- // The left-hand side is either (a) partially compiled to |
- // control flow with a final branch left to emit or (b) fully |
- // compiled to control flow and possibly true. |
- if (has_cc()) { |
- Branch(false, false_target()); |
- } |
- is_true.Bind(); |
- LoadCondition(node->right(), true_target(), false_target(), false); |
- } else { |
- // Nothing to do. |
- ASSERT(!has_valid_frame() && !has_cc() && !is_true.is_linked()); |
- } |
- |
- } else { |
- ASSERT(node->op() == Token::OR); |
- JumpTarget is_false; |
- LoadCondition(node->left(), true_target(), &is_false, false); |
- if (has_valid_frame() && !has_cc()) { |
- // The left-hand side result is on top of the virtual frame. |
- JumpTarget pop_and_continue; |
- JumpTarget exit; |
- |
- frame_->Dup(); |
- // Avoid popping the result if it converts to 'true' using the |
- // standard ToBoolean() conversion as described in ECMA-262, |
- // section 9.2, page 30. |
- ToBoolean(&exit, &pop_and_continue); |
- Branch(true, &exit); |
- |
- // Pop the result of evaluating the first part. |
- pop_and_continue.Bind(); |
- frame_->Pop(); |
- |
- // Evaluate right side expression. |
- is_false.Bind(); |
- Load(node->right()); |
- |
- // Exit (always with a materialized value). |
- exit.Bind(); |
- } else if (has_cc() || is_false.is_linked()) { |
- // The left-hand side is either (a) partially compiled to |
- // control flow with a final branch left to emit or (b) fully |
- // compiled to control flow and possibly false. |
- if (has_cc()) { |
- Branch(true, true_target()); |
- } |
- is_false.Bind(); |
- LoadCondition(node->right(), true_target(), false_target(), false); |
- } else { |
- // Nothing to do. |
- ASSERT(!has_valid_frame() && !has_cc() && !is_false.is_linked()); |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ BinaryOperation"); |
- |
- if (node->op() == Token::AND || node->op() == Token::OR) { |
- GenerateLogicalBooleanOperation(node); |
- } else { |
- // Optimize for the case where (at least) one of the expressions |
- // is a literal small integer. |
- Literal* lliteral = node->left()->AsLiteral(); |
- Literal* rliteral = node->right()->AsLiteral(); |
- // NOTE: The code below assumes that the slow cases (calls to runtime) |
- // never return a constant/immutable object. |
- bool overwrite_left = node->left()->ResultOverwriteAllowed(); |
- bool overwrite_right = node->right()->ResultOverwriteAllowed(); |
- |
- if (rliteral != NULL && rliteral->handle()->IsSmi()) { |
- VirtualFrame::RegisterAllocationScope scope(this); |
- Load(node->left()); |
- if (frame_->KnownSmiAt(0)) overwrite_left = false; |
- SmiOperation(node->op(), |
- rliteral->handle(), |
- false, |
- overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE); |
- } else if (lliteral != NULL && lliteral->handle()->IsSmi()) { |
- VirtualFrame::RegisterAllocationScope scope(this); |
- Load(node->right()); |
- if (frame_->KnownSmiAt(0)) overwrite_right = false; |
- SmiOperation(node->op(), |
- lliteral->handle(), |
- true, |
- overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE); |
- } else { |
- GenerateInlineSmi inline_smi = |
- loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
- if (lliteral != NULL) { |
- ASSERT(!lliteral->handle()->IsSmi()); |
- inline_smi = DONT_GENERATE_INLINE_SMI; |
- } |
- if (rliteral != NULL) { |
- ASSERT(!rliteral->handle()->IsSmi()); |
- inline_smi = DONT_GENERATE_INLINE_SMI; |
- } |
- VirtualFrame::RegisterAllocationScope scope(this); |
- OverwriteMode overwrite_mode = NO_OVERWRITE; |
- if (overwrite_left) { |
- overwrite_mode = OVERWRITE_LEFT; |
- } else if (overwrite_right) { |
- overwrite_mode = OVERWRITE_RIGHT; |
- } |
- Load(node->left()); |
- Load(node->right()); |
- GenericBinaryOperation(node->op(), overwrite_mode, inline_smi); |
- } |
- } |
- ASSERT(!has_valid_frame() || |
- (has_cc() && frame_->height() == original_height) || |
- (!has_cc() && frame_->height() == original_height + 1)); |
-} |
- |
- |
-void CodeGenerator::VisitThisFunction(ThisFunction* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- frame_->EmitPush(MemOperand(frame_->Function())); |
- ASSERT_EQ(original_height + 1, frame_->height()); |
-} |
- |
- |
-void CodeGenerator::VisitCompareOperation(CompareOperation* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ CompareOperation"); |
- |
- VirtualFrame::RegisterAllocationScope nonspilled_scope(this); |
- |
- // Get the expressions from the node. |
- Expression* left = node->left(); |
- Expression* right = node->right(); |
- Token::Value op = node->op(); |
- |
- // To make typeof testing for natives implemented in JavaScript really |
- // efficient, we generate special code for expressions of the form: |
- // 'typeof <expression> == <string>'. |
- UnaryOperation* operation = left->AsUnaryOperation(); |
- if ((op == Token::EQ || op == Token::EQ_STRICT) && |
- (operation != NULL && operation->op() == Token::TYPEOF) && |
- (right->AsLiteral() != NULL && |
- right->AsLiteral()->handle()->IsString())) { |
- Handle<String> check(String::cast(*right->AsLiteral()->handle())); |
- |
- // Load the operand, move it to a register. |
