| OLD | NEW |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. | 11 // with the distribution. |
| (...skipping 10 matching lines...) Expand all Loading... |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | 27 |
| 28 #include "v8.h" | 28 #include "v8.h" |
| 29 | 29 |
| 30 #if defined(V8_TARGET_ARCH_ARM) | 30 #if defined(V8_TARGET_ARCH_ARM) |
| 31 | 31 |
| 32 #include "bootstrapper.h" | 32 #include "codegen.h" |
| 33 #include "code-stubs.h" | |
| 34 #include "codegen-inl.h" | |
| 35 #include "compiler.h" | |
| 36 #include "debug.h" | |
| 37 #include "ic-inl.h" | |
| 38 #include "jsregexp.h" | |
| 39 #include "jump-target-inl.h" | |
| 40 #include "parser.h" | |
| 41 #include "regexp-macro-assembler.h" | |
| 42 #include "regexp-stack.h" | |
| 43 #include "register-allocator-inl.h" | |
| 44 #include "runtime.h" | |
| 45 #include "scopes.h" | |
| 46 #include "stub-cache.h" | |
| 47 #include "virtual-frame-inl.h" | |
| 48 #include "virtual-frame-arm-inl.h" | |
| 49 | 33 |
| 50 namespace v8 { | 34 namespace v8 { |
| 51 namespace internal { | 35 namespace internal { |
| 52 | 36 |
| 53 | |
| 54 #define __ ACCESS_MASM(masm_) | |
| 55 | |
| 56 // ------------------------------------------------------------------------- | |
| 57 // Platform-specific DeferredCode functions. | |
| 58 | |
| 59 void DeferredCode::SaveRegisters() { | |
| 60 // On ARM you either have a completely spilled frame or you | |
| 61 // handle it yourself, but at the moment there's no automation | |
| 62 // of registers and deferred code. | |
| 63 } | |
| 64 | |
| 65 | |
| 66 void DeferredCode::RestoreRegisters() { | |
| 67 } | |
| 68 | |
| 69 | |
| 70 // ------------------------------------------------------------------------- | 37 // ------------------------------------------------------------------------- |
| 71 // Platform-specific RuntimeCallHelper functions. | 38 // Platform-specific RuntimeCallHelper functions. |
| 72 | 39 |
| 73 void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { | |
| 74 frame_state_->frame()->AssertIsSpilled(); | |
| 75 } | |
| 76 | |
| 77 | |
| 78 void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { | |
| 79 } | |
| 80 | |
| 81 | |
| 82 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { | 40 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
| 83 masm->EnterInternalFrame(); | 41 masm->EnterInternalFrame(); |
| 84 } | 42 } |
| 85 | 43 |
| 86 | 44 |
| 87 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { | 45 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
| 88 masm->LeaveInternalFrame(); | 46 masm->LeaveInternalFrame(); |
| 89 } | 47 } |
| 90 | 48 |
| 91 | 49 |
| 92 // ------------------------------------------------------------------------- | |
| 93 // CodeGenState implementation. | |
| 94 | |
| 95 CodeGenState::CodeGenState(CodeGenerator* owner) | |
| 96 : owner_(owner), | |
| 97 previous_(owner->state()) { | |
| 98 owner->set_state(this); | |
| 99 } | |
| 100 | |
| 101 | |
| 102 ConditionCodeGenState::ConditionCodeGenState(CodeGenerator* owner, | |
| 103 JumpTarget* true_target, | |
| 104 JumpTarget* false_target) | |
| 105 : CodeGenState(owner), | |
| 106 true_target_(true_target), | |
| 107 false_target_(false_target) { | |
| 108 owner->set_state(this); | |
| 109 } | |
| 110 | |
| 111 | |
| 112 TypeInfoCodeGenState::TypeInfoCodeGenState(CodeGenerator* owner, | |
| 113 Slot* slot, | |
| 114 TypeInfo type_info) | |
| 115 : CodeGenState(owner), | |
| 116 slot_(slot) { | |
| 117 owner->set_state(this); | |
| 118 old_type_info_ = owner->set_type_info(slot, type_info); | |
| 119 } | |
| 120 | |
| 121 | |
| 122 CodeGenState::~CodeGenState() { | |
| 123 ASSERT(owner_->state() == this); | |
| 124 owner_->set_state(previous_); | |
| 125 } | |
| 126 | |
| 127 | |
| 128 TypeInfoCodeGenState::~TypeInfoCodeGenState() { | |
| 129 owner()->set_type_info(slot_, old_type_info_); | |
| 130 } | |
| 131 | |
| 132 // ------------------------------------------------------------------------- | |
| 133 // CodeGenerator implementation | |
| 134 | |
| 135 CodeGenerator::CodeGenerator(MacroAssembler* masm) | |
| 136 : deferred_(8), | |
| 137 masm_(masm), | |
| 138 info_(NULL), | |
| 139 frame_(NULL), | |
| 140 allocator_(NULL), | |
| 141 cc_reg_(al), | |
| 142 state_(NULL), | |
| 143 loop_nesting_(0), | |
| 144 type_info_(NULL), | |
| 145 function_return_(JumpTarget::BIDIRECTIONAL), | |
| 146 function_return_is_shadowed_(false) { | |
| 147 } | |
| 148 | |
| 149 | |
| 150 // Calling conventions: | |
| 151 // fp: caller's frame pointer | |
| 152 // sp: stack pointer | |
| 153 // r1: called JS function | |
| 154 // cp: callee's context | |
| 155 | |
| 156 void CodeGenerator::Generate(CompilationInfo* info) { | |
| 157 // Record the position for debugging purposes. | |
| 158 CodeForFunctionPosition(info->function()); | |
| 159 Comment cmnt(masm_, "[ function compiled by virtual frame code generator"); | |
| 160 | |
| 161 // Initialize state. | |
| 162 info_ = info; | |
| 163 | |
| 164 int slots = scope()->num_parameters() + scope()->num_stack_slots(); | |
| 165 ScopedVector<TypeInfo> type_info_array(slots); | |
| 166 for (int i = 0; i < slots; i++) { | |
| 167 type_info_array[i] = TypeInfo::Unknown(); | |
| 168 } | |
| 169 type_info_ = &type_info_array; | |
| 170 | |
| 171 ASSERT(allocator_ == NULL); | |
| 172 RegisterAllocator register_allocator(this); | |
| 173 allocator_ = ®ister_allocator; | |
| 174 ASSERT(frame_ == NULL); | |
| 175 frame_ = new VirtualFrame(); | |
| 176 cc_reg_ = al; | |
| 177 | |
| 178 // Adjust for function-level loop nesting. | |
| 179 ASSERT_EQ(0, loop_nesting_); | |
| 180 loop_nesting_ = info->is_in_loop() ? 1 : 0; | |
| 181 | |
| 182 { | |
| 183 CodeGenState state(this); | |
| 184 | |
| 185 // Entry: | |
| 186 // Stack: receiver, arguments | |
| 187 // lr: return address | |
| 188 // fp: caller's frame pointer | |
| 189 // sp: stack pointer | |
| 190 // r1: called JS function | |
| 191 // cp: callee's context | |
| 192 allocator_->Initialize(); | |
| 193 | |
| 194 #ifdef DEBUG | |
| 195 if (strlen(FLAG_stop_at) > 0 && | |
| 196 info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { | |
| 197 frame_->SpillAll(); | |
| 198 __ stop("stop-at"); | |
| 199 } | |
| 200 #endif | |
| 201 | |
| 202 frame_->Enter(); | |
| 203 // tos: code slot | |
| 204 | |
| 205 // Allocate space for locals and initialize them. This also checks | |
| 206 // for stack overflow. | |
| 207 frame_->AllocateStackSlots(); | |
| 208 | |
| 209 frame_->AssertIsSpilled(); | |
| 210 int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; | |
| 211 if (heap_slots > 0) { | |
| 212 // Allocate local context. | |
| 213 // Get outer context and create a new context based on it. | |
| 214 __ ldr(r0, frame_->Function()); | |
| 215 frame_->EmitPush(r0); | |
| 216 if (heap_slots <= FastNewContextStub::kMaximumSlots) { | |
| 217 FastNewContextStub stub(heap_slots); | |
| 218 frame_->CallStub(&stub, 1); | |
| 219 } else { | |
| 220 frame_->CallRuntime(Runtime::kNewContext, 1); | |
| 221 } | |
| 222 | |
| 223 #ifdef DEBUG | |
| 224 JumpTarget verified_true; | |
| 225 __ cmp(r0, cp); | |
| 226 verified_true.Branch(eq); | |
| 227 __ stop("NewContext: r0 is expected to be the same as cp"); | |
| 228 verified_true.Bind(); | |
| 229 #endif | |
| 230 // Update context local. | |
| 231 __ str(cp, frame_->Context()); | |
| 232 } | |
| 233 | |
| 234 // TODO(1241774): Improve this code: | |
| 235 // 1) only needed if we have a context | |
| 236 // 2) no need to recompute context ptr every single time | |
| 237 // 3) don't copy parameter operand code from SlotOperand! | |
| 238 { | |
| 239 Comment cmnt2(masm_, "[ copy context parameters into .context"); | |
| 240 // Note that iteration order is relevant here! If we have the same | |
| 241 // parameter twice (e.g., function (x, y, x)), and that parameter | |
| 242 // needs to be copied into the context, it must be the last argument | |
| 243 // passed to the parameter that needs to be copied. This is a rare | |
| 244 // case so we don't check for it, instead we rely on the copying | |
| 245 // order: such a parameter is copied repeatedly into the same | |
| 246 // context location and thus the last value is what is seen inside | |
| 247 // the function. | |
| 248 frame_->AssertIsSpilled(); | |
| 249 for (int i = 0; i < scope()->num_parameters(); i++) { | |
| 250 Variable* par = scope()->parameter(i); | |
| 251 Slot* slot = par->AsSlot(); | |
| 252 if (slot != NULL && slot->type() == Slot::CONTEXT) { | |
| 253 ASSERT(!scope()->is_global_scope()); // No params in global scope. | |
| 254 __ ldr(r1, frame_->ParameterAt(i)); | |
| 255 // Loads r2 with context; used below in RecordWrite. | |
| 256 __ str(r1, SlotOperand(slot, r2)); | |
| 257 // Load the offset into r3. | |
| 258 int slot_offset = | |
| 259 FixedArray::kHeaderSize + slot->index() * kPointerSize; | |
| 260 __ RecordWrite(r2, Operand(slot_offset), r3, r1); | |
| 261 } | |
| 262 } | |
| 263 } | |
| 264 | |
| 265 // Store the arguments object. This must happen after context | |
| 266 // initialization because the arguments object may be stored in | |
| 267 // the context. | |
| 268 if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { | |
| 269 StoreArgumentsObject(true); | |
| 270 } | |
| 271 | |
| 272 // Initialize ThisFunction reference if present. | |
| 273 if (scope()->is_function_scope() && scope()->function() != NULL) { | |
| 274 frame_->EmitPushRoot(Heap::kTheHoleValueRootIndex); | |
| 275 StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT); | |
| 276 } | |
| 277 | |
| 278 // Initialize the function return target after the locals are set | |
| 279 // up, because it needs the expected frame height from the frame. | |
| 280 function_return_.SetExpectedHeight(); | |
| 281 function_return_is_shadowed_ = false; | |
| 282 | |
| 283 // Generate code to 'execute' declarations and initialize functions | |
| 284 // (source elements). In case of an illegal redeclaration we need to | |
| 285 // handle that instead of processing the declarations. | |
| 286 if (scope()->HasIllegalRedeclaration()) { | |
| 287 Comment cmnt(masm_, "[ illegal redeclarations"); | |
| 288 scope()->VisitIllegalRedeclaration(this); | |
| 289 } else { | |
| 290 Comment cmnt(masm_, "[ declarations"); | |
| 291 ProcessDeclarations(scope()->declarations()); | |
| 292 // Bail out if a stack-overflow exception occurred when processing | |
| 293 // declarations. | |
| 294 if (HasStackOverflow()) return; | |
| 295 } | |
| 296 | |
| 297 if (FLAG_trace) { | |
| 298 frame_->CallRuntime(Runtime::kTraceEnter, 0); | |
| 299 // Ignore the return value. | |
| 300 } | |
| 301 | |
| 302 // Compile the body of the function in a vanilla state. Don't | |
| 303 // bother compiling all the code if the scope has an illegal | |
| 304 // redeclaration. | |
| 305 if (!scope()->HasIllegalRedeclaration()) { | |
| 306 Comment cmnt(masm_, "[ function body"); | |
| 307 #ifdef DEBUG | |
| 308 bool is_builtin = Isolate::Current()->bootstrapper()->IsActive(); | |
| 309 bool should_trace = | |
| 310 is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; | |
| 311 if (should_trace) { | |
| 312 frame_->CallRuntime(Runtime::kDebugTrace, 0); | |
| 313 // Ignore the return value. | |
| 314 } | |
| 315 #endif | |
| 316 VisitStatements(info->function()->body()); | |
| 317 } | |
| 318 } | |
| 319 | |
| 320 // Handle the return from the function. | |
| 321 if (has_valid_frame()) { | |
| 322 // If there is a valid frame, control flow can fall off the end of | |
| 323 // the body. In that case there is an implicit return statement. | |
| 324 ASSERT(!function_return_is_shadowed_); | |
| 325 frame_->PrepareForReturn(); | |
| 326 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); | |
| 327 if (function_return_.is_bound()) { | |
| 328 function_return_.Jump(); | |
| 329 } else { | |
| 330 function_return_.Bind(); | |
| 331 GenerateReturnSequence(); | |
| 332 } | |
| 333 } else if (function_return_.is_linked()) { | |
| 334 // If the return target has dangling jumps to it, then we have not | |
| 335 // yet generated the return sequence. This can happen when (a) | |
| 336 // control does not flow off the end of the body so we did not | |
| 337 // compile an artificial return statement just above, and (b) there | |