- LoadTypeofExpression(operation->expression()); |
- Register tos = frame_->PopToRegister(); |
- |
- Register scratch = VirtualFrame::scratch0(); |
- |
- if (check->Equals(HEAP->number_symbol())) { |
- __ tst(tos, Operand(kSmiTagMask)); |
- true_target()->Branch(eq); |
- __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
- __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); |
- __ cmp(tos, ip); |
- cc_reg_ = eq; |
- |
- } else if (check->Equals(HEAP->string_symbol())) { |
- __ tst(tos, Operand(kSmiTagMask)); |
- false_target()->Branch(eq); |
- |
- __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
- |
- // It can be an undetectable string object. |
- __ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset)); |
- __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); |
- __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); |
- false_target()->Branch(eq); |
- |
- __ ldrb(scratch, FieldMemOperand(tos, Map::kInstanceTypeOffset)); |
- __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE)); |
- cc_reg_ = lt; |
- |
- } else if (check->Equals(HEAP->boolean_symbol())) { |
- __ LoadRoot(ip, Heap::kTrueValueRootIndex); |
- __ cmp(tos, ip); |
- true_target()->Branch(eq); |
- __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
- __ cmp(tos, ip); |
- cc_reg_ = eq; |
- |
- } else if (check->Equals(HEAP->undefined_symbol())) { |
- __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
- __ cmp(tos, ip); |
- true_target()->Branch(eq); |
- |
- __ tst(tos, Operand(kSmiTagMask)); |
- false_target()->Branch(eq); |
- |
- // It can be an undetectable object. |
- __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
- __ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset)); |
- __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); |
- __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); |
- |
- cc_reg_ = eq; |
- |
- } else if (check->Equals(HEAP->function_symbol())) { |
- __ tst(tos, Operand(kSmiTagMask)); |
- false_target()->Branch(eq); |
- Register map_reg = scratch; |
- __ CompareObjectType(tos, map_reg, tos, JS_FUNCTION_TYPE); |
- true_target()->Branch(eq); |
- // Regular expressions are callable so typeof == 'function'. |
- __ CompareInstanceType(map_reg, tos, JS_REGEXP_TYPE); |
- cc_reg_ = eq; |
- |
- } else if (check->Equals(HEAP->object_symbol())) { |
- __ tst(tos, Operand(kSmiTagMask)); |
- false_target()->Branch(eq); |
- |
- __ LoadRoot(ip, Heap::kNullValueRootIndex); |
- __ cmp(tos, ip); |
- true_target()->Branch(eq); |
- |
- Register map_reg = scratch; |
- __ CompareObjectType(tos, map_reg, tos, JS_REGEXP_TYPE); |
- false_target()->Branch(eq); |
- |
- // It can be an undetectable object. |
- __ ldrb(tos, FieldMemOperand(map_reg, Map::kBitFieldOffset)); |
- __ and_(tos, tos, Operand(1 << Map::kIsUndetectable)); |
- __ cmp(tos, Operand(1 << Map::kIsUndetectable)); |
- false_target()->Branch(eq); |
- |
- __ ldrb(tos, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); |
- __ cmp(tos, Operand(FIRST_JS_OBJECT_TYPE)); |
- false_target()->Branch(lt); |
- __ cmp(tos, Operand(LAST_JS_OBJECT_TYPE)); |
- cc_reg_ = le; |
- |
- } else { |
- // Uncommon case: typeof testing against a string literal that is |
- // never returned from the typeof operator. |
- false_target()->Jump(); |
- } |
- ASSERT(!has_valid_frame() || |
- (has_cc() && frame_->height() == original_height)); |
- return; |
- } |
- |
- switch (op) { |
- case Token::EQ: |
- Comparison(eq, left, right, false); |
- break; |
- |
- case Token::LT: |
- Comparison(lt, left, right); |
- break; |
- |
- case Token::GT: |
- Comparison(gt, left, right); |
- break; |
- |
- case Token::LTE: |
- Comparison(le, left, right); |
- break; |
- |
- case Token::GTE: |
- Comparison(ge, left, right); |
- break; |
- |
- case Token::EQ_STRICT: |
- Comparison(eq, left, right, true); |
- break; |
- |
- case Token::IN: { |
- Load(left); |
- Load(right); |
- frame_->InvokeBuiltin(Builtins::IN, CALL_JS, 2); |
- frame_->EmitPush(r0); |
- break; |
- } |
- |
- case Token::INSTANCEOF: { |
- Load(left); |
- Load(right); |
- InstanceofStub stub(InstanceofStub::kNoFlags); |
- frame_->CallStub(&stub, 2); |
- // At this point if instanceof succeeded then r0 == 0. |
- __ tst(r0, Operand(r0)); |
- cc_reg_ = eq; |
- break; |
- } |
- |
- default: |
- UNREACHABLE(); |
- } |
- ASSERT((has_cc() && frame_->height() == original_height) || |
- (!has_cc() && frame_->height() == original_height + 1)); |
-} |
- |
- |
-void CodeGenerator::VisitCompareToNull(CompareToNull* node) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- Comment cmnt(masm_, "[ CompareToNull"); |
- |
- Load(node->expression()); |
- Register tos = frame_->PopToRegister(); |
- __ LoadRoot(ip, Heap::kNullValueRootIndex); |
- __ cmp(tos, ip); |
- |
- // The 'null' value is only equal to 'undefined' if using non-strict |
- // comparisons. |
- if (!node->is_strict()) { |
- true_target()->Branch(eq); |
- __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
- __ cmp(tos, Operand(ip)); |
- true_target()->Branch(eq); |
- |
- __ tst(tos, Operand(kSmiTagMask)); |
- false_target()->Branch(eq); |
- |
- // It can be an undetectable object. |
- __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
- __ ldrb(tos, FieldMemOperand(tos, Map::kBitFieldOffset)); |
- __ and_(tos, tos, Operand(1 << Map::kIsUndetectable)); |
- __ cmp(tos, Operand(1 << Map::kIsUndetectable)); |
- } |
- |
- cc_reg_ = eq; |
- ASSERT(has_cc() && frame_->height() == original_height); |
-} |
- |
- |
-class DeferredReferenceGetNamedValue: public DeferredCode { |
- public: |
- explicit DeferredReferenceGetNamedValue(Register receiver, |
- Handle<String> name, |
- bool is_contextual) |
- : receiver_(receiver), |
- name_(name), |
- is_contextual_(is_contextual), |
- is_dont_delete_(false) { |
- set_comment(is_contextual |
- ? "[ DeferredReferenceGetNamedValue (contextual)" |
- : "[ DeferredReferenceGetNamedValue"); |
- } |
- |
- virtual void Generate(); |
- |
- void set_is_dont_delete(bool value) { |
- ASSERT(is_contextual_); |
- is_dont_delete_ = value; |
- } |
- |
- private: |
- Register receiver_; |
- Handle<String> name_; |
- bool is_contextual_; |
- bool is_dont_delete_; |
-}; |
- |
- |
-// Convention for this is that on entry the receiver is in a register that |
-// is not used by the stack. On exit the answer is found in that same |
-// register and the stack has the same height. |
-void DeferredReferenceGetNamedValue::Generate() { |
-#ifdef DEBUG |
- int expected_height = frame_state()->frame()->height(); |
-#endif |
- VirtualFrame copied_frame(*frame_state()->frame()); |
- copied_frame.SpillAll(); |
- |
- Register scratch1 = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- ASSERT(!receiver_.is(scratch1) && !receiver_.is(scratch2)); |
- __ DecrementCounter(masm_->isolate()->counters()->named_load_inline(), |
- 1, scratch1, scratch2); |
- __ IncrementCounter(masm_->isolate()->counters()->named_load_inline_miss(), |
- 1, scratch1, scratch2); |
- |
- // Ensure receiver in r0 and name in r2 to match load ic calling convention. |
- __ Move(r0, receiver_); |
- __ mov(r2, Operand(name_)); |
- |
- // The rest of the instructions in the deferred code must be together. |
- { Assembler::BlockConstPoolScope block_const_pool(masm_); |
- Handle<Code> ic(Isolate::Current()->builtins()->builtin( |
- Builtins::kLoadIC_Initialize)); |
- RelocInfo::Mode mode = is_contextual_ |
- ? RelocInfo::CODE_TARGET_CONTEXT |
- : RelocInfo::CODE_TARGET; |
- __ Call(ic, mode); |
- // We must mark the code just after the call with the correct marker. |
- MacroAssembler::NopMarkerTypes code_marker; |
- if (is_contextual_) { |
- code_marker = is_dont_delete_ |
- ? MacroAssembler::PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE |
- : MacroAssembler::PROPERTY_ACCESS_INLINED_CONTEXT; |
- } else { |
- code_marker = MacroAssembler::PROPERTY_ACCESS_INLINED; |
- } |
- __ MarkCode(code_marker); |
- |
- // At this point the answer is in r0. We move it to the expected register |
- // if necessary. |
- __ Move(receiver_, r0); |
- |
- // Now go back to the frame that we entered with. This will not overwrite |
- // the receiver register since that register was not in use when we came |
- // in. The instructions emitted by this merge are skipped over by the |
- // inline load patching mechanism when looking for the branch instruction |
- // that tells it where the code to patch is. |
- copied_frame.MergeTo(frame_state()->frame()); |
- |
- // Block the constant pool for one more instruction after leaving this |
- // constant pool block scope to include the branch instruction ending the |
- // deferred code. |
- __ BlockConstPoolFor(1); |
- } |
- ASSERT_EQ(expected_height, frame_state()->frame()->height()); |
-} |
- |
- |
-class DeferredReferenceGetKeyedValue: public DeferredCode { |
- public: |
- DeferredReferenceGetKeyedValue(Register key, Register receiver) |
- : key_(key), receiver_(receiver) { |
- set_comment("[ DeferredReferenceGetKeyedValue"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register key_; |
- Register receiver_; |
-}; |
- |
- |
-// Takes key and register in r0 and r1 or vice versa. Returns result |
-// in r0. |
-void DeferredReferenceGetKeyedValue::Generate() { |
- ASSERT((key_.is(r0) && receiver_.is(r1)) || |
- (key_.is(r1) && receiver_.is(r0))); |
- |
- VirtualFrame copied_frame(*frame_state()->frame()); |
- copied_frame.SpillAll(); |
- |
- Register scratch1 = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- __ DecrementCounter(masm_->isolate()->counters()->keyed_load_inline(), |
- 1, scratch1, scratch2); |
- __ IncrementCounter(masm_->isolate()->counters()->keyed_load_inline_miss(), |
- 1, scratch1, scratch2); |
- |
- // Ensure key in r0 and receiver in r1 to match keyed load ic calling |
- // convention. |
- if (key_.is(r1)) { |
- __ Swap(r0, r1, ip); |
- } |
- |
- // The rest of the instructions in the deferred code must be together. |
- { Assembler::BlockConstPoolScope block_const_pool(masm_); |
- // Call keyed load IC. It has the arguments key and receiver in r0 and r1. |
- Handle<Code> ic(Isolate::Current()->builtins()->builtin( |
- Builtins::kKeyedLoadIC_Initialize)); |
- __ Call(ic, RelocInfo::CODE_TARGET); |
- // The call must be followed by a nop instruction to indicate that the |