| 338 // are return statements in the body but (c) they are all shadowed. | |
| 339 function_return_.Bind(); | |
| 340 GenerateReturnSequence(); | |
| 341 } | |
| 342 | |
| 343 // Adjust for function-level loop nesting. | |
| 344 ASSERT(loop_nesting_ == info->is_in_loop()? 1 : 0); | |
| 345 loop_nesting_ = 0; | |
| 346 | |
| 347 // Code generation state must be reset. | |
| 348 ASSERT(!has_cc()); | |
| 349 ASSERT(state_ == NULL); | |
| 350 ASSERT(loop_nesting() == 0); | |
| 351 ASSERT(!function_return_is_shadowed_); | |
| 352 function_return_.Unuse(); | |
| 353 DeleteFrame(); | |
| 354 | |
| 355 // Process any deferred code using the register allocator. | |
| 356 if (!HasStackOverflow()) { | |
| 357 ProcessDeferred(); | |
| 358 } | |
| 359 | |
| 360 allocator_ = NULL; | |
| 361 type_info_ = NULL; | |
| 362 } | |
| 363 | |
| 364 | |
| 365 int CodeGenerator::NumberOfSlot(Slot* slot) { | |
| 366 if (slot == NULL) return kInvalidSlotNumber; | |
| 367 switch (slot->type()) { | |
| 368 case Slot::PARAMETER: | |
| 369 return slot->index(); | |
| 370 case Slot::LOCAL: | |
| 371 return slot->index() + scope()->num_parameters(); | |
| 372 default: | |
| 373 break; | |
| 374 } | |
| 375 return kInvalidSlotNumber; | |
| 376 } | |
| 377 | |
| 378 | |
| 379 MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { | |
| 380 // Currently, this assertion will fail if we try to assign to | |
| 381 // a constant variable that is constant because it is read-only | |
| 382 // (such as the variable referring to a named function expression). | |
| 383 // We need to implement assignments to read-only variables. | |
| 384 // Ideally, we should do this during AST generation (by converting | |
| 385 // such assignments into expression statements); however, in general | |
| 386 // we may not be able to make the decision until past AST generation, | |
| 387 // that is when the entire program is known. | |
| 388 ASSERT(slot != NULL); | |
| 389 int index = slot->index(); | |
| 390 switch (slot->type()) { | |
| 391 case Slot::PARAMETER: | |
| 392 return frame_->ParameterAt(index); | |
| 393 | |
| 394 case Slot::LOCAL: | |
| 395 return frame_->LocalAt(index); | |
| 396 | |
| 397 case Slot::CONTEXT: { | |
| 398 // Follow the context chain if necessary. | |
| 399 ASSERT(!tmp.is(cp)); // do not overwrite context register | |
| 400 Register context = cp; | |
| 401 int chain_length = scope()->ContextChainLength(slot->var()->scope()); | |
| 402 for (int i = 0; i < chain_length; i++) { | |
| 403 // Load the closure. | |
| 404 // (All contexts, even 'with' contexts, have a closure, | |
| 405 // and it is the same for all contexts inside a function. | |
| 406 // There is no need to go to the function context first.) | |
| 407 __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); | |
| 408 // Load the function context (which is the incoming, outer context). | |
| 409 __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); | |
| 410 context = tmp; | |
| 411 } | |
| 412 // We may have a 'with' context now. Get the function context. | |
| 413 // (In fact this mov may never be the needed, since the scope analysis | |
| 414 // may not permit a direct context access in this case and thus we are | |
| 415 // always at a function context. However it is safe to dereference be- | |
| 416 // cause the function context of a function context is itself. Before | |
| 417 // deleting this mov we should try to create a counter-example first, | |
| 418 // though...) | |
| 419 __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); | |
| 420 return ContextOperand(tmp, index); | |
| 421 } | |
| 422 | |
| 423 default: | |
| 424 UNREACHABLE(); | |
| 425 return MemOperand(r0, 0); | |
| 426 } | |
| 427 } | |
| 428 | |
| 429 | |
| 430 MemOperand CodeGenerator::ContextSlotOperandCheckExtensions( | |
| 431 Slot* slot, | |
| 432 Register tmp, | |
| 433 Register tmp2, | |
| 434 JumpTarget* slow) { | |
| 435 ASSERT(slot->type() == Slot::CONTEXT); | |
| 436 Register context = cp; | |
| 437 | |
| 438 for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { | |
| 439 if (s->num_heap_slots() > 0) { | |
| 440 if (s->calls_eval()) { | |
| 441 // Check that extension is NULL. | |
| 442 __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); | |
| 443 __ tst(tmp2, tmp2); | |
| 444 slow->Branch(ne); | |
| 445 } | |
| 446 __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); | |
| 447 __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); | |
| 448 context = tmp; | |
| 449 } | |
| 450 } | |
| 451 // Check that last extension is NULL. | |
| 452 __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); | |
| 453 __ tst(tmp2, tmp2); | |
| 454 slow->Branch(ne); | |
| 455 __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); | |
| 456 return ContextOperand(tmp, slot->index()); | |
| 457 } | |
| 458 | |
| 459 | |
| 460 // Loads a value on TOS. If it is a boolean value, the result may have been | |
| 461 // (partially) translated into branches, or it may have set the condition | |
| 462 // code register. If force_cc is set, the value is forced to set the | |
| 463 // condition code register and no value is pushed. If the condition code | |
| 464 // register was set, has_cc() is true and cc_reg_ contains the condition to | |
| 465 // test for 'true'. | |
| 466 void CodeGenerator::LoadCondition(Expression* x, | |
| 467 JumpTarget* true_target, | |
| 468 JumpTarget* false_target, | |
| 469 bool force_cc) { | |
| 470 ASSERT(!has_cc()); | |
| 471 int original_height = frame_->height(); | |
| 472 | |
| 473 { ConditionCodeGenState new_state(this, true_target, false_target); | |
| 474 Visit(x); | |
| 475 | |
| 476 // If we hit a stack overflow, we may not have actually visited | |
| 477 // the expression. In that case, we ensure that we have a | |
| 478 // valid-looking frame state because we will continue to generate | |
| 479 // code as we unwind the C++ stack. | |
| 480 // | |
| 481 // It's possible to have both a stack overflow and a valid frame | |
| 482 // state (eg, a subexpression overflowed, visiting it returned | |
| 483 // with a dummied frame state, and visiting this expression | |
| 484 // returned with a normal-looking state). | |
| 485 if (HasStackOverflow() && | |
| 486 has_valid_frame() && | |
| 487 !has_cc() && | |
| 488 frame_->height() == original_height) { | |
| 489 true_target->Jump(); | |
| 490 } | |
| 491 } | |
| 492 if (force_cc && frame_ != NULL && !has_cc()) { | |
| 493 // Convert the TOS value to a boolean in the condition code register. | |
| 494 ToBoolean(true_target, false_target); | |
| 495 } | |
| 496 ASSERT(!force_cc || !has_valid_frame() || has_cc()); | |
| 497 ASSERT(!has_valid_frame() || | |
| 498 (has_cc() && frame_->height() == original_height) || | |
| 499 (!has_cc() && frame_->height() == original_height + 1)); | |
| 500 } | |
| 501 | |
| 502 | |
| 503 void CodeGenerator::Load(Expression* expr) { | |
| 504 // We generally assume that we are not in a spilled scope for most | |
| 505 // of the code generator. A failure to ensure this caused issue 815 | |
| 506 // and this assert is designed to catch similar issues. | |
| 507 frame_->AssertIsNotSpilled(); | |
| 508 #ifdef DEBUG | |
| 509 int original_height = frame_->height(); | |
| 510 #endif | |
| 511 JumpTarget true_target; | |
| 512 JumpTarget false_target; | |
| 513 LoadCondition(expr, &true_target, &false_target, false); | |
| 514 | |
| 515 if (has_cc()) { | |
| 516 // Convert cc_reg_ into a boolean value. | |
| 517 JumpTarget loaded; | |
| 518 JumpTarget materialize_true; | |
| 519 materialize_true.Branch(cc_reg_); | |
| 520 frame_->EmitPushRoot(Heap::kFalseValueRootIndex); | |
| 521 loaded.Jump(); | |
| 522 materialize_true.Bind(); | |
| 523 frame_->EmitPushRoot(Heap::kTrueValueRootIndex); | |
| 524 loaded.Bind(); | |
| 525 cc_reg_ = al; | |
| 526 } | |
| 527 | |
| 528 if (true_target.is_linked() || false_target.is_linked()) { | |
| 529 // We have at least one condition value that has been "translated" | |
| 530 // into a branch, thus it needs to be loaded explicitly. | |
| 531 JumpTarget loaded; | |
| 532 if (frame_ != NULL) { | |
| 533 loaded.Jump(); // Don't lose the current TOS. | |
| 534 } | |
| 535 bool both = true_target.is_linked() && false_target.is_linked(); | |
| 536 // Load "true" if necessary. | |
| 537 if (true_target.is_linked()) { | |
| 538 true_target.Bind(); | |
| 539 frame_->EmitPushRoot(Heap::kTrueValueRootIndex); | |
| 540 } | |
| 541 // If both "true" and "false" need to be loaded jump across the code for | |
| 542 // "false". | |
| 543 if (both) { | |
| 544 loaded.Jump(); | |
| 545 } | |
| 546 // Load "false" if necessary. | |
| 547 if (false_target.is_linked()) { | |
| 548 false_target.Bind(); | |
| 549 frame_->EmitPushRoot(Heap::kFalseValueRootIndex); | |
| 550 } | |
| 551 // A value is loaded on all paths reaching this point. | |
| 552 loaded.Bind(); | |
| 553 } | |
| 554 ASSERT(has_valid_frame()); | |
| 555 ASSERT(!has_cc()); | |
| 556 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 557 } | |
| 558 | |
| 559 | |
| 560 void CodeGenerator::LoadGlobal() { | |
| 561 Register reg = frame_->GetTOSRegister(); | |
| 562 __ ldr(reg, GlobalObjectOperand()); | |
| 563 frame_->EmitPush(reg); | |
| 564 } | |
| 565 | |
| 566 | |
| 567 void CodeGenerator::LoadGlobalReceiver(Register scratch) { | |
| 568 Register reg = frame_->GetTOSRegister(); | |
| 569 __ ldr(reg, ContextOperand(cp, Context::GLOBAL_INDEX)); | |
| 570 __ ldr(reg, | |
| 571 FieldMemOperand(reg, GlobalObject::kGlobalReceiverOffset)); | |
| 572 frame_->EmitPush(reg); | |
| 573 } | |
| 574 | |
| 575 | |
| 576 ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { | |
| 577 if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; | |
| 578 | |
| 579 // In strict mode there is no need for shadow arguments. | |
| 580 ASSERT(scope()->arguments_shadow() != NULL || scope()->is_strict_mode()); | |
| 581 // We don't want to do lazy arguments allocation for functions that | |
| 582 // have heap-allocated contexts, because it interfers with the | |
| 583 // uninitialized const tracking in the context objects. | |
| 584 return (scope()->num_heap_slots() > 0 || scope()->is_strict_mode()) | |
| 585 ? EAGER_ARGUMENTS_ALLOCATION | |
| 586 : LAZY_ARGUMENTS_ALLOCATION; | |
| 587 } | |
| 588 | |
| 589 | |
| 590 void CodeGenerator::StoreArgumentsObject(bool initial) { | |
| 591 ArgumentsAllocationMode mode = ArgumentsMode(); | |
| 592 ASSERT(mode != NO_ARGUMENTS_ALLOCATION); | |
| 593 | |
| 594 Comment cmnt(masm_, "[ store arguments object"); | |
| 595 if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { | |
| 596 // When using lazy arguments allocation, we store the hole value | |
| 597 // as a sentinel indicating that the arguments object hasn't been | |
| 598 // allocated yet. | |
| 599 frame_->EmitPushRoot(Heap::kArgumentsMarkerRootIndex); | |
| 600 } else { | |
| 601 frame_->SpillAll(); | |
| 602 ArgumentsAccessStub stub(is_strict_mode() | |
| 603 ? ArgumentsAccessStub::NEW_STRICT | |
| 604 : ArgumentsAccessStub::NEW_NON_STRICT); | |
| 605 __ ldr(r2, frame_->Function()); | |
| 606 // The receiver is below the arguments, the return address, and the | |
| 607 // frame pointer on the stack. | |
| 608 const int kReceiverDisplacement = 2 + scope()->num_parameters(); | |
| 609 __ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize)); | |
| 610 __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); | |
| 611 frame_->Adjust(3); | |
| 612 __ Push(r2, r1, r0); | |
| 613 frame_->CallStub(&stub, 3); | |
| 614 frame_->EmitPush(r0); | |
| 615 } | |
| 616 | |
| 617 Variable* arguments = scope()->arguments(); | |
| 618 Variable* shadow = scope()->arguments_shadow(); | |
| 619 ASSERT(arguments != NULL && arguments->AsSlot() != NULL); | |
| 620 ASSERT((shadow != NULL && shadow->AsSlot() != NULL) || | |
| 621 scope()->is_strict_mode()); | |
| 622 | |
| 623 JumpTarget done; | |
| 624 if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { | |
| 625 // We have to skip storing into the arguments slot if it has | |
| 626 // already been written to. This can happen if the a function | |
| 627 // has a local variable named 'arguments'. | |
| 628 LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); | |