- // keyed load has been inlined. |
- __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); |
- |
- // Now go back to the frame that we entered with. This will not overwrite |
- // the receiver or key registers since they were not in use when we came |
- // in. The instructions emitted by this merge are skipped over by the |
- // inline load patching mechanism when looking for the branch instruction |
- // that tells it where the code to patch is. |
- copied_frame.MergeTo(frame_state()->frame()); |
- |
- // Block the constant pool for one more instruction after leaving this |
- // constant pool block scope to include the branch instruction ending the |
- // deferred code. |
- __ BlockConstPoolFor(1); |
- } |
-} |
- |
- |
-class DeferredReferenceSetKeyedValue: public DeferredCode { |
- public: |
- DeferredReferenceSetKeyedValue(Register value, |
- Register key, |
- Register receiver, |
- StrictModeFlag strict_mode) |
- : value_(value), |
- key_(key), |
- receiver_(receiver), |
- strict_mode_(strict_mode) { |
- set_comment("[ DeferredReferenceSetKeyedValue"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register value_; |
- Register key_; |
- Register receiver_; |
- StrictModeFlag strict_mode_; |
-}; |
- |
- |
-void DeferredReferenceSetKeyedValue::Generate() { |
- Register scratch1 = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- __ DecrementCounter(masm_->isolate()->counters()->keyed_store_inline(), |
- 1, scratch1, scratch2); |
- __ IncrementCounter(masm_->isolate()->counters()->keyed_store_inline_miss(), |
- 1, scratch1, scratch2); |
- |
- // Ensure value in r0, key in r1 and receiver in r2 to match keyed store ic |
- // calling convention. |
- if (value_.is(r1)) { |
- __ Swap(r0, r1, ip); |
- } |
- ASSERT(receiver_.is(r2)); |
- |
- // The rest of the instructions in the deferred code must be together. |
- { Assembler::BlockConstPoolScope block_const_pool(masm_); |
- // Call keyed store IC. It has the arguments value, key and receiver in r0, |
- // r1 and r2. |
- Handle<Code> ic(Isolate::Current()->builtins()->builtin( |
- (strict_mode_ == kStrictMode) |
- ? Builtins::kKeyedStoreIC_Initialize_Strict |
- : Builtins::kKeyedStoreIC_Initialize)); |
- __ Call(ic, RelocInfo::CODE_TARGET); |
- // The call must be followed by a nop instruction to indicate that the |
- // keyed store has been inlined. |
- __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); |
- |
- // Block the constant pool for one more instruction after leaving this |
- // constant pool block scope to include the branch instruction ending the |
- // deferred code. |
- __ BlockConstPoolFor(1); |
- } |
-} |
- |
- |
-class DeferredReferenceSetNamedValue: public DeferredCode { |
- public: |
- DeferredReferenceSetNamedValue(Register value, |
- Register receiver, |
- Handle<String> name, |
- StrictModeFlag strict_mode) |
- : value_(value), |
- receiver_(receiver), |
- name_(name), |
- strict_mode_(strict_mode) { |
- set_comment("[ DeferredReferenceSetNamedValue"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register value_; |
- Register receiver_; |
- Handle<String> name_; |
- StrictModeFlag strict_mode_; |
-}; |
- |
- |
-// Takes value in r0, receiver in r1 and returns the result (the |
-// value) in r0. |
-void DeferredReferenceSetNamedValue::Generate() { |
- // Record the entry frame and spill. |
- VirtualFrame copied_frame(*frame_state()->frame()); |
- copied_frame.SpillAll(); |
- |
- // Ensure value in r0, receiver in r1 to match store ic calling |
- // convention. |
- ASSERT(value_.is(r0) && receiver_.is(r1)); |
- __ mov(r2, Operand(name_)); |
- |
- // The rest of the instructions in the deferred code must be together. |
- { Assembler::BlockConstPoolScope block_const_pool(masm_); |
- // Call keyed store IC. It has the arguments value, key and receiver in r0, |
- // r1 and r2. |
- Handle<Code> ic(Isolate::Current()->builtins()->builtin( |
- (strict_mode_ == kStrictMode) ? Builtins::kStoreIC_Initialize_Strict |
- : Builtins::kStoreIC_Initialize)); |
- __ Call(ic, RelocInfo::CODE_TARGET); |
- // The call must be followed by a nop instruction to indicate that the |
- // named store has been inlined. |
- __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); |
- |
- // Go back to the frame we entered with. The instructions |
- // generated by this merge are skipped over by the inline store |
- // patching mechanism when looking for the branch instruction that |
- // tells it where the code to patch is. |
- copied_frame.MergeTo(frame_state()->frame()); |
- |
- // Block the constant pool for one more instruction after leaving this |
- // constant pool block scope to include the branch instruction ending the |
- // deferred code. |
- __ BlockConstPoolFor(1); |
- } |
-} |
- |
- |
-// Consumes the top of stack (the receiver) and pushes the result instead. |
-void CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) { |
- bool contextual_load_in_builtin = |
- is_contextual && |
- (ISOLATE->bootstrapper()->IsActive() || |
- (!info_->closure().is_null() && info_->closure()->IsBuiltin())); |
- |
- if (scope()->is_global_scope() || |
- loop_nesting() == 0 || |