| 629 Register arguments = frame_->PopToRegister(); | |
| 630 __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); | |
| 631 __ cmp(arguments, ip); | |
| 632 done.Branch(ne); | |
| 633 } | |
| 634 StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT); | |
| 635 if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); | |
| 636 if (shadow != NULL) { | |
| 637 StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT); | |
| 638 } | |
| 639 } | |
| 640 | |
| 641 | |
| 642 void CodeGenerator::LoadTypeofExpression(Expression* expr) { | |
| 643 // Special handling of identifiers as subexpressions of typeof. | |
| 644 Variable* variable = expr->AsVariableProxy()->AsVariable(); | |
| 645 if (variable != NULL && !variable->is_this() && variable->is_global()) { | |
| 646 // For a global variable we build the property reference | |
| 647 // <global>.<variable> and perform a (regular non-contextual) property | |
| 648 // load to make sure we do not get reference errors. | |
| 649 Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); | |
| 650 Literal key(variable->name()); | |
| 651 Property property(&global, &key, RelocInfo::kNoPosition); | |
| 652 Reference ref(this, &property); | |
| 653 ref.GetValue(); | |
| 654 } else if (variable != NULL && variable->AsSlot() != NULL) { | |
| 655 // For a variable that rewrites to a slot, we signal it is the immediate | |
| 656 // subexpression of a typeof. | |
| 657 LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF); | |
| 658 } else { | |
| 659 // Anything else can be handled normally. | |
| 660 Load(expr); | |
| 661 } | |
| 662 } | |
| 663 | |
| 664 | |
| 665 Reference::Reference(CodeGenerator* cgen, | |
| 666 Expression* expression, | |
| 667 bool persist_after_get) | |
| 668 : cgen_(cgen), | |
| 669 expression_(expression), | |
| 670 type_(ILLEGAL), | |
| 671 persist_after_get_(persist_after_get) { | |
| 672 // We generally assume that we are not in a spilled scope for most | |
| 673 // of the code generator. A failure to ensure this caused issue 815 | |
| 674 // and this assert is designed to catch similar issues. | |
| 675 cgen->frame()->AssertIsNotSpilled(); | |
| 676 cgen->LoadReference(this); | |
| 677 } | |
| 678 | |
| 679 | |
| 680 Reference::~Reference() { | |
| 681 ASSERT(is_unloaded() || is_illegal()); | |
| 682 } | |
| 683 | |
| 684 | |
| 685 void CodeGenerator::LoadReference(Reference* ref) { | |
| 686 Comment cmnt(masm_, "[ LoadReference"); | |
| 687 Expression* e = ref->expression(); | |
| 688 Property* property = e->AsProperty(); | |
| 689 Variable* var = e->AsVariableProxy()->AsVariable(); | |
| 690 | |
| 691 if (property != NULL) { | |
| 692 // The expression is either a property or a variable proxy that rewrites | |
| 693 // to a property. | |
| 694 Load(property->obj()); | |
| 695 if (property->key()->IsPropertyName()) { | |
| 696 ref->set_type(Reference::NAMED); | |
| 697 } else { | |
| 698 Load(property->key()); | |
| 699 ref->set_type(Reference::KEYED); | |
| 700 } | |
| 701 } else if (var != NULL) { | |
| 702 // The expression is a variable proxy that does not rewrite to a | |
| 703 // property. Global variables are treated as named property references. | |
| 704 if (var->is_global()) { | |
| 705 LoadGlobal(); | |
| 706 ref->set_type(Reference::NAMED); | |
| 707 } else { | |
| 708 ASSERT(var->AsSlot() != NULL); | |
| 709 ref->set_type(Reference::SLOT); | |
| 710 } | |
| 711 } else { | |
| 712 // Anything else is a runtime error. | |
| 713 Load(e); | |
| 714 frame_->CallRuntime(Runtime::kThrowReferenceError, 1); | |
| 715 } | |
| 716 } | |
| 717 | |
| 718 | |
| 719 void CodeGenerator::UnloadReference(Reference* ref) { | |
| 720 int size = ref->size(); | |
| 721 ref->set_unloaded(); | |
| 722 if (size == 0) return; | |
| 723 | |
| 724 // Pop a reference from the stack while preserving TOS. | |
| 725 VirtualFrame::RegisterAllocationScope scope(this); | |
| 726 Comment cmnt(masm_, "[ UnloadReference"); | |
| 727 if (size > 0) { | |
| 728 Register tos = frame_->PopToRegister(); | |
| 729 frame_->Drop(size); | |
| 730 frame_->EmitPush(tos); | |
| 731 } | |
| 732 } | |
| 733 | |
| 734 | |
| 735 // ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given | |
| 736 // register to a boolean in the condition code register. The code | |
| 737 // may jump to 'false_target' in case the register converts to 'false'. | |
| 738 void CodeGenerator::ToBoolean(JumpTarget* true_target, | |
| 739 JumpTarget* false_target) { | |
| 740 // Note: The generated code snippet does not change stack variables. | |
| 741 // Only the condition code should be set. | |
| 742 bool known_smi = frame_->KnownSmiAt(0); | |
| 743 Register tos = frame_->PopToRegister(); | |
| 744 | |
| 745 // Fast case checks | |
| 746 | |
| 747 // Check if the value is 'false'. | |
| 748 if (!known_smi) { | |
| 749 __ LoadRoot(ip, Heap::kFalseValueRootIndex); | |
| 750 __ cmp(tos, ip); | |
| 751 false_target->Branch(eq); | |
| 752 | |
| 753 // Check if the value is 'true'. | |
| 754 __ LoadRoot(ip, Heap::kTrueValueRootIndex); | |
| 755 __ cmp(tos, ip); | |
| 756 true_target->Branch(eq); | |
| 757 | |
| 758 // Check if the value is 'undefined'. | |
| 759 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | |
| 760 __ cmp(tos, ip); | |
| 761 false_target->Branch(eq); | |
| 762 } | |
| 763 | |
| 764 // Check if the value is a smi. | |
| 765 __ cmp(tos, Operand(Smi::FromInt(0))); | |
| 766 | |
| 767 if (!known_smi) { | |
| 768 false_target->Branch(eq); | |
| 769 __ tst(tos, Operand(kSmiTagMask)); | |
| 770 true_target->Branch(eq); | |
| 771 | |
| 772 // Slow case. | |
| 773 if (CpuFeatures::IsSupported(VFP3)) { | |
| 774 CpuFeatures::Scope scope(VFP3); | |
| 775 // Implements the slow case by using ToBooleanStub. | |
| 776 // The ToBooleanStub takes a single argument, and | |
| 777 // returns a non-zero value for true, or zero for false. | |
| 778 // Both the argument value and the return value use the | |
| 779 // register assigned to tos_ | |
| 780 ToBooleanStub stub(tos); | |
| 781 frame_->CallStub(&stub, 0); | |
| 782 // Convert the result in "tos" to a condition code. | |
| 783 __ cmp(tos, Operand(0, RelocInfo::NONE)); | |
| 784 } else { | |
| 785 // Implements slow case by calling the runtime. | |
| 786 frame_->EmitPush(tos); | |
| 787 frame_->CallRuntime(Runtime::kToBool, 1); | |
| 788 // Convert the result (r0) to a condition code. | |
| 789 __ LoadRoot(ip, Heap::kFalseValueRootIndex); | |
| 790 __ cmp(r0, ip); | |
| 791 } | |
| 792 } | |
| 793 | |
| 794 cc_reg_ = ne; | |
| 795 } | |
| 796 | |
| 797 | |
| 798 void CodeGenerator::GenericBinaryOperation(Token::Value op, | |
| 799 OverwriteMode overwrite_mode, | |
| 800 GenerateInlineSmi inline_smi, | |
| 801 int constant_rhs) { | |
| 802 // top of virtual frame: y | |
| 803 // 2nd elt. on virtual frame : x | |
| 804 // result : top of virtual frame | |
| 805 | |
| 806 // Stub is entered with a call: 'return address' is in lr. | |
| 807 switch (op) { | |
| 808 case Token::ADD: | |
| 809 case Token::SUB: | |
| 810 if (inline_smi) { | |
| 811 JumpTarget done; | |
| 812 Register rhs = frame_->PopToRegister(); | |
| 813 Register lhs = frame_->PopToRegister(rhs); | |
| 814 Register scratch = VirtualFrame::scratch0(); | |
| 815 __ orr(scratch, rhs, Operand(lhs)); | |
| 816 // Check they are both small and positive. | |
| 817 __ tst(scratch, Operand(kSmiTagMask | 0xc0000000)); | |
| 818 ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now. | |
| 819 STATIC_ASSERT(kSmiTag == 0); | |
| 820 if (op == Token::ADD) { | |
| 821 __ add(r0, lhs, Operand(rhs), LeaveCC, eq); | |
| 822 } else { | |
| 823 __ sub(r0, lhs, Operand(rhs), LeaveCC, eq); | |
| 824 } | |
| 825 done.Branch(eq); | |
| 826 GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); | |
| 827 frame_->SpillAll(); | |
| 828 frame_->CallStub(&stub, 0); | |
| 829 done.Bind(); | |
| 830 frame_->EmitPush(r0); | |
| 831 break; | |
| 832 } else { | |
| 833 // Fall through! | |
| 834 } | |
| 835 case Token::BIT_OR: | |
| 836 case Token::BIT_AND: | |
| 837 case Token::BIT_XOR: | |
| 838 if (inline_smi) { | |
| 839 bool rhs_is_smi = frame_->KnownSmiAt(0); | |
| 840 bool lhs_is_smi = frame_->KnownSmiAt(1); | |
| 841 Register rhs = frame_->PopToRegister(); | |
| 842 Register lhs = frame_->PopToRegister(rhs); | |
| 843 Register smi_test_reg; | |
| 844 Condition cond; | |
| 845 if (!rhs_is_smi || !lhs_is_smi) { | |
| 846 if (rhs_is_smi) { | |
| 847 smi_test_reg = lhs; | |
| 848 } else if (lhs_is_smi) { | |
| 849 smi_test_reg = rhs; | |
| 850 } else { | |
| 851 smi_test_reg = VirtualFrame::scratch0(); | |
| 852 __ orr(smi_test_reg, rhs, Operand(lhs)); | |
| 853 } | |
| 854 // Check they are both Smis. | |
| 855 __ tst(smi_test_reg, Operand(kSmiTagMask)); | |
| 856 cond = eq; | |
| 857 } else { | |
| 858 cond = al; | |
| 859 } | |
| 860 ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now. | |
| 861 if (op == Token::BIT_OR) { | |
| 862 __ orr(r0, lhs, Operand(rhs), LeaveCC, cond); | |
| 863 } else if (op == Token::BIT_AND) { | |
| 864 __ and_(r0, lhs, Operand(rhs), LeaveCC, cond); | |
| 865 } else { | |
| 866 ASSERT(op == Token::BIT_XOR); | |
| 867 STATIC_ASSERT(kSmiTag == 0); | |
| 868 __ eor(r0, lhs, Operand(rhs), LeaveCC, cond); | |
| 869 } | |
| 870 if (cond != al) { | |
| 871 JumpTarget done; | |
| 872 done.Branch(cond); | |
| 873 GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); | |
| 874 frame_->SpillAll(); | |
| 875 frame_->CallStub(&stub, 0); | |
| 876 done.Bind(); | |
| 877 } | |
| 878 frame_->EmitPush(r0); | |
| 879 break; | |
| 880 } else { | |
| 881 // Fall through! | |
| 882 } | |
| 883 case Token::MUL: | |
| 884 case Token::DIV: | |
| 885 case Token::MOD: | |
| 886 case Token::SHL: | |
| 887 case Token::SHR: | |
| 888 case Token::SAR: { | |
| 889 Register rhs = frame_->PopToRegister(); | |
| 890 Register lhs = frame_->PopToRegister(rhs); // Don't pop to rhs register. | |
| 891 GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); | |
| 892 frame_->SpillAll(); | |
| 893 frame_->CallStub(&stub, 0); | |
| 894 frame_->EmitPush(r0); | |
| 895 break; | |
| 896 } | |
| 897 | |
| 898 case Token::COMMA: { | |
| 899 Register scratch = frame_->PopToRegister(); | |
| 900 // Simply discard left value. | |
| 901 frame_->Drop(); | |
| 902 frame_->EmitPush(scratch); | |
| 903 break; | |
| 904 } | |
| 905 | |
| 906 default: | |
| 907 // Other cases should have been handled before this point. | |
| 908 UNREACHABLE(); | |
| 909 break; | |
| 910 } | |
| 911 } | |
| 912 | |
| 913 | |
| 914 class DeferredInlineSmiOperation: public DeferredCode { | |
| 915 public: | |
| 916 DeferredInlineSmiOperation(Token::Value op, | |
| 917 int value, | |
| 918 bool reversed, | |
| 919 OverwriteMode overwrite_mode, | |
| 920 Register tos) | |
| 921 : op_(op), | |
| 922 value_(value), | |
| 923 reversed_(reversed), | |
| 924 overwrite_mode_(overwrite_mode), | |
| 925 tos_register_(tos) { | |
| 926 set_comment("[ DeferredInlinedSmiOperation"); | |
| 927 } | |
| 928 | |
| 929 virtual void Generate(); | |
| 930 // This stub makes explicit calls to SaveRegisters(), RestoreRegisters() and | |
| 931 // Exit(). Currently on ARM SaveRegisters() and RestoreRegisters() are empty | |
| 932 // methods, it is the responsibility of the deferred code to save and restore | |
| 933 // registers. | |
| 934 virtual bool AutoSaveAndRestore() { return false; } | |
| 935 | |
| 936 void JumpToNonSmiInput(Condition cond); | |
| 937 void JumpToAnswerOutOfRange(Condition cond); | |
| 938 | |
| 939 private: | |
| 940 void GenerateNonSmiInput(); | |
| 941 void GenerateAnswerOutOfRange(); | |
| 942 void WriteNonSmiAnswer(Register answer, | |
| 943 Register heap_number, | |
| 944 Register scratch); | |
| 945 | |
| 946 Token::Value op_; | |
| 947 int value_; | |
| 948 bool reversed_; | |
| 949 OverwriteMode overwrite_mode_; | |
| 950 Register tos_register_; | |
| 951 Label non_smi_input_; | |
| 952 Label answer_out_of_range_; | |
| 953 }; | |
| 954 | |
| 955 | |
| 956 // For bit operations we try harder and handle the case where the input is not | |
| 957 // a Smi but a 32bits integer without calling the generic stub. | |
| 958 void DeferredInlineSmiOperation::JumpToNonSmiInput(Condition cond) { | |
| 959 ASSERT(Token::IsBitOp(op_)); | |
| 960 | |