- contextual_load_in_builtin) { |
- Comment cmnt(masm(), "[ Load from named Property"); |
- // Setup the name register and call load IC. |
- frame_->CallLoadIC(name, |
- is_contextual |
- ? RelocInfo::CODE_TARGET_CONTEXT |
- : RelocInfo::CODE_TARGET); |
- frame_->EmitPush(r0); // Push answer. |
- } else { |
- // Inline the in-object property case. |
- Comment cmnt(masm(), is_contextual |
- ? "[ Inlined contextual property load" |
- : "[ Inlined named property load"); |
- |
- // Counter will be decremented in the deferred code. Placed here to avoid |
- // having it in the instruction stream below where patching will occur. |
- if (is_contextual) { |
- __ IncrementCounter( |
- masm_->isolate()->counters()->named_load_global_inline(), |
- 1, frame_->scratch0(), frame_->scratch1()); |
- } else { |
- __ IncrementCounter(masm_->isolate()->counters()->named_load_inline(), |
- 1, frame_->scratch0(), frame_->scratch1()); |
- } |
- |
- // The following instructions are the inlined load of an in-object property. |
- // Parts of this code is patched, so the exact instructions generated needs |
- // to be fixed. Therefore the instruction pool is blocked when generating |
- // this code |
- |
- // Load the receiver from the stack. |
- Register receiver = frame_->PopToRegister(); |
- |
- DeferredReferenceGetNamedValue* deferred = |
- new DeferredReferenceGetNamedValue(receiver, name, is_contextual); |
- |
- bool is_dont_delete = false; |
- if (is_contextual) { |
- if (!info_->closure().is_null()) { |
- // When doing lazy compilation we can check if the global cell |
- // already exists and use its "don't delete" status as a hint. |
- AssertNoAllocation no_gc; |
- v8::internal::GlobalObject* global_object = |
- info_->closure()->context()->global(); |
- LookupResult lookup; |
- global_object->LocalLookupRealNamedProperty(*name, &lookup); |
- if (lookup.IsProperty() && lookup.type() == NORMAL) { |
- ASSERT(lookup.holder() == global_object); |
- ASSERT(global_object->property_dictionary()->ValueAt( |
- lookup.GetDictionaryEntry())->IsJSGlobalPropertyCell()); |
- is_dont_delete = lookup.IsDontDelete(); |
- } |
- } |
- if (is_dont_delete) { |
- __ IncrementCounter( |
- masm_->isolate()->counters()->dont_delete_hint_hit(), |
- 1, frame_->scratch0(), frame_->scratch1()); |
- } |
- } |
- |
- { Assembler::BlockConstPoolScope block_const_pool(masm_); |
- if (!is_contextual) { |
- // Check that the receiver is a heap object. |
- __ tst(receiver, Operand(kSmiTagMask)); |
- deferred->Branch(eq); |
- } |
- |
- // Check for the_hole_value if necessary. |
- // Below we rely on the number of instructions generated, and we can't |
- // cope with the Check macro which does not generate a fixed number of |
- // instructions. |
- Label skip, check_the_hole, cont; |
- if (FLAG_debug_code && is_contextual && is_dont_delete) { |
- __ b(&skip); |
- __ bind(&check_the_hole); |
- __ Check(ne, "DontDelete cells can't contain the hole"); |
- __ b(&cont); |
- __ bind(&skip); |
- } |
- |
-#ifdef DEBUG |
- int InlinedNamedLoadInstructions = 5; |
- Label check_inlined_codesize; |
- masm_->bind(&check_inlined_codesize); |
-#endif |
- |
- Register scratch = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- |
- // Check the map. The null map used below is patched by the inline cache |
- // code. Therefore we can't use a LoadRoot call. |
- __ ldr(scratch, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
- __ mov(scratch2, Operand(FACTORY->null_value())); |
- __ cmp(scratch, scratch2); |
- deferred->Branch(ne); |
- |
- if (is_contextual) { |
-#ifdef DEBUG |
- InlinedNamedLoadInstructions += 1; |
-#endif |
- // Load the (initially invalid) cell and get its value. |
- masm()->mov(receiver, Operand(FACTORY->null_value())); |
- __ ldr(receiver, |
- FieldMemOperand(receiver, JSGlobalPropertyCell::kValueOffset)); |
- |
- deferred->set_is_dont_delete(is_dont_delete); |
- |
- if (!is_dont_delete) { |
-#ifdef DEBUG |
- InlinedNamedLoadInstructions += 3; |
-#endif |
- __ cmp(receiver, Operand(FACTORY->the_hole_value())); |
- deferred->Branch(eq); |
- } else if (FLAG_debug_code) { |
-#ifdef DEBUG |
- InlinedNamedLoadInstructions += 3; |
-#endif |
- __ cmp(receiver, Operand(FACTORY->the_hole_value())); |
- __ b(&check_the_hole, eq); |
- __ bind(&cont); |
- } |
- } else { |
- // Initially use an invalid index. The index will be patched by the |
- // inline cache code. |
- __ ldr(receiver, MemOperand(receiver, 0)); |
- } |
- |
- // Make sure that the expected number of instructions are generated. |
- // If the code before is updated, the offsets in ic-arm.cc |
- // LoadIC::PatchInlinedContextualLoad and PatchInlinedLoad need |
- // to be updated. |
- ASSERT_EQ(InlinedNamedLoadInstructions, |
- masm_->InstructionsGeneratedSince(&check_inlined_codesize)); |
- } |
- |
- deferred->BindExit(); |
- // At this point the receiver register has the result, either from the |
- // deferred code or from the inlined code. |
- frame_->EmitPush(receiver); |
- } |
-} |
- |
- |
-void CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) { |
-#ifdef DEBUG |
- int expected_height = frame()->height() - (is_contextual ? 1 : 2); |