| 961 __ b(cond, &non_smi_input_); | |
| 962 } | |
| 963 | |
| 964 | |
| 965 // For bit operations the result is always 32bits so we handle the case where | |
| 966 // the result does not fit in a Smi without calling the generic stub. | |
| 967 void DeferredInlineSmiOperation::JumpToAnswerOutOfRange(Condition cond) { | |
| 968 ASSERT(Token::IsBitOp(op_)); | |
| 969 | |
| 970 if ((op_ == Token::SHR) && !CpuFeatures::IsSupported(VFP3)) { | |
| 971 // >>> requires an unsigned to double conversion and the non VFP code | |
| 972 // does not support this conversion. | |
| 973 __ b(cond, entry_label()); | |
| 974 } else { | |
| 975 __ b(cond, &answer_out_of_range_); | |
| 976 } | |
| 977 } | |
| 978 | |
| 979 | |
| 980 // On entry the non-constant side of the binary operation is in tos_register_ | |
| 981 // and the constant smi side is nowhere. The tos_register_ is not used by the | |
| 982 // virtual frame. On exit the answer is in the tos_register_ and the virtual | |
| 983 // frame is unchanged. | |
| 984 void DeferredInlineSmiOperation::Generate() { | |
| 985 VirtualFrame copied_frame(*frame_state()->frame()); | |
| 986 copied_frame.SpillAll(); | |
| 987 | |
| 988 Register lhs = r1; | |
| 989 Register rhs = r0; | |
| 990 switch (op_) { | |
| 991 case Token::ADD: { | |
| 992 // Revert optimistic add. | |
| 993 if (reversed_) { | |
| 994 __ sub(r0, tos_register_, Operand(Smi::FromInt(value_))); | |
| 995 __ mov(r1, Operand(Smi::FromInt(value_))); | |
| 996 } else { | |
| 997 __ sub(r1, tos_register_, Operand(Smi::FromInt(value_))); | |
| 998 __ mov(r0, Operand(Smi::FromInt(value_))); | |
| 999 } | |
| 1000 break; | |
| 1001 } | |
| 1002 | |
| 1003 case Token::SUB: { | |
| 1004 // Revert optimistic sub. | |
| 1005 if (reversed_) { | |
| 1006 __ rsb(r0, tos_register_, Operand(Smi::FromInt(value_))); | |
| 1007 __ mov(r1, Operand(Smi::FromInt(value_))); | |
| 1008 } else { | |
| 1009 __ add(r1, tos_register_, Operand(Smi::FromInt(value_))); | |
| 1010 __ mov(r0, Operand(Smi::FromInt(value_))); | |
| 1011 } | |
| 1012 break; | |
| 1013 } | |
| 1014 | |
| 1015 // For these operations there is no optimistic operation that needs to be | |
| 1016 // reverted. | |
| 1017 case Token::MUL: | |
| 1018 case Token::MOD: | |
| 1019 case Token::BIT_OR: | |
| 1020 case Token::BIT_XOR: | |
| 1021 case Token::BIT_AND: | |
| 1022 case Token::SHL: | |
| 1023 case Token::SHR: | |
| 1024 case Token::SAR: { | |
| 1025 if (tos_register_.is(r1)) { | |
| 1026 __ mov(r0, Operand(Smi::FromInt(value_))); | |
| 1027 } else { | |
| 1028 ASSERT(tos_register_.is(r0)); | |
| 1029 __ mov(r1, Operand(Smi::FromInt(value_))); | |
| 1030 } | |
| 1031 if (reversed_ == tos_register_.is(r1)) { | |
| 1032 lhs = r0; | |
| 1033 rhs = r1; | |
| 1034 } | |
| 1035 break; | |
| 1036 } | |
| 1037 | |
| 1038 default: | |
| 1039 // Other cases should have been handled before this point. | |
| 1040 UNREACHABLE(); | |
| 1041 break; | |
| 1042 } | |
| 1043 | |
| 1044 GenericBinaryOpStub stub(op_, overwrite_mode_, lhs, rhs, value_); | |
| 1045 __ CallStub(&stub); | |
| 1046 | |
| 1047 // The generic stub returns its value in r0, but that's not | |
| 1048 // necessarily what we want. We want whatever the inlined code | |
| 1049 // expected, which is that the answer is in the same register as | |
| 1050 // the operand was. | |
| 1051 __ Move(tos_register_, r0); | |
| 1052 | |
| 1053 // The tos register was not in use for the virtual frame that we | |
| 1054 // came into this function with, so we can merge back to that frame | |
| 1055 // without trashing it. | |
| 1056 copied_frame.MergeTo(frame_state()->frame()); | |
| 1057 | |
| 1058 Exit(); | |
| 1059 | |
| 1060 if (non_smi_input_.is_linked()) { | |
| 1061 GenerateNonSmiInput(); | |
| 1062 } | |
| 1063 | |
| 1064 if (answer_out_of_range_.is_linked()) { | |
| 1065 GenerateAnswerOutOfRange(); | |
| 1066 } | |
| 1067 } | |
| 1068 | |
| 1069 | |
| 1070 // Convert and write the integer answer into heap_number. | |
| 1071 void DeferredInlineSmiOperation::WriteNonSmiAnswer(Register answer, | |
| 1072 Register heap_number, | |
| 1073 Register scratch) { | |
| 1074 if (CpuFeatures::IsSupported(VFP3)) { | |
| 1075 CpuFeatures::Scope scope(VFP3); | |
| 1076 __ vmov(s0, answer); | |
| 1077 if (op_ == Token::SHR) { | |
| 1078 __ vcvt_f64_u32(d0, s0); | |
| 1079 } else { | |
| 1080 __ vcvt_f64_s32(d0, s0); | |
| 1081 } | |
| 1082 __ sub(scratch, heap_number, Operand(kHeapObjectTag)); | |
| 1083 __ vstr(d0, scratch, HeapNumber::kValueOffset); | |
| 1084 } else { | |
| 1085 WriteInt32ToHeapNumberStub stub(answer, heap_number, scratch); | |
| 1086 __ CallStub(&stub); | |
| 1087 } | |
| 1088 } | |
| 1089 | |
| 1090 | |
| 1091 void DeferredInlineSmiOperation::GenerateNonSmiInput() { | |
| 1092 // We know the left hand side is not a Smi and the right hand side is an | |
| 1093 // immediate value (value_) which can be represented as a Smi. We only | |
| 1094 // handle bit operations. | |
| 1095 ASSERT(Token::IsBitOp(op_)); | |
| 1096 | |
| 1097 if (FLAG_debug_code) { | |
| 1098 __ Abort("Should not fall through!"); | |
| 1099 } | |
| 1100 | |
| 1101 __ bind(&non_smi_input_); | |
| 1102 if (FLAG_debug_code) { | |
| 1103 __ AbortIfSmi(tos_register_); | |
| 1104 } | |
| 1105 | |
| 1106 // This routine uses the registers from r2 to r6. At the moment they are | |
| 1107 // not used by the register allocator, but when they are it should use | |
| 1108 // SpillAll and MergeTo like DeferredInlineSmiOperation::Generate() above. | |
| 1109 | |
| 1110 Register heap_number_map = r7; | |
| 1111 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); | |
| 1112 __ ldr(r3, FieldMemOperand(tos_register_, HeapNumber::kMapOffset)); | |
| 1113 __ cmp(r3, heap_number_map); | |
| 1114 // Not a number, fall back to the GenericBinaryOpStub. | |
| 1115 __ b(ne, entry_label()); | |
| 1116 | |
| 1117 Register int32 = r2; | |
| 1118 // Not a 32bits signed int, fall back to the GenericBinaryOpStub. | |
| 1119 __ ConvertToInt32(tos_register_, int32, r4, r5, d0, entry_label()); | |
| 1120 | |
| 1121 // tos_register_ (r0 or r1): Original heap number. | |
| 1122 // int32: signed 32bits int. | |
| 1123 | |
| 1124 Label result_not_a_smi; | |
| 1125 int shift_value = value_ & 0x1f; | |
| 1126 switch (op_) { | |
| 1127 case Token::BIT_OR: __ orr(int32, int32, Operand(value_)); break; | |
| 1128 case Token::BIT_XOR: __ eor(int32, int32, Operand(value_)); break; | |
| 1129 case Token::BIT_AND: __ and_(int32, int32, Operand(value_)); break; | |
| 1130 case Token::SAR: | |
| 1131 ASSERT(!reversed_); | |
| 1132 if (shift_value != 0) { | |
| 1133 __ mov(int32, Operand(int32, ASR, shift_value)); | |
| 1134 } | |
| 1135 break; | |
| 1136 case Token::SHR: | |
| 1137 ASSERT(!reversed_); | |
| 1138 if (shift_value != 0) { | |
| 1139 __ mov(int32, Operand(int32, LSR, shift_value), SetCC); | |
| 1140 } else { | |
| 1141 // SHR is special because it is required to produce a positive answer. | |
| 1142 __ cmp(int32, Operand(0, RelocInfo::NONE)); | |
| 1143 } | |
| 1144 if (CpuFeatures::IsSupported(VFP3)) { | |
| 1145 __ b(mi, &result_not_a_smi); | |
| 1146 } else { | |
| 1147 // Non VFP code cannot convert from unsigned to double, so fall back | |
| 1148 // to GenericBinaryOpStub. | |
| 1149 __ b(mi, entry_label()); | |
| 1150 } | |
| 1151 break; | |
| 1152 case Token::SHL: | |
| 1153 ASSERT(!reversed_); | |
| 1154 if (shift_value != 0) { | |
| 1155 __ mov(int32, Operand(int32, LSL, shift_value)); | |
| 1156 } | |
| 1157 break; | |
| 1158 default: UNREACHABLE(); | |
| 1159 } | |
| 1160 // Check that the *signed* result fits in a smi. Not necessary for AND, SAR | |
| 1161 // if the shift if more than 0 or SHR if the shit is more than 1. | |
| 1162 if (!( (op_ == Token::AND && value_ >= 0) || | |
| 1163 ((op_ == Token::SAR) && (shift_value > 0)) || | |
| 1164 ((op_ == Token::SHR) && (shift_value > 1)))) { | |
| 1165 __ add(r3, int32, Operand(0x40000000), SetCC); | |
| 1166 __ b(mi, &result_not_a_smi); | |
| 1167 } | |
| 1168 __ mov(tos_register_, Operand(int32, LSL, kSmiTagSize)); | |
| 1169 Exit(); | |
| 1170 | |
| 1171 if (result_not_a_smi.is_linked()) { | |
| 1172 __ bind(&result_not_a_smi); | |
| 1173 if (overwrite_mode_ != OVERWRITE_LEFT) { | |
| 1174 ASSERT((overwrite_mode_ == NO_OVERWRITE) || | |
| 1175 (overwrite_mode_ == OVERWRITE_RIGHT)); | |
| 1176 // If the allocation fails, fall back to the GenericBinaryOpStub. | |
| 1177 __ AllocateHeapNumber(r4, r5, r6, heap_number_map, entry_label()); | |
| 1178 // Nothing can go wrong now, so overwrite tos. | |
| 1179 __ mov(tos_register_, Operand(r4)); | |
| 1180 } | |
| 1181 | |
| 1182 // int32: answer as signed 32bits integer. | |
| 1183 // tos_register_: Heap number to write the answer into. | |
| 1184 WriteNonSmiAnswer(int32, tos_register_, r3); | |
| 1185 | |
| 1186 Exit(); | |
| 1187 } | |
| 1188 } | |
| 1189 | |
| 1190 | |
| 1191 void DeferredInlineSmiOperation::GenerateAnswerOutOfRange() { | |
| 1192 // The input from a bitwise operation were Smis but the result cannot fit | |
| 1193 // into a Smi, so we store it into a heap number. VirtualFrame::scratch0() | |
| 1194 // holds the untagged result to be converted. tos_register_ contains the | |
| 1195 // input. See the calls to JumpToAnswerOutOfRange to see how we got here. | |
| 1196 ASSERT(Token::IsBitOp(op_)); | |
| 1197 ASSERT(!reversed_); | |
| 1198 | |
| 1199 Register untagged_result = VirtualFrame::scratch0(); | |
| 1200 | |
| 1201 if (FLAG_debug_code) { | |
| 1202 __ Abort("Should not fall through!"); | |
| 1203 } | |
| 1204 | |
| 1205 __ bind(&answer_out_of_range_); | |
| 1206 if (((value_ & 0x1f) == 0) && (op_ == Token::SHR)) { | |
| 1207 // >>> 0 is a special case where the untagged_result register is not set up | |
| 1208 // yet. We untag the input to get it. | |
| 1209 __ mov(untagged_result, Operand(tos_register_, ASR, kSmiTagSize)); | |
| 1210 } | |
| 1211 | |
| 1212 // This routine uses the registers from r2 to r6. At the moment they are | |
| 1213 // not used by the register allocator, but when they are it should use | |
| 1214 // SpillAll and MergeTo like DeferredInlineSmiOperation::Generate() above. | |
| 1215 | |
| 1216 // Allocate the result heap number. | |
| 1217 Register heap_number_map = VirtualFrame::scratch1(); | |
| 1218 Register heap_number = r4; | |
| 1219 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); | |
| 1220 // If the allocation fails, fall back to the GenericBinaryOpStub. | |
| 1221 __ AllocateHeapNumber(heap_number, r5, r6, heap_number_map, entry_label()); | |
| 1222 WriteNonSmiAnswer(untagged_result, heap_number, r3); | |
| 1223 __ mov(tos_register_, Operand(heap_number)); | |
| 1224 | |
| 1225 Exit(); | |
| 1226 } | |
| 1227 | |
| 1228 | |
| 1229 static bool PopCountLessThanEqual2(unsigned int x) { | |
| 1230 x &= x - 1; | |
| 1231 return (x & (x - 1)) == 0; | |
| 1232 } | |
| 1233 | |
| 1234 | |
| 1235 // Returns the index of the lowest bit set. | |
| 1236 static int BitPosition(unsigned x) { | |
| 1237 int bit_posn = 0; | |
| 1238 while ((x & 0xf) == 0) { | |
| 1239 bit_posn += 4; | |
| 1240 x >>= 4; | |
| 1241 } | |
| 1242 while ((x & 1) == 0) { | |
| 1243 bit_posn++; | |
| 1244 x >>= 1; | |
| 1245 } | |
| 1246 return bit_posn; | |
| 1247 } | |
| 1248 | |
| 1249 | |
| 1250 // Can we multiply by x with max two shifts and an add. | |
| 1251 // This answers yes to all integers from 2 to 10. | |
| 1252 static bool IsEasyToMultiplyBy(int x) { | |
| 1253 if (x < 2) return false; // Avoid special cases. | |
| 1254 if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows. | |
| 1255 if (IsPowerOf2(x)) return true; // Simple shift. | |
| 1256 if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift. | |
| 1257 if (IsPowerOf2(x + 1)) return true; // Patterns like 11111. | |
| 1258 return false; | |
| 1259 } | |
| 1260 | |
| 1261 | |
| 1262 // Can multiply by anything that IsEasyToMultiplyBy returns true for. | |
| 1263 // Source and destination may be the same register. This routine does | |
| 1264 // not set carry and overflow the way a mul instruction would. | |
| 1265 static void InlineMultiplyByKnownInt(MacroAssembler* masm, | |
| 1266 Register source, | |
| 1267 Register destination, | |
| 1268 int known_int) { | |
| 1269 if (IsPowerOf2(known_int)) { | |