-#endif |
- |
- Result result; |
- if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { |
- frame()->CallStoreIC(name, is_contextual, strict_mode_flag()); |
- } else { |
- // Inline the in-object property case. |
- JumpTarget slow, done; |
- |
- // Get the value and receiver from the stack. |
- frame()->PopToR0(); |
- Register value = r0; |
- frame()->PopToR1(); |
- Register receiver = r1; |
- |
- DeferredReferenceSetNamedValue* deferred = |
- new DeferredReferenceSetNamedValue( |
- value, receiver, name, strict_mode_flag()); |
- |
- // Check that the receiver is a heap object. |
- __ tst(receiver, Operand(kSmiTagMask)); |
- deferred->Branch(eq); |
- |
- // The following instructions are the part of the inlined |
- // in-object property store code which can be patched. Therefore |
- // the exact number of instructions generated must be fixed, so |
- // the constant pool is blocked while generating this code. |
- { Assembler::BlockConstPoolScope block_const_pool(masm_); |
- Register scratch0 = VirtualFrame::scratch0(); |
- Register scratch1 = VirtualFrame::scratch1(); |
- |
- // Check the map. Initially use an invalid map to force a |
- // failure. The map check will be patched in the runtime system. |
- __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
- |
-#ifdef DEBUG |
- Label check_inlined_codesize; |
- masm_->bind(&check_inlined_codesize); |
-#endif |
- __ mov(scratch0, Operand(FACTORY->null_value())); |
- __ cmp(scratch0, scratch1); |
- deferred->Branch(ne); |
- |
- int offset = 0; |
- __ str(value, MemOperand(receiver, offset)); |
- |
- // Update the write barrier and record its size. We do not use |
- // the RecordWrite macro here because we want the offset |
- // addition instruction first to make it easy to patch. |
- Label record_write_start, record_write_done; |
- __ bind(&record_write_start); |
- // Add offset into the object. |
- __ add(scratch0, receiver, Operand(offset)); |
- // Test that the object is not in the new space. We cannot set |
- // region marks for new space pages. |
- __ InNewSpace(receiver, scratch1, eq, &record_write_done); |
- // Record the actual write. |
- __ RecordWriteHelper(receiver, scratch0, scratch1); |
- __ bind(&record_write_done); |
- // Clobber all input registers when running with the debug-code flag |
- // turned on to provoke errors. |
- if (FLAG_debug_code) { |
- __ mov(receiver, Operand(BitCast<int32_t>(kZapValue))); |
- __ mov(scratch0, Operand(BitCast<int32_t>(kZapValue))); |
- __ mov(scratch1, Operand(BitCast<int32_t>(kZapValue))); |
- } |
- // Check that this is the first inlined write barrier or that |
- // this inlined write barrier has the same size as all the other |
- // inlined write barriers. |
- ASSERT((Isolate::Current()->inlined_write_barrier_size() == -1) || |
- (Isolate::Current()->inlined_write_barrier_size() == |
- masm()->InstructionsGeneratedSince(&record_write_start))); |
- Isolate::Current()->set_inlined_write_barrier_size( |
- masm()->InstructionsGeneratedSince(&record_write_start)); |
- |
- // Make sure that the expected number of instructions are generated. |
- ASSERT_EQ(GetInlinedNamedStoreInstructionsAfterPatch(), |
- masm()->InstructionsGeneratedSince(&check_inlined_codesize)); |
- } |
- deferred->BindExit(); |
- } |
- ASSERT_EQ(expected_height, frame()->height()); |
-} |
- |
- |
-void CodeGenerator::EmitKeyedLoad() { |
- if (loop_nesting() == 0) { |
- Comment cmnt(masm_, "[ Load from keyed property"); |
- frame_->CallKeyedLoadIC(); |
- } else { |
- // Inline the keyed load. |
- Comment cmnt(masm_, "[ Inlined load from keyed property"); |
- |
- // Counter will be decremented in the deferred code. Placed here to avoid |
- // having it in the instruction stream below where patching will occur. |
- __ IncrementCounter(masm_->isolate()->counters()->keyed_load_inline(), |
- 1, frame_->scratch0(), frame_->scratch1()); |
- |
- // Load the key and receiver from the stack. |
- bool key_is_known_smi = frame_->KnownSmiAt(0); |
- Register key = frame_->PopToRegister(); |
- Register receiver = frame_->PopToRegister(key); |
- |
- // The deferred code expects key and receiver in registers. |
- DeferredReferenceGetKeyedValue* deferred = |
- new DeferredReferenceGetKeyedValue(key, receiver); |
- |
- // Check that the receiver is a heap object. |
- __ tst(receiver, Operand(kSmiTagMask)); |
- deferred->Branch(eq); |
- |
- // The following instructions are the part of the inlined load keyed |
- // property code which can be patched. Therefore the exact number of |
- // instructions generated need to be fixed, so the constant pool is blocked |
- // while generating this code. |
- { Assembler::BlockConstPoolScope block_const_pool(masm_); |
- Register scratch1 = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- // Check the map. The null map used below is patched by the inline cache |
- // code. |
- __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
- |
- // Check that the key is a smi. |
- if (!key_is_known_smi) { |
- __ tst(key, Operand(kSmiTagMask)); |
- deferred->Branch(ne); |
- } |
- |
-#ifdef DEBUG |
- Label check_inlined_codesize; |