| 1270 masm->mov(destination, Operand(source, LSL, BitPosition(known_int))); | |
| 1271 } else if (PopCountLessThanEqual2(known_int)) { | |
| 1272 int first_bit = BitPosition(known_int); | |
| 1273 int second_bit = BitPosition(known_int ^ (1 << first_bit)); | |
| 1274 masm->add(destination, source, | |
| 1275 Operand(source, LSL, second_bit - first_bit)); | |
| 1276 if (first_bit != 0) { | |
| 1277 masm->mov(destination, Operand(destination, LSL, first_bit)); | |
| 1278 } | |
| 1279 } else { | |
| 1280 ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111. | |
| 1281 int the_bit = BitPosition(known_int + 1); | |
| 1282 masm->rsb(destination, source, Operand(source, LSL, the_bit)); | |
| 1283 } | |
| 1284 } | |
| 1285 | |
| 1286 | |
| 1287 void CodeGenerator::SmiOperation(Token::Value op, | |
| 1288 Handle<Object> value, | |
| 1289 bool reversed, | |
| 1290 OverwriteMode mode) { | |
| 1291 int int_value = Smi::cast(*value)->value(); | |
| 1292 | |
| 1293 bool both_sides_are_smi = frame_->KnownSmiAt(0); | |
| 1294 | |
| 1295 bool something_to_inline; | |
| 1296 switch (op) { | |
| 1297 case Token::ADD: | |
| 1298 case Token::SUB: | |
| 1299 case Token::BIT_AND: | |
| 1300 case Token::BIT_OR: | |
| 1301 case Token::BIT_XOR: { | |
| 1302 something_to_inline = true; | |
| 1303 break; | |
| 1304 } | |
| 1305 case Token::SHL: { | |
| 1306 something_to_inline = (both_sides_are_smi || !reversed); | |
| 1307 break; | |
| 1308 } | |
| 1309 case Token::SHR: | |
| 1310 case Token::SAR: { | |
| 1311 if (reversed) { | |
| 1312 something_to_inline = false; | |
| 1313 } else { | |
| 1314 something_to_inline = true; | |
| 1315 } | |
| 1316 break; | |
| 1317 } | |
| 1318 case Token::MOD: { | |
| 1319 if (reversed || int_value < 2 || !IsPowerOf2(int_value)) { | |
| 1320 something_to_inline = false; | |
| 1321 } else { | |
| 1322 something_to_inline = true; | |
| 1323 } | |
| 1324 break; | |
| 1325 } | |
| 1326 case Token::MUL: { | |
| 1327 if (!IsEasyToMultiplyBy(int_value)) { | |
| 1328 something_to_inline = false; | |
| 1329 } else { | |
| 1330 something_to_inline = true; | |
| 1331 } | |
| 1332 break; | |
| 1333 } | |
| 1334 default: { | |
| 1335 something_to_inline = false; | |
| 1336 break; | |
| 1337 } | |
| 1338 } | |
| 1339 | |
| 1340 if (!something_to_inline) { | |
| 1341 if (!reversed) { | |
| 1342 // Push the rhs onto the virtual frame by putting it in a TOS register. | |
| 1343 Register rhs = frame_->GetTOSRegister(); | |
| 1344 __ mov(rhs, Operand(value)); | |
| 1345 frame_->EmitPush(rhs, TypeInfo::Smi()); | |
| 1346 GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, int_value); | |
| 1347 } else { | |
| 1348 // Pop the rhs, then push lhs and rhs in the right order. Only performs | |
| 1349 // at most one pop, the rest takes place in TOS registers. | |
| 1350 Register lhs = frame_->GetTOSRegister(); // Get reg for pushing. | |
| 1351 Register rhs = frame_->PopToRegister(lhs); // Don't use lhs for this. | |
| 1352 __ mov(lhs, Operand(value)); | |
| 1353 frame_->EmitPush(lhs, TypeInfo::Smi()); | |
| 1354 TypeInfo t = both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Unknown(); | |
| 1355 frame_->EmitPush(rhs, t); | |
| 1356 GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, | |
| 1357 GenericBinaryOpStub::kUnknownIntValue); | |
| 1358 } | |
| 1359 return; | |
| 1360 } | |
| 1361 | |
| 1362 // We move the top of stack to a register (normally no move is invoved). | |
| 1363 Register tos = frame_->PopToRegister(); | |
| 1364 switch (op) { | |
| 1365 case Token::ADD: { | |
| 1366 DeferredCode* deferred = | |
| 1367 new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); | |
| 1368 | |
| 1369 __ add(tos, tos, Operand(value), SetCC); | |
| 1370 deferred->Branch(vs); | |
| 1371 if (!both_sides_are_smi) { | |
| 1372 __ tst(tos, Operand(kSmiTagMask)); | |
| 1373 deferred->Branch(ne); | |
| 1374 } | |
| 1375 deferred->BindExit(); | |
| 1376 frame_->EmitPush(tos); | |
| 1377 break; | |
| 1378 } | |
| 1379 | |
| 1380 case Token::SUB: { | |
| 1381 DeferredCode* deferred = | |
| 1382 new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); | |
| 1383 | |
| 1384 if (reversed) { | |
| 1385 __ rsb(tos, tos, Operand(value), SetCC); | |
| 1386 } else { | |
| 1387 __ sub(tos, tos, Operand(value), SetCC); | |
| 1388 } | |
| 1389 deferred->Branch(vs); | |
| 1390 if (!both_sides_are_smi) { | |
| 1391 __ tst(tos, Operand(kSmiTagMask)); | |
| 1392 deferred->Branch(ne); | |
| 1393 } | |
| 1394 deferred->BindExit(); | |
| 1395 frame_->EmitPush(tos); | |
| 1396 break; | |
| 1397 } | |
| 1398 | |
| 1399 | |
| 1400 case Token::BIT_OR: | |
| 1401 case Token::BIT_XOR: | |
| 1402 case Token::BIT_AND: { | |
| 1403 if (both_sides_are_smi) { | |
| 1404 switch (op) { | |
| 1405 case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break; | |
| 1406 case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break; | |
| 1407 case Token::BIT_AND: __ And(tos, tos, Operand(value)); break; | |
| 1408 default: UNREACHABLE(); | |
| 1409 } | |
| 1410 frame_->EmitPush(tos, TypeInfo::Smi()); | |
| 1411 } else { | |
| 1412 DeferredInlineSmiOperation* deferred = | |
| 1413 new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); | |
| 1414 __ tst(tos, Operand(kSmiTagMask)); | |
| 1415 deferred->JumpToNonSmiInput(ne); | |
| 1416 switch (op) { | |
| 1417 case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break; | |
| 1418 case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break; | |
| 1419 case Token::BIT_AND: __ And(tos, tos, Operand(value)); break; | |
| 1420 default: UNREACHABLE(); | |
| 1421 } | |
| 1422 deferred->BindExit(); | |
| 1423 TypeInfo result_type = TypeInfo::Integer32(); | |
| 1424 if (op == Token::BIT_AND && int_value >= 0) { | |
| 1425 result_type = TypeInfo::Smi(); | |
| 1426 } | |
| 1427 frame_->EmitPush(tos, result_type); | |
| 1428 } | |
| 1429 break; | |
| 1430 } | |
| 1431 | |
| 1432 case Token::SHL: | |
| 1433 if (reversed) { | |
| 1434 ASSERT(both_sides_are_smi); | |
| 1435 int max_shift = 0; | |
| 1436 int max_result = int_value == 0 ? 1 : int_value; | |
| 1437 while (Smi::IsValid(max_result << 1)) { | |
| 1438 max_shift++; | |
| 1439 max_result <<= 1; | |
| 1440 } | |
| 1441 DeferredCode* deferred = | |
| 1442 new DeferredInlineSmiOperation(op, int_value, true, mode, tos); | |
| 1443 // Mask off the last 5 bits of the shift operand (rhs). This is part | |
| 1444 // of the definition of shift in JS and we know we have a Smi so we | |
| 1445 // can safely do this. The masked version gets passed to the | |
| 1446 // deferred code, but that makes no difference. | |
| 1447 __ and_(tos, tos, Operand(Smi::FromInt(0x1f))); | |
| 1448 __ cmp(tos, Operand(Smi::FromInt(max_shift))); | |
| 1449 deferred->Branch(ge); | |
| 1450 Register scratch = VirtualFrame::scratch0(); | |
| 1451 __ mov(scratch, Operand(tos, ASR, kSmiTagSize)); // Untag. | |
| 1452 __ mov(tos, Operand(Smi::FromInt(int_value))); // Load constant. | |
| 1453 __ mov(tos, Operand(tos, LSL, scratch)); // Shift constant. | |
| 1454 deferred->BindExit(); | |
| 1455 TypeInfo result = TypeInfo::Integer32(); | |
| 1456 frame_->EmitPush(tos, result); | |
| 1457 break; | |
| 1458 } | |
| 1459 // Fall through! | |
| 1460 case Token::SHR: | |
| 1461 case Token::SAR: { | |
| 1462 ASSERT(!reversed); | |
| 1463 int shift_value = int_value & 0x1f; | |
| 1464 TypeInfo result = TypeInfo::Number(); | |
| 1465 | |
| 1466 if (op == Token::SHR) { | |
| 1467 if (shift_value > 1) { | |
| 1468 result = TypeInfo::Smi(); | |
| 1469 } else if (shift_value > 0) { | |
| 1470 result = TypeInfo::Integer32(); | |
| 1471 } | |
| 1472 } else if (op == Token::SAR) { | |
| 1473 if (shift_value > 0) { | |
| 1474 result = TypeInfo::Smi(); | |
| 1475 } else { | |
| 1476 result = TypeInfo::Integer32(); | |
| 1477 } | |
| 1478 } else { | |
| 1479 ASSERT(op == Token::SHL); | |
| 1480 result = TypeInfo::Integer32(); | |
| 1481 } | |
| 1482 | |
| 1483 DeferredInlineSmiOperation* deferred = | |
| 1484 new DeferredInlineSmiOperation(op, shift_value, false, mode, tos); | |
| 1485 if (!both_sides_are_smi) { | |
| 1486 __ tst(tos, Operand(kSmiTagMask)); | |
| 1487 deferred->JumpToNonSmiInput(ne); | |
| 1488 } | |
| 1489 switch (op) { | |
| 1490 case Token::SHL: { | |
| 1491 if (shift_value != 0) { | |
| 1492 Register untagged_result = VirtualFrame::scratch0(); | |
| 1493 Register scratch = VirtualFrame::scratch1(); | |
| 1494 int adjusted_shift = shift_value - kSmiTagSize; | |
| 1495 ASSERT(adjusted_shift >= 0); | |
| 1496 | |
| 1497 if (adjusted_shift != 0) { | |
| 1498 __ mov(untagged_result, Operand(tos, LSL, adjusted_shift)); | |
| 1499 } else { | |
| 1500 __ mov(untagged_result, Operand(tos)); | |
| 1501 } | |
| 1502 // Check that the *signed* result fits in a smi. | |
| 1503 __ add(scratch, untagged_result, Operand(0x40000000), SetCC); | |
| 1504 deferred->JumpToAnswerOutOfRange(mi); | |
| 1505 __ mov(tos, Operand(untagged_result, LSL, kSmiTagSize)); | |
| 1506 } | |
| 1507 break; | |
| 1508 } | |
| 1509 case Token::SHR: { | |
| 1510 if (shift_value != 0) { | |
| 1511 Register untagged_result = VirtualFrame::scratch0(); | |
| 1512 // Remove tag. | |
| 1513 __ mov(untagged_result, Operand(tos, ASR, kSmiTagSize)); | |
| 1514 __ mov(untagged_result, Operand(untagged_result, LSR, shift_value)); | |
| 1515 if (shift_value == 1) { | |
| 1516 // Check that the *unsigned* result fits in a smi. | |
| 1517 // Neither of the two high-order bits can be set: | |
| 1518 // - 0x80000000: high bit would be lost when smi tagging | |
| 1519 // - 0x40000000: this number would convert to negative when Smi | |
| 1520 // tagging. | |
| 1521 // These two cases can only happen with shifts by 0 or 1 when | |
| 1522 // handed a valid smi. | |
| 1523 __ tst(untagged_result, Operand(0xc0000000)); | |
| 1524 deferred->JumpToAnswerOutOfRange(ne); | |
| 1525 } | |
| 1526 __ mov(tos, Operand(untagged_result, LSL, kSmiTagSize)); | |
| 1527 } else { | |
| 1528 __ cmp(tos, Operand(0, RelocInfo::NONE)); | |
| 1529 deferred->JumpToAnswerOutOfRange(mi); | |
| 1530 } | |
| 1531 break; | |
| 1532 } | |
| 1533 case Token::SAR: { | |
| 1534 if (shift_value != 0) { | |
| 1535 // Do the shift and the tag removal in one operation. If the shift | |
| 1536 // is 31 bits (the highest possible value) then we emit the | |
| 1537 // instruction as a shift by 0 which in the ARM ISA means shift | |
| 1538 // arithmetically by 32. | |
| 1539 __ mov(tos, Operand(tos, ASR, (kSmiTagSize + shift_value) & 0x1f)); | |
| 1540 __ mov(tos, Operand(tos, LSL, kSmiTagSize)); | |
| 1541 } | |
| 1542 break; | |
| 1543 } | |
| 1544 default: UNREACHABLE(); | |
| 1545 } | |
| 1546 deferred->BindExit(); | |
| 1547 frame_->EmitPush(tos, result); | |
| 1548 break; | |
| 1549 } | |
| 1550 | |
| 1551 case Token::MOD: { | |
| 1552 ASSERT(!reversed); | |
| 1553 ASSERT(int_value >= 2); | |
| 1554 ASSERT(IsPowerOf2(int_value)); | |
| 1555 DeferredCode* deferred = | |
| 1556 new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); | |
| 1557 unsigned mask = (0x80000000u | kSmiTagMask); | |
| 1558 __ tst(tos, Operand(mask)); | |
| 1559 deferred->Branch(ne); // Go to deferred code on non-Smis and negative. | |
| 1560 mask = (int_value << kSmiTagSize) - 1; | |
| 1561 __ and_(tos, tos, Operand(mask)); | |
| 1562 deferred->BindExit(); | |
| 1563 // Mod of positive power of 2 Smi gives a Smi if the lhs is an integer. | |
| 1564 frame_->EmitPush( | |
| 1565 tos, | |
| 1566 both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Number()); | |
| 1567 break; | |
| 1568 } | |
| 1569 | |
| 1570 case Token::MUL: { | |
| 1571 ASSERT(IsEasyToMultiplyBy(int_value)); | |
| 1572 DeferredCode* deferred = | |
| 1573 new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); | |
| 1574 unsigned max_smi_that_wont_overflow = Smi::kMaxValue / int_value; | |
| 1575 max_smi_that_wont_overflow <<= kSmiTagSize; | |
| 1576 unsigned mask = 0x80000000u; | |
| 1577 while ((mask & max_smi_that_wont_overflow) == 0) { | |
| 1578 mask |= mask >> 1; | |
| 1579 } | |
| 1580 mask |= kSmiTagMask; | |
| 1581 // This does a single mask that checks for a too high value in a | |
| 1582 // conservative way and for a non-Smi. It also filters out negative | |
| 1583 // numbers, unfortunately, but since this code is inline we prefer | |
| 1584 // brevity to comprehensiveness. | |
| 1585 __ tst(tos, Operand(mask)); | |
| 1586 deferred->Branch(ne); | |
| 1587 InlineMultiplyByKnownInt(masm_, tos, tos, int_value); | |
| 1588 deferred->BindExit(); | |
| 1589 frame_->EmitPush(tos); | |
| 1590 break; | |
| 1591 } | |
| 1592 | |
| 1593 default: | |
| 1594 UNREACHABLE(); | |
| 1595 break; | |
| 1596 } | |
| 1597 } | |
| 1598 | |
| 1599 | |
| 1600 void CodeGenerator::Comparison(Condition cond, | |
| 1601 Expression* left, | |
| 1602 Expression* right, | |
| 1603 bool strict) { | |
| 1604 VirtualFrame::RegisterAllocationScope scope(this); | |
| 1605 | |
| 1606 if (left != NULL) Load(left); | |
| 1607 if (right != NULL) Load(right); | |
| 1608 | |
| 1609 // sp[0] : y | |
| 1610 // sp[1] : x | |
| 1611 // result : cc register | |
| 1612 | |
| 1613 // Strict only makes sense for equality comparisons. | |
| 1614 ASSERT(!strict || cond == eq); | |
| 1615 | |
| 1616 Register lhs; | |
| 1617 Register rhs; | |
| 1618 | |
| 1619 bool lhs_is_smi; | |
| 1620 bool rhs_is_smi; | |
| 1621 | |
| 1622 // We load the top two stack positions into registers chosen by the virtual | |
| 1623 // frame. This should keep the register shuffling to a minimum. | |
| 1624 // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. | |
| 1625 if (cond == gt || cond == le) { | |
| 1626 cond = ReverseCondition(cond); | |
| 1627 lhs_is_smi = frame_->KnownSmiAt(0); | |
| 1628 rhs_is_smi = frame_->KnownSmiAt(1); | |
| 1629 lhs = frame_->PopToRegister(); | |
| 1630 rhs = frame_->PopToRegister(lhs); // Don't pop to the same register again! | |
| 1631 } else { | |
| 1632 rhs_is_smi = frame_->KnownSmiAt(0); | |
| 1633 lhs_is_smi = frame_->KnownSmiAt(1); | |
| 1634 rhs = frame_->PopToRegister(); | |
| 1635 lhs = frame_->PopToRegister(rhs); // Don't pop to the same register again! | |
| 1636 } | |
| 1637 | |
| 1638 bool both_sides_are_smi = (lhs_is_smi && rhs_is_smi); | |
| 1639 | |
| 1640 ASSERT(rhs.is(r0) || rhs.is(r1)); | |
| 1641 ASSERT(lhs.is(r0) || lhs.is(r1)); | |
| 1642 | |
| 1643 JumpTarget exit; | |
| 1644 | |
| 1645 if (!both_sides_are_smi) { | |
| 1646 // Now we have the two sides in r0 and r1. We flush any other registers | |
| 1647 // because the stub doesn't know about register allocation. | |
| 1648 frame_->SpillAll(); | |
| 1649 Register scratch = VirtualFrame::scratch0(); | |
| 1650 Register smi_test_reg; | |
| 1651 if (lhs_is_smi) { | |
| 1652 smi_test_reg = rhs; | |
| 1653 } else if (rhs_is_smi) { | |
| 1654 smi_test_reg = lhs; | |
| 1655 } else { | |
| 1656 __ orr(scratch, lhs, Operand(rhs)); | |
| 1657 smi_test_reg = scratch; | |
| 1658 } | |
| 1659 __ tst(smi_test_reg, Operand(kSmiTagMask)); | |
| 1660 JumpTarget smi; | |
| 1661 smi.Branch(eq); | |
| 1662 | |
| 1663 // Perform non-smi comparison by stub. | |
| 1664 // CompareStub takes arguments in r0 and r1, returns <0, >0 or 0 in r0. | |
| 1665 // We call with 0 args because there are 0 on the stack. | |
| 1666 CompareStub stub(cond, strict, NO_SMI_COMPARE_IN_STUB, lhs, rhs); | |
| 1667 frame_->CallStub(&stub, 0); | |
| 1668 __ cmp(r0, Operand(0, RelocInfo::NONE)); | |
| 1669 exit.Jump(); | |
| 1670 | |
| 1671 smi.Bind(); | |
| 1672 } | |
| 1673 | |
| 1674 // Do smi comparisons by pointer comparison. | |
| 1675 __ cmp(lhs, Operand(rhs)); | |
| 1676 | |
| 1677 exit.Bind(); | |
| 1678 cc_reg_ = cond; | |
| 1679 } | |
| 1680 | |
| 1681 | |
| 1682 // Call the function on the stack with the given arguments. | |
| 1683 void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, | |
| 1684 CallFunctionFlags flags, | |
| 1685 int position) { | |
| 1686 // Push the arguments ("left-to-right") on the stack. | |
| 1687 int arg_count = args->length(); | |
| 1688 for (int i = 0; i < arg_count; i++) { | |
| 1689 Load(args->at(i)); | |
| 1690 } | |
| 1691 | |
| 1692 // Record the position for debugging purposes. | |
| 1693 CodeForSourcePosition(position); | |
| 1694 | |
| 1695 // Use the shared code stub to call the function. | |
| 1696 InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; | |
| 1697 CallFunctionStub call_function(arg_count, in_loop, flags); | |
| 1698 frame_->CallStub(&call_function, arg_count + 1); | |
| 1699 | |
| 1700 // Restore context and pop function from the stack. | |
| 1701 __ ldr(cp, frame_->Context()); | |
| 1702 frame_->Drop(); // discard the TOS | |
| 1703 } | |
| 1704 | |
| 1705 | |
| 1706 void CodeGenerator::CallApplyLazy(Expression* applicand, | |
| 1707 Expression* receiver, | |
| 1708 VariableProxy* arguments, | |
| 1709 int position) { | |
| 1710 // An optimized implementation of expressions of the form | |
| 1711 // x.apply(y, arguments). | |
| 1712 // If the arguments object of the scope has not been allocated, | |
| 1713 // and x.apply is Function.prototype.apply, this optimization | |
| 1714 // just copies y and the arguments of the current function on the | |
| 1715 // stack, as receiver and arguments, and calls x. | |
| 1716 // In the implementation comments, we call x the applicand | |
| 1717 // and y the receiver. | |
| 1718 | |
| 1719 ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); | |
| 1720 ASSERT(arguments->IsArguments()); | |
| 1721 | |
| 1722 // Load applicand.apply onto the stack. This will usually | |
| 1723 // give us a megamorphic load site. Not super, but it works. | |
| 1724 Load(applicand); | |
| 1725 Handle<String> name = FACTORY->LookupAsciiSymbol("apply"); | |
| 1726 frame_->Dup(); | |
| 1727 frame_->CallLoadIC(name, RelocInfo::CODE_TARGET); | |
| 1728 frame_->EmitPush(r0); | |
| 1729 | |
| 1730 // Load the receiver and the existing arguments object onto the | |
| 1731 // expression stack. Avoid allocating the arguments object here. | |
| 1732 Load(receiver); | |
| 1733 LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); | |
| 1734 | |
| 1735 // At this point the top two stack elements are probably in registers | |
| 1736 // since they were just loaded. Ensure they are in regs and get the | |
| 1737 // regs. | |
| 1738 Register receiver_reg = frame_->Peek2(); | |
| 1739 Register arguments_reg = frame_->Peek(); | |
| 1740 | |
| 1741 // From now on the frame is spilled. | |
| 1742 frame_->SpillAll(); | |
| 1743 | |
| 1744 // Emit the source position information after having loaded the | |
| 1745 // receiver and the arguments. | |
| 1746 CodeForSourcePosition(position); | |
| 1747 // Contents of the stack at this point: | |
| 1748 // sp[0]: arguments object of the current function or the hole. | |
| 1749 // sp[1]: receiver | |
| 1750 // sp[2]: applicand.apply | |
| 1751 // sp[3]: applicand. | |
| 1752 | |
| 1753 // Check if the arguments object has been lazily allocated | |
| 1754 // already. If so, just use that instead of copying the arguments | |
| 1755 // from the stack. This also deals with cases where a local variable | |
| 1756 // named 'arguments' has been introduced. | |
| 1757 JumpTarget slow; | |
| 1758 Label done; | |
| 1759 __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); | |
| 1760 __ cmp(ip, arguments_reg); | |
| 1761 slow.Branch(ne); | |
| 1762 | |
| 1763 Label build_args; | |
| 1764 // Get rid of the arguments object probe. | |
| 1765 frame_->Drop(); | |
| 1766 // Stack now has 3 elements on it. | |
| 1767 // Contents of stack at this point: | |
| 1768 // sp[0]: receiver - in the receiver_reg register. | |
| 1769 // sp[1]: applicand.apply | |
| 1770 // sp[2]: applicand. | |
| 1771 | |
| 1772 // Check that the receiver really is a JavaScript object. | |
| 1773 __ JumpIfSmi(receiver_reg, &build_args); | |
| 1774 // We allow all JSObjects including JSFunctions. As long as | |
| 1775 // JS_FUNCTION_TYPE is the last instance type and it is right | |
| 1776 // after LAST_JS_OBJECT_TYPE, we do not have to check the upper | |
| 1777 // bound. | |
| 1778 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); | |
| 1779 STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); | |
| 1780 __ CompareObjectType(receiver_reg, r2, r3, FIRST_JS_OBJECT_TYPE); | |
| 1781 __ b(lt, &build_args); | |
| 1782 | |
| 1783 // Check that applicand.apply is Function.prototype.apply. | |
| 1784 __ ldr(r0, MemOperand(sp, kPointerSize)); | |
| 1785 __ JumpIfSmi(r0, &build_args); | |
| 1786 __ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE); | |
| 1787 __ b(ne, &build_args); | |
| 1788 Handle<Code> apply_code( | |
| 1789 Isolate::Current()->builtins()->builtin(Builtins::kFunctionApply)); | |
| 1790 __ ldr(r1, FieldMemOperand(r0, JSFunction::kCodeEntryOffset)); | |
| 1791 __ sub(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); | |
| 1792 __ cmp(r1, Operand(apply_code)); | |
| 1793 __ b(ne, &build_args); | |
| 1794 | |
| 1795 // Check that applicand is a function. | |
| 1796 __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); | |
| 1797 __ JumpIfSmi(r1, &build_args); | |
| 1798 __ CompareObjectType(r1, r2, r3, JS_FUNCTION_TYPE); | |
| 1799 __ b(ne, &build_args); | |
| 1800 | |
| 1801 // Copy the arguments to this function possibly from the | |
| 1802 // adaptor frame below it. | |
| 1803 Label invoke, adapted; | |
| 1804 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | |
| 1805 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); | |
| 1806 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
| 1807 __ b(eq, &adapted); | |
| 1808 | |
| 1809 // No arguments adaptor frame. Copy fixed number of arguments. | |
| 1810 __ mov(r0, Operand(scope()->num_parameters())); | |
| 1811 for (int i = 0; i < scope()->num_parameters(); i++) { | |
| 1812 __ ldr(r2, frame_->ParameterAt(i)); | |
| 1813 __ push(r2); | |
| 1814 } | |
| 1815 __ jmp(&invoke); | |
| 1816 | |
| 1817 // Arguments adaptor frame present. Copy arguments from there, but | |
| 1818 // avoid copying too many arguments to avoid stack overflows. | |
| 1819 __ bind(&adapted); | |
| 1820 static const uint32_t kArgumentsLimit = 1 * KB; | |
| 1821 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); | |
| 1822 __ mov(r0, Operand(r0, LSR, kSmiTagSize)); | |
| 1823 __ mov(r3, r0); | |
| 1824 __ cmp(r0, Operand(kArgumentsLimit)); | |
| 1825 __ b(gt, &build_args); | |
| 1826 | |
| 1827 // Loop through the arguments pushing them onto the execution | |
| 1828 // stack. We don't inform the virtual frame of the push, so we don't | |
| 1829 // have to worry about getting rid of the elements from the virtual | |
| 1830 // frame. | |
| 1831 Label loop; | |
| 1832 // r3 is a small non-negative integer, due to the test above. | |
| 1833 __ cmp(r3, Operand(0, RelocInfo::NONE)); | |
| 1834 __ b(eq, &invoke); | |
| 1835 // Compute the address of the first argument. | |
| 1836 __ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2)); | |
| 1837 __ add(r2, r2, Operand(kPointerSize)); | |
| 1838 __ bind(&loop); | |
| 1839 // Post-decrement argument address by kPointerSize on each iteration. | |
| 1840 __ ldr(r4, MemOperand(r2, kPointerSize, NegPostIndex)); | |
| 1841 __ push(r4); | |
| 1842 __ sub(r3, r3, Operand(1), SetCC); | |
| 1843 __ b(gt, &loop); | |
| 1844 | |
| 1845 // Invoke the function. | |
| 1846 __ bind(&invoke); | |
| 1847 ParameterCount actual(r0); | |
| 1848 __ InvokeFunction(r1, actual, CALL_FUNCTION); | |
| 1849 // Drop applicand.apply and applicand from the stack, and push | |
| 1850 // the result of the function call, but leave the spilled frame | |
| 1851 // unchanged, with 3 elements, so it is correct when we compile the | |
| 1852 // slow-case code. | |
| 1853 __ add(sp, sp, Operand(2 * kPointerSize)); | |
| 1854 __ push(r0); | |
| 1855 // Stack now has 1 element: | |
| 1856 // sp[0]: result | |
| 1857 __ jmp(&done); | |
| 1858 | |
| 1859 // Slow-case: Allocate the arguments object since we know it isn't | |
| 1860 // there, and fall-through to the slow-case where we call | |
| 1861 // applicand.apply. | |
| 1862 __ bind(&build_args); | |
| 1863 // Stack now has 3 elements, because we have jumped from where: | |
| 1864 // sp[0]: receiver | |
| 1865 // sp[1]: applicand.apply | |
| 1866 // sp[2]: applicand. | |
| 1867 StoreArgumentsObject(false); | |
| 1868 | |
| 1869 // Stack and frame now have 4 elements. | |
| 1870 slow.Bind(); | |
| 1871 | |
| 1872 // Generic computation of x.apply(y, args) with no special optimization. | |