- masm_->bind(&check_inlined_codesize); |
-#endif |
- __ mov(scratch2, Operand(FACTORY->null_value())); |
- __ cmp(scratch1, scratch2); |
- deferred->Branch(ne); |
- |
- // Get the elements array from the receiver. |
- __ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
- __ AssertFastElements(scratch1); |
- |
- // Check that key is within bounds. Use unsigned comparison to handle |
- // negative keys. |
- __ ldr(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset)); |
- __ cmp(scratch2, key); |
- deferred->Branch(ls); // Unsigned less equal. |
- |
- // Load and check that the result is not the hole (key is a smi). |
- __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex); |
- __ add(scratch1, |
- scratch1, |
- Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
- __ ldr(scratch1, |
- MemOperand(scratch1, key, LSL, |
- kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize))); |
- __ cmp(scratch1, scratch2); |
- deferred->Branch(eq); |
- |
- __ mov(r0, scratch1); |
- // Make sure that the expected number of instructions are generated. |
- ASSERT_EQ(GetInlinedKeyedLoadInstructionsAfterPatch(), |
- masm_->InstructionsGeneratedSince(&check_inlined_codesize)); |
- } |
- |
- deferred->BindExit(); |
- } |
-} |
- |
- |
-void CodeGenerator::EmitKeyedStore(StaticType* key_type, |
- WriteBarrierCharacter wb_info) { |
- // Generate inlined version of the keyed store if the code is in a loop |
- // and the key is likely to be a smi. |
- if (loop_nesting() > 0 && key_type->IsLikelySmi()) { |
- // Inline the keyed store. |
- Comment cmnt(masm_, "[ Inlined store to keyed property"); |
- |
- Register scratch1 = VirtualFrame::scratch0(); |
- Register scratch2 = VirtualFrame::scratch1(); |
- Register scratch3 = r3; |
- |
- // Counter will be decremented in the deferred code. Placed here to avoid |
- // having it in the instruction stream below where patching will occur. |
- __ IncrementCounter(masm_->isolate()->counters()->keyed_store_inline(), |
- 1, scratch1, scratch2); |
- |
- |
- // Load the value, key and receiver from the stack. |
- bool value_is_harmless = frame_->KnownSmiAt(0); |
- if (wb_info == NEVER_NEWSPACE) value_is_harmless = true; |
- bool key_is_smi = frame_->KnownSmiAt(1); |
- Register value = frame_->PopToRegister(); |
- Register key = frame_->PopToRegister(value); |
- VirtualFrame::SpilledScope spilled(frame_); |
- Register receiver = r2; |
- frame_->EmitPop(receiver); |
- |
-#ifdef DEBUG |
- bool we_remembered_the_write_barrier = value_is_harmless; |
-#endif |
- |
- // The deferred code expects value, key and receiver in registers. |
- DeferredReferenceSetKeyedValue* deferred = |
- new DeferredReferenceSetKeyedValue( |
- value, key, receiver, strict_mode_flag()); |
- |
- // Check that the value is a smi. As this inlined code does not set the |
- // write barrier it is only possible to store smi values. |
- if (!value_is_harmless) { |
- // If the value is not likely to be a Smi then let's test the fixed array |
- // for new space instead. See below. |
- if (wb_info == LIKELY_SMI) { |
- __ tst(value, Operand(kSmiTagMask)); |
- deferred->Branch(ne); |
-#ifdef DEBUG |
- we_remembered_the_write_barrier = true; |
-#endif |
- } |
- } |
- |
- if (!key_is_smi) { |
- // Check that the key is a smi. |
- __ tst(key, Operand(kSmiTagMask)); |
- deferred->Branch(ne); |
- } |
- |
- // Check that the receiver is a heap object. |
- __ tst(receiver, Operand(kSmiTagMask)); |
- deferred->Branch(eq); |
- |
- // Check that the receiver is a JSArray. |
- __ CompareObjectType(receiver, scratch1, scratch1, JS_ARRAY_TYPE); |
- deferred->Branch(ne); |
- |
- // Get the elements array from the receiver. |
- __ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
- if (!value_is_harmless && wb_info != LIKELY_SMI) { |
- Label ok; |
- __ and_(scratch2, |
- scratch1, |
- Operand(ExternalReference::new_space_mask(isolate()))); |
- __ cmp(scratch2, Operand(ExternalReference::new_space_start(isolate()))); |
- __ tst(value, Operand(kSmiTagMask), ne); |
- deferred->Branch(ne); |
-#ifdef DEBUG |
- we_remembered_the_write_barrier = true; |
-#endif |
- } |
- // Check that the elements array is not a dictionary. |
- __ ldr(scratch2, FieldMemOperand(scratch1, JSObject::kMapOffset)); |
- |
- // The following instructions are the part of the inlined store keyed |
- // property code which can be patched. Therefore the exact number of |
- // instructions generated need to be fixed, so the constant pool is blocked |
- // while generating this code. |
- { Assembler::BlockConstPoolScope block_const_pool(masm_); |
-#ifdef DEBUG |
- Label check_inlined_codesize; |
- masm_->bind(&check_inlined_codesize); |
-#endif |
- |
- // Read the fixed array map from the constant pool (not from the root |
- // array) so that the value can be patched. When debugging, we patch this |
- // comparison to always fail so that we will hit the IC call in the |
- // deferred code which will allow the debugger to break for fast case |
- // stores. |
- __ mov(scratch3, Operand(FACTORY->fixed_array_map())); |
- __ cmp(scratch2, scratch3); |
- deferred->Branch(ne); |
- |