| 1873 // Flip applicand.apply and applicand on the stack, so | |
| 1874 // applicand looks like the receiver of the applicand.apply call. | |
| 1875 // Then process it as a normal function call. | |
| 1876 __ ldr(r0, MemOperand(sp, 3 * kPointerSize)); | |
| 1877 __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); | |
| 1878 __ Strd(r0, r1, MemOperand(sp, 2 * kPointerSize)); | |
| 1879 | |
| 1880 CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); | |
| 1881 frame_->CallStub(&call_function, 3); | |
| 1882 // The function and its two arguments have been dropped. | |
| 1883 frame_->Drop(); // Drop the receiver as well. | |
| 1884 frame_->EmitPush(r0); | |
| 1885 frame_->SpillAll(); // A spilled frame is also jumping to label done. | |
| 1886 // Stack now has 1 element: | |
| 1887 // sp[0]: result | |
| 1888 __ bind(&done); | |
| 1889 | |
| 1890 // Restore the context register after a call. | |
| 1891 __ ldr(cp, frame_->Context()); | |
| 1892 } | |
| 1893 | |
| 1894 | |
| 1895 void CodeGenerator::Branch(bool if_true, JumpTarget* target) { | |
| 1896 ASSERT(has_cc()); | |
| 1897 Condition cond = if_true ? cc_reg_ : NegateCondition(cc_reg_); | |
| 1898 target->Branch(cond); | |
| 1899 cc_reg_ = al; | |
| 1900 } | |
| 1901 | |
| 1902 | |
| 1903 void CodeGenerator::CheckStack() { | |
| 1904 frame_->SpillAll(); | |
| 1905 Comment cmnt(masm_, "[ check stack"); | |
| 1906 __ LoadRoot(ip, Heap::kStackLimitRootIndex); | |
| 1907 masm_->cmp(sp, Operand(ip)); | |
| 1908 StackCheckStub stub; | |
| 1909 // Call the stub if lower. | |
| 1910 masm_->mov(ip, | |
| 1911 Operand(reinterpret_cast<intptr_t>(stub.GetCode().location()), | |
| 1912 RelocInfo::CODE_TARGET), | |
| 1913 LeaveCC, | |
| 1914 lo); | |
| 1915 masm_->Call(ip, lo); | |
| 1916 } | |
| 1917 | |
| 1918 | |
| 1919 void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { | |
| 1920 #ifdef DEBUG | |
| 1921 int original_height = frame_->height(); | |
| 1922 #endif | |
| 1923 for (int i = 0; frame_ != NULL && i < statements->length(); i++) { | |
| 1924 Visit(statements->at(i)); | |
| 1925 } | |
| 1926 ASSERT(!has_valid_frame() || frame_->height() == original_height); | |
| 1927 } | |
| 1928 | |
| 1929 | |
| 1930 void CodeGenerator::VisitBlock(Block* node) { | |
| 1931 #ifdef DEBUG | |
| 1932 int original_height = frame_->height(); | |
| 1933 #endif | |
| 1934 Comment cmnt(masm_, "[ Block"); | |
| 1935 CodeForStatementPosition(node); | |
| 1936 node->break_target()->SetExpectedHeight(); | |
| 1937 VisitStatements(node->statements()); | |
| 1938 if (node->break_target()->is_linked()) { | |
| 1939 node->break_target()->Bind(); | |
| 1940 } | |
| 1941 node->break_target()->Unuse(); | |
| 1942 ASSERT(!has_valid_frame() || frame_->height() == original_height); | |
| 1943 } | |
| 1944 | |
| 1945 | |
| 1946 void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { | |
| 1947 frame_->EmitPush(cp); | |
| 1948 frame_->EmitPush(Operand(pairs)); | |
| 1949 frame_->EmitPush(Operand(Smi::FromInt(is_eval() ? 1 : 0))); | |
| 1950 frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); | |
| 1951 | |
| 1952 frame_->CallRuntime(Runtime::kDeclareGlobals, 4); | |
| 1953 // The result is discarded. | |
| 1954 } | |
| 1955 | |
| 1956 | |
| 1957 void CodeGenerator::VisitDeclaration(Declaration* node) { | |
| 1958 #ifdef DEBUG | |
| 1959 int original_height = frame_->height(); | |
| 1960 #endif | |
| 1961 Comment cmnt(masm_, "[ Declaration"); | |
| 1962 Variable* var = node->proxy()->var(); | |
| 1963 ASSERT(var != NULL); // must have been resolved | |
| 1964 Slot* slot = var->AsSlot(); | |
| 1965 | |
| 1966 // If it was not possible to allocate the variable at compile time, | |
| 1967 // we need to "declare" it at runtime to make sure it actually | |
| 1968 // exists in the local context. | |
| 1969 if (slot != NULL && slot->type() == Slot::LOOKUP) { | |
| 1970 // Variables with a "LOOKUP" slot were introduced as non-locals | |
| 1971 // during variable resolution and must have mode DYNAMIC. | |
| 1972 ASSERT(var->is_dynamic()); | |
| 1973 // For now, just do a runtime call. | |
| 1974 frame_->EmitPush(cp); | |
| 1975 frame_->EmitPush(Operand(var->name())); | |
| 1976 // Declaration nodes are always declared in only two modes. | |
| 1977 ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); | |
| 1978 PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; | |
| 1979 frame_->EmitPush(Operand(Smi::FromInt(attr))); | |
| 1980 // Push initial value, if any. | |
| 1981 // Note: For variables we must not push an initial value (such as | |
| 1982 // 'undefined') because we may have a (legal) redeclaration and we | |
| 1983 // must not destroy the current value. | |
| 1984 if (node->mode() == Variable::CONST) { | |
| 1985 frame_->EmitPushRoot(Heap::kTheHoleValueRootIndex); | |
| 1986 } else if (node->fun() != NULL) { | |
| 1987 Load(node->fun()); | |
| 1988 } else { | |
| 1989 frame_->EmitPush(Operand(0, RelocInfo::NONE)); | |
| 1990 } | |
| 1991 | |
| 1992 frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); | |
| 1993 // Ignore the return value (declarations are statements). | |
| 1994 | |
| 1995 ASSERT(frame_->height() == original_height); | |
| 1996 return; | |
| 1997 } | |
| 1998 | |
| 1999 ASSERT(!var->is_global()); | |
| 2000 | |
| 2001 // If we have a function or a constant, we need to initialize the variable. | |
| 2002 Expression* val = NULL; | |
| 2003 if (node->mode() == Variable::CONST) { | |
| 2004 val = new Literal(FACTORY->the_hole_value()); | |
| 2005 } else { | |
| 2006 val = node->fun(); // NULL if we don't have a function | |
| 2007 } | |
| 2008 | |
| 2009 | |
| 2010 if (val != NULL) { | |
| 2011 WriteBarrierCharacter wb_info = | |
| 2012 val->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI; | |
| 2013 if (val->AsLiteral() != NULL) wb_info = NEVER_NEWSPACE; | |
| 2014 // Set initial value. | |
| 2015 Reference target(this, node->proxy()); | |
| 2016 Load(val); | |
| 2017 target.SetValue(NOT_CONST_INIT, wb_info); | |
| 2018 | |
| 2019 // Get rid of the assigned value (declarations are statements). | |
| 2020 frame_->Drop(); | |
| 2021 } | |
| 2022 ASSERT(frame_->height() == original_height); | |
| 2023 } | |
| 2024 | |
| 2025 | |
| 2026 void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { | |
| 2027 #ifdef DEBUG | |
| 2028 int original_height = frame_->height(); | |
| 2029 #endif | |
| 2030 Comment cmnt(masm_, "[ ExpressionStatement"); | |
| 2031 CodeForStatementPosition(node); | |
| 2032 Expression* expression = node->expression(); | |
| 2033 expression->MarkAsStatement(); | |
| 2034 Load(expression); | |
| 2035 frame_->Drop(); | |
| 2036 ASSERT(frame_->height() == original_height); | |
| 2037 } | |
| 2038 | |
| 2039 | |
| 2040 void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { | |
| 2041 #ifdef DEBUG | |
| 2042 int original_height = frame_->height(); | |
| 2043 #endif | |
| 2044 Comment cmnt(masm_, "// EmptyStatement"); | |
| 2045 CodeForStatementPosition(node); | |
| 2046 // nothing to do | |
| 2047 ASSERT(frame_->height() == original_height); | |
| 2048 } | |
| 2049 | |
| 2050 | |
| 2051 void CodeGenerator::VisitIfStatement(IfStatement* node) { | |
| 2052 #ifdef DEBUG | |
| 2053 int original_height = frame_->height(); | |
| 2054 #endif | |
| 2055 Comment cmnt(masm_, "[ IfStatement"); | |
| 2056 // Generate different code depending on which parts of the if statement | |
| 2057 // are present or not. | |
| 2058 bool has_then_stm = node->HasThenStatement(); | |
| 2059 bool has_else_stm = node->HasElseStatement(); | |
| 2060 | |
| 2061 CodeForStatementPosition(node); | |
| 2062 | |
| 2063 JumpTarget exit; | |
| 2064 if (has_then_stm && has_else_stm) { | |
| 2065 Comment cmnt(masm_, "[ IfThenElse"); | |
| 2066 JumpTarget then; | |
| 2067 JumpTarget else_; | |
| 2068 // if (cond) | |
| 2069 LoadCondition(node->condition(), &then, &else_, true); | |
| 2070 if (frame_ != NULL) { | |
| 2071 Branch(false, &else_); | |
| 2072 } | |
| 2073 // then | |
| 2074 if (frame_ != NULL || then.is_linked()) { | |
| 2075 then.Bind(); | |
| 2076 Visit(node->then_statement()); | |
| 2077 } | |
| 2078 if (frame_ != NULL) { | |
| 2079 exit.Jump(); | |
| 2080 } | |
| 2081 // else | |
| 2082 if (else_.is_linked()) { | |
| 2083 else_.Bind(); | |
| 2084 Visit(node->else_statement()); | |
| 2085 } | |
| 2086 | |
| 2087 } else if (has_then_stm) { | |
| 2088 Comment cmnt(masm_, "[ IfThen"); | |
| 2089 ASSERT(!has_else_stm); | |
| 2090 JumpTarget then; | |
| 2091 // if (cond) | |
| 2092 LoadCondition(node->condition(), &then, &exit, true); | |
| 2093 if (frame_ != NULL) { | |
| 2094 Branch(false, &exit); | |
| 2095 } | |
| 2096 // then | |
| 2097 if (frame_ != NULL || then.is_linked()) { | |
| 2098 then.Bind(); | |
| 2099 Visit(node->then_statement()); | |
| 2100 } | |
| 2101 | |
| 2102 } else if (has_else_stm) { | |
| 2103 Comment cmnt(masm_, "[ IfElse"); | |
| 2104 ASSERT(!has_then_stm); | |
| 2105 JumpTarget else_; | |
| 2106 // if (!cond) | |
| 2107 LoadCondition(node->condition(), &exit, &else_, true); | |
| 2108 if (frame_ != NULL) { | |
| 2109 Branch(true, &exit); | |
| 2110 } | |
| 2111 // else | |
| 2112 if (frame_ != NULL || else_.is_linked()) { | |
| 2113 else_.Bind(); | |
| 2114 Visit(node->else_statement()); | |
| 2115 } | |
| 2116 | |
| 2117 } else { | |
| 2118 Comment cmnt(masm_, "[ If"); | |
| 2119 ASSERT(!has_then_stm && !has_else_stm); | |
| 2120 // if (cond) | |
| 2121 LoadCondition(node->condition(), &exit, &exit, false); | |
| 2122 if (frame_ != NULL) { | |
| 2123 if (has_cc()) { | |
| 2124 cc_reg_ = al; | |
| 2125 } else { | |
| 2126 frame_->Drop(); | |
| 2127 } | |
| 2128 } | |
| 2129 } | |
| 2130 | |
| 2131 // end | |
| 2132 if (exit.is_linked()) { | |
| 2133 exit.Bind(); | |
| 2134 } | |
| 2135 ASSERT(!has_valid_frame() || frame_->height() == original_height); | |
| 2136 } | |
| 2137 | |
| 2138 | |
| 2139 void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { | |
| 2140 Comment cmnt(masm_, "[ ContinueStatement"); | |
| 2141 CodeForStatementPosition(node); | |
| 2142 node->target()->continue_target()->Jump(); | |
| 2143 } | |
| 2144 | |
| 2145 | |
| 2146 void CodeGenerator::VisitBreakStatement(BreakStatement* node) { | |
| 2147 Comment cmnt(masm_, "[ BreakStatement"); | |
| 2148 CodeForStatementPosition(node); | |
| 2149 node->target()->break_target()->Jump(); | |
| 2150 } | |
| 2151 | |
| 2152 | |
| 2153 void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { | |
| 2154 Comment cmnt(masm_, "[ ReturnStatement"); | |
| 2155 | |
| 2156 CodeForStatementPosition(node); | |
| 2157 Load(node->expression()); | |
| 2158 frame_->PopToR0(); | |
| 2159 frame_->PrepareForReturn(); | |
| 2160 if (function_return_is_shadowed_) { | |
| 2161 function_return_.Jump(); | |
| 2162 } else { | |
| 2163 // Pop the result from the frame and prepare the frame for | |
| 2164 // returning thus making it easier to merge. | |
| 2165 if (function_return_.is_bound()) { | |
| 2166 // If the function return label is already bound we reuse the | |
| 2167 // code by jumping to the return site. | |
| 2168 function_return_.Jump(); | |
| 2169 } else { | |
| 2170 function_return_.Bind(); | |
| 2171 GenerateReturnSequence(); | |
| 2172 } | |
| 2173 } | |
| 2174 } | |
| 2175 | |
| 2176 | |
| 2177 void CodeGenerator::GenerateReturnSequence() { | |
| 2178 if (FLAG_trace) { | |
| 2179 // Push the return value on the stack as the parameter. | |
| 2180 // Runtime::TraceExit returns the parameter as it is. | |
| 2181 frame_->EmitPush(r0); | |
| 2182 frame_->CallRuntime(Runtime::kTraceExit, 1); | |
| 2183 } | |
| 2184 | |
| 2185 #ifdef DEBUG | |
| 2186 // Add a label for checking the size of the code used for returning. | |
| 2187 Label check_exit_codesize; | |
| 2188 masm_->bind(&check_exit_codesize); | |
| 2189 #endif | |
| 2190 // Make sure that the constant pool is not emitted inside of the return | |
| 2191 // sequence. | |
| 2192 { Assembler::BlockConstPoolScope block_const_pool(masm_); | |
| 2193 // Tear down the frame which will restore the caller's frame pointer and | |
| 2194 // the link register. | |
| 2195 frame_->Exit(); | |
| 2196 | |
| 2197 // Here we use masm_-> instead of the __ macro to avoid the code coverage | |
| 2198 // tool from instrumenting as we rely on the code size here. | |