- // Check that the key is within bounds. Both the key and the length of |
- // the JSArray are smis (because the fixed array check above ensures the |
- // elements are in fast case). Use unsigned comparison to handle negative |
- // keys. |
- __ ldr(scratch3, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
- __ cmp(scratch3, key); |
- deferred->Branch(ls); // Unsigned less equal. |
- |
- // Store the value. |
- __ add(scratch1, scratch1, |
- Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
- __ str(value, |
- MemOperand(scratch1, key, LSL, |
- kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize))); |
- |
- // Make sure that the expected number of instructions are generated. |
- ASSERT_EQ(kInlinedKeyedStoreInstructionsAfterPatch, |
- masm_->InstructionsGeneratedSince(&check_inlined_codesize)); |
- } |
- |
- ASSERT(we_remembered_the_write_barrier); |
- |
- deferred->BindExit(); |
- } else { |
- frame()->CallKeyedStoreIC(strict_mode_flag()); |
- } |
-} |
- |
- |
-#ifdef DEBUG |
-bool CodeGenerator::HasValidEntryRegisters() { return true; } |
-#endif |
- |
- |
-#undef __ |
-#define __ ACCESS_MASM(masm) |
- |
-Handle<String> Reference::GetName() { |
- ASSERT(type_ == NAMED); |
- Property* property = expression_->AsProperty(); |
- if (property == NULL) { |
- // Global variable reference treated as a named property reference. |
- VariableProxy* proxy = expression_->AsVariableProxy(); |
- ASSERT(proxy->AsVariable() != NULL); |
- ASSERT(proxy->AsVariable()->is_global()); |
- return proxy->name(); |
- } else { |
- Literal* raw_name = property->key()->AsLiteral(); |
- ASSERT(raw_name != NULL); |
- return Handle<String>(String::cast(*raw_name->handle())); |
- } |
-} |
- |
- |
-void Reference::DupIfPersist() { |
- if (persist_after_get_) { |
- switch (type_) { |
- case KEYED: |
- cgen_->frame()->Dup2(); |
- break; |
- case NAMED: |
- cgen_->frame()->Dup(); |
- // Fall through. |
- case UNLOADED: |
- case ILLEGAL: |
- case SLOT: |
- // Do nothing. |
- ; |
- } |
- } else { |
- set_unloaded(); |
- } |
-} |
- |
- |
-void Reference::GetValue() { |
- ASSERT(cgen_->HasValidEntryRegisters()); |
- ASSERT(!is_illegal()); |
- ASSERT(!cgen_->has_cc()); |
- MacroAssembler* masm = cgen_->masm(); |
- Property* property = expression_->AsProperty(); |
- if (property != NULL) { |
- cgen_->CodeForSourcePosition(property->position()); |
- } |
- |
- switch (type_) { |
- case SLOT: { |
- Comment cmnt(masm, "[ Load from Slot"); |
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); |
- ASSERT(slot != NULL); |
- DupIfPersist(); |
- cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); |
- break; |
- } |
- |
- case NAMED: { |
- Variable* var = expression_->AsVariableProxy()->AsVariable(); |
- bool is_global = var != NULL; |
- ASSERT(!is_global || var->is_global()); |
- Handle<String> name = GetName(); |
- DupIfPersist(); |
- cgen_->EmitNamedLoad(name, is_global); |
- break; |
- } |
- |
- case KEYED: { |
- ASSERT(property != NULL); |
- DupIfPersist(); |
- cgen_->EmitKeyedLoad(); |
- cgen_->frame()->EmitPush(r0); |
- break; |
- } |
- |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void Reference::SetValue(InitState init_state, WriteBarrierCharacter wb_info) { |
- ASSERT(!is_illegal()); |
- ASSERT(!cgen_->has_cc()); |
- MacroAssembler* masm = cgen_->masm(); |
- VirtualFrame* frame = cgen_->frame(); |
- Property* property = expression_->AsProperty(); |
- if (property != NULL) { |
- cgen_->CodeForSourcePosition(property->position()); |
- } |
- |
- switch (type_) { |
- case SLOT: { |
- Comment cmnt(masm, "[ Store to Slot"); |
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); |
- cgen_->StoreToSlot(slot, init_state); |
- set_unloaded(); |
- break; |
- } |
- |
- case NAMED: { |
- Comment cmnt(masm, "[ Store to named Property"); |
- cgen_->EmitNamedStore(GetName(), false); |
- frame->EmitPush(r0); |
- set_unloaded(); |
- break; |
- } |
- |
- case KEYED: { |
- Comment cmnt(masm, "[ Store to keyed Property"); |
- Property* property = expression_->AsProperty(); |
- ASSERT(property != NULL); |
- cgen_->CodeForSourcePosition(property->position()); |
- cgen_->EmitKeyedStore(property->key()->type(), wb_info); |
- frame->EmitPush(r0); |
- set_unloaded(); |
- break; |
- } |
- |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-const char* GenericBinaryOpStub::GetName() { |
- if (name_ != NULL) return name_; |
- const int len = 100; |
- name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(len); |
- if (name_ == NULL) return "OOM"; |
- const char* op_name = Token::Name(op_); |
- const char* overwrite_name; |
- switch (mode_) { |
- case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
- case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
- case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
- default: overwrite_name = "UnknownOverwrite"; break; |
- } |
- |
- OS::SNPrintF(Vector<char>(name_, len), |
- "GenericBinaryOpStub_%s_%s%s_%s", |
- op_name, |
- overwrite_name, |
- specialized_on_rhs_ ? "_ConstantRhs" : "", |
- BinaryOpIC::GetName(runtime_operands_type_)); |
- return name_; |
-} |
- |
-#undef __ |
- |
} } // namespace v8::internal |
#endif // V8_TARGET_ARCH_ARM |