| 2199 int32_t sp_delta = (scope()->num_parameters() + 1) * kPointerSize; | |
| 2200 masm_->add(sp, sp, Operand(sp_delta)); | |
| 2201 masm_->Jump(lr); | |
| 2202 DeleteFrame(); | |
| 2203 | |
| 2204 #ifdef DEBUG | |
| 2205 // Check that the size of the code used for returning is large enough | |
| 2206 // for the debugger's requirements. | |
| 2207 ASSERT(Assembler::kJSReturnSequenceInstructions <= | |
| 2208 masm_->InstructionsGeneratedSince(&check_exit_codesize)); | |
| 2209 #endif | |
| 2210 } | |
| 2211 } | |
| 2212 | |
| 2213 | |
| 2214 void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { | |
| 2215 #ifdef DEBUG | |
| 2216 int original_height = frame_->height(); | |
| 2217 #endif | |
| 2218 Comment cmnt(masm_, "[ WithEnterStatement"); | |
| 2219 CodeForStatementPosition(node); | |
| 2220 Load(node->expression()); | |
| 2221 if (node->is_catch_block()) { | |
| 2222 frame_->CallRuntime(Runtime::kPushCatchContext, 1); | |
| 2223 } else { | |
| 2224 frame_->CallRuntime(Runtime::kPushContext, 1); | |
| 2225 } | |
| 2226 #ifdef DEBUG | |
| 2227 JumpTarget verified_true; | |
| 2228 __ cmp(r0, cp); | |
| 2229 verified_true.Branch(eq); | |
| 2230 __ stop("PushContext: r0 is expected to be the same as cp"); | |
| 2231 verified_true.Bind(); | |
| 2232 #endif | |
| 2233 // Update context local. | |
| 2234 __ str(cp, frame_->Context()); | |
| 2235 ASSERT(frame_->height() == original_height); | |
| 2236 } | |
| 2237 | |
| 2238 | |
| 2239 void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { | |
| 2240 #ifdef DEBUG | |
| 2241 int original_height = frame_->height(); | |
| 2242 #endif | |
| 2243 Comment cmnt(masm_, "[ WithExitStatement"); | |
| 2244 CodeForStatementPosition(node); | |
| 2245 // Pop context. | |
| 2246 __ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX)); | |
| 2247 // Update context local. | |
| 2248 __ str(cp, frame_->Context()); | |
| 2249 ASSERT(frame_->height() == original_height); | |
| 2250 } | |
| 2251 | |
| 2252 | |
| 2253 void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { | |
| 2254 #ifdef DEBUG | |
| 2255 int original_height = frame_->height(); | |
| 2256 #endif | |
| 2257 Comment cmnt(masm_, "[ SwitchStatement"); | |
| 2258 CodeForStatementPosition(node); | |
| 2259 node->break_target()->SetExpectedHeight(); | |
| 2260 | |
| 2261 Load(node->tag()); | |
| 2262 | |
| 2263 JumpTarget next_test; | |
| 2264 JumpTarget fall_through; | |
| 2265 JumpTarget default_entry; | |
| 2266 JumpTarget default_exit(JumpTarget::BIDIRECTIONAL); | |
| 2267 ZoneList<CaseClause*>* cases = node->cases(); | |
| 2268 int length = cases->length(); | |
| 2269 CaseClause* default_clause = NULL; | |
| 2270 | |
| 2271 for (int i = 0; i < length; i++) { | |
| 2272 CaseClause* clause = cases->at(i); | |
| 2273 if (clause->is_default()) { | |
| 2274 // Remember the default clause and compile it at the end. | |
| 2275 default_clause = clause; | |
| 2276 continue; | |
| 2277 } | |
| 2278 | |
| 2279 Comment cmnt(masm_, "[ Case clause"); | |
| 2280 // Compile the test. | |
| 2281 next_test.Bind(); | |
| 2282 next_test.Unuse(); | |
| 2283 // Duplicate TOS. | |
| 2284 frame_->Dup(); | |
| 2285 Comparison(eq, NULL, clause->label(), true); | |
| 2286 Branch(false, &next_test); | |
| 2287 | |
| 2288 // Before entering the body from the test, remove the switch value from | |
| 2289 // the stack. | |
| 2290 frame_->Drop(); | |
| 2291 | |
| 2292 // Label the body so that fall through is enabled. | |
| 2293 if (i > 0 && cases->at(i - 1)->is_default()) { | |
| 2294 default_exit.Bind(); | |
| 2295 } else { | |
| 2296 fall_through.Bind(); | |
| 2297 fall_through.Unuse(); | |
| 2298 } | |
| 2299 VisitStatements(clause->statements()); | |
| 2300 | |
| 2301 // If control flow can fall through from the body, jump to the next body | |
| 2302 // or the end of the statement. | |
| 2303 if (frame_ != NULL) { | |
| 2304 if (i < length - 1 && cases->at(i + 1)->is_default()) { | |
| 2305 default_entry.Jump(); | |
| 2306 } else { | |
| 2307 fall_through.Jump(); | |
| 2308 } | |
| 2309 } | |
| 2310 } | |
| 2311 | |
| 2312 // The final "test" removes the switch value. | |
| 2313 next_test.Bind(); | |
| 2314 frame_->Drop(); | |
| 2315 | |
| 2316 // If there is a default clause, compile it. | |
| 2317 if (default_clause != NULL) { | |
| 2318 Comment cmnt(masm_, "[ Default clause"); | |
| 2319 default_entry.Bind(); | |
| 2320 VisitStatements(default_clause->statements()); | |
| 2321 // If control flow can fall out of the default and there is a case after | |
| 2322 // it, jump to that case's body. | |
| 2323 if (frame_ != NULL && default_exit.is_bound()) { | |
| 2324 default_exit.Jump(); | |
| 2325 } | |
| 2326 } | |
| 2327 | |
| 2328 if (fall_through.is_linked()) { | |
| 2329 fall_through.Bind(); | |
| 2330 } | |
| 2331 | |
| 2332 if (node->break_target()->is_linked()) { | |
| 2333 node->break_target()->Bind(); | |
| 2334 } | |
| 2335 node->break_target()->Unuse(); | |
| 2336 ASSERT(!has_valid_frame() || frame_->height() == original_height); | |
| 2337 } | |
| 2338 | |
| 2339 | |
| 2340 void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { | |
| 2341 #ifdef DEBUG | |
| 2342 int original_height = frame_->height(); | |
| 2343 #endif | |
| 2344 Comment cmnt(masm_, "[ DoWhileStatement"); | |
| 2345 CodeForStatementPosition(node); | |
| 2346 node->break_target()->SetExpectedHeight(); | |
| 2347 JumpTarget body(JumpTarget::BIDIRECTIONAL); | |
| 2348 IncrementLoopNesting(); | |
| 2349 | |
| 2350 // Label the top of the loop for the backward CFG edge. If the test | |
| 2351 // is always true we can use the continue target, and if the test is | |
| 2352 // always false there is no need. | |
| 2353 ConditionAnalysis info = AnalyzeCondition(node->cond()); | |
| 2354 switch (info) { | |
| 2355 case ALWAYS_TRUE: | |
| 2356 node->continue_target()->SetExpectedHeight(); | |
| 2357 node->continue_target()->Bind(); | |
| 2358 break; | |
| 2359 case ALWAYS_FALSE: | |
| 2360 node->continue_target()->SetExpectedHeight(); | |
| 2361 break; | |
| 2362 case DONT_KNOW: | |
| 2363 node->continue_target()->SetExpectedHeight(); | |
| 2364 body.Bind(); | |
| 2365 break; | |
| 2366 } | |
| 2367 | |
| 2368 CheckStack(); // TODO(1222600): ignore if body contains calls. | |
| 2369 Visit(node->body()); | |
| 2370 | |
| 2371 // Compile the test. | |
| 2372 switch (info) { | |
| 2373 case ALWAYS_TRUE: | |
| 2374 // If control can fall off the end of the body, jump back to the | |
| 2375 // top. | |
| 2376 if (has_valid_frame()) { | |
| 2377 node->continue_target()->Jump(); | |
| 2378 } | |
| 2379 break; | |
| 2380 case ALWAYS_FALSE: | |
| 2381 // If we have a continue in the body, we only have to bind its | |
| 2382 // jump target. | |
| 2383 if (node->continue_target()->is_linked()) { | |
| 2384 node->continue_target()->Bind(); | |
| 2385 } | |
| 2386 break; | |
| 2387 case DONT_KNOW: | |
| 2388 // We have to compile the test expression if it can be reached by | |
| 2389 // control flow falling out of the body or via continue. | |
| 2390 if (node->continue_target()->is_linked()) { | |
| 2391 node->continue_target()->Bind(); | |
| 2392 } | |
| 2393 if (has_valid_frame()) { | |
| 2394 Comment cmnt(masm_, "[ DoWhileCondition"); | |
| 2395 CodeForDoWhileConditionPosition(node); | |
| 2396 LoadCondition(node->cond(), &body, node->break_target(), true); | |
| 2397 if (has_valid_frame()) { | |
| 2398 // A invalid frame here indicates that control did not | |
| 2399 // fall out of the test expression. | |
| 2400 Branch(true, &body); | |
| 2401 } | |
| 2402 } | |
| 2403 break; | |
| 2404 } | |
| 2405 | |
| 2406 if (node->break_target()->is_linked()) { | |
| 2407 node->break_target()->Bind(); | |
| 2408 } | |
| 2409 DecrementLoopNesting(); | |
| 2410 ASSERT(!has_valid_frame() || frame_->height() == original_height); | |
| 2411 } | |
| 2412 | |
| 2413 | |
| 2414 void CodeGenerator::VisitWhileStatement(WhileStatement* node) { | |
| 2415 #ifdef DEBUG | |
| 2416 int original_height = frame_->height(); | |
| 2417 #endif | |
| 2418 Comment cmnt(masm_, "[ WhileStatement"); | |
| 2419 CodeForStatementPosition(node); | |
| 2420 | |
| 2421 // If the test is never true and has no side effects there is no need | |
| 2422 // to compile the test or body. | |
| 2423 ConditionAnalysis info = AnalyzeCondition(node->cond()); | |
| 2424 if (info == ALWAYS_FALSE) return; | |
| 2425 | |
| 2426 node->break_target()->SetExpectedHeight(); | |
| 2427 IncrementLoopNesting(); | |
| 2428 | |
| 2429 // Label the top of the loop with the continue target for the backward | |
| 2430 // CFG edge. | |
| 2431 node->continue_target()->SetExpectedHeight(); | |
| 2432 node->continue_target()->Bind(); | |
| 2433 | |
| 2434 if (info == DONT_KNOW) { | |
| 2435 JumpTarget body(JumpTarget::BIDIRECTIONAL); | |
| 2436 LoadCondition(node->cond(), &body, node->break_target(), true); | |
| 2437 if (has_valid_frame()) { | |
| 2438 // A NULL frame indicates that control did not fall out of the | |
| 2439 // test expression. | |
| 2440 Branch(false, node->break_target()); | |
| 2441 } | |
| 2442 if (has_valid_frame() || body.is_linked()) { | |
| 2443 body.Bind(); | |
| 2444 } | |
| 2445 } | |
| 2446 | |
| 2447 if (has_valid_frame()) { | |
| 2448 CheckStack(); // TODO(1222600): ignore if body contains calls. | |
| 2449 Visit(node->body()); | |
| 2450 | |
| 2451 // If control flow can fall out of the body, jump back to the top. | |
| 2452 if (has_valid_frame()) { | |
| 2453 node->continue_target()->Jump(); | |
| 2454 } | |
| 2455 } | |
| 2456 if (node->break_target()->is_linked()) { | |
| 2457 node->break_target()->Bind(); | |
| 2458 } | |
| 2459 DecrementLoopNesting(); | |
| 2460 ASSERT(!has_valid_frame() || frame_->height() == original_height); | |
| 2461 } | |
| 2462 | |
| 2463 | |
| 2464 void CodeGenerator::VisitForStatement(ForStatement* node) { | |
| 2465 #ifdef DEBUG | |
| 2466 int original_height = frame_->height(); | |
| 2467 #endif | |
| 2468 Comment cmnt(masm_, "[ ForStatement"); | |
| 2469 CodeForStatementPosition(node); | |
| 2470 if (node->init() != NULL) { | |
| 2471 Visit(node->init()); | |
| 2472 } | |
| 2473 | |
| 2474 // If the test is never true there is no need to compile the test or | |
| 2475 // body. | |
| 2476 ConditionAnalysis info = AnalyzeCondition(node->cond()); | |
| 2477 if (info == ALWAYS_FALSE) return; | |
| 2478 | |
| 2479 node->break_target()->SetExpectedHeight(); | |
| 2480 IncrementLoopNesting(); | |
| 2481 | |
| 2482 // We know that the loop index is a smi if it is not modified in the | |
| 2483 // loop body and it is checked against a constant limit in the loop | |
| 2484 // condition. In this case, we reset the static type information of the | |
| 2485 // loop index to smi before compiling the body, the update expression, and | |
| 2486 // the bottom check of the loop condition. | |
| 2487 TypeInfoCodeGenState type_info_scope(this, | |
| 2488 node->is_fast_smi_loop() ? | |
| 2489 node->loop_variable()->AsSlot() : | |
| 2490 NULL, | |
| 2491 TypeInfo::Smi()); | |
| 2492 | |
| 2493 // If there is no update statement, label the top of the loop with the | |
| 2494 // continue target, otherwise with the loop target. | |
| 2495 JumpTarget loop(JumpTarget::BIDIRECTIONAL); | |
| 2496 if (node->next() == NULL) { | |
| 2497 node->continue_target()->SetExpectedHeight(); | |
| 2498 node->continue_target()->Bind(); | |
| 2499 } else { | |
| 2500 node->continue_target()->SetExpectedHeight(); | |
| 2501 loop.Bind(); | |
| 2502 } | |
| 2503 | |
| 2504 // If the test is always true, there is no need to compile it. | |
| 2505 if (info == DONT_KNOW) { | |
| 2506 JumpTarget body; | |
| 2507 LoadCondition(node->cond(), &body, node->break_target(), true); | |
| 2508 if (has_valid_frame()) { | |
| 2509 Branch(false, node->break_target()); | |
| 2510 } | |
| 2511 if (has_valid_frame() || body.is_linked()) { | |
| 2512 body.Bind(); | |
| 2513 } | |
| 2514 } | |
| 2515 | |
| 2516 if (has_valid_frame()) { | |
| 2517 CheckStack(); // TODO(1222600): ignore if body contains calls. | |
| 2518 Visit(node->body()); | |
| 2519 | |
| 2520 if (node->next() == NULL) { | |
| 2521 // If there is no update statement and control flow can fall out | |
| 2522 // of the loop, jump directly to the continue label. | |
| 2523 if (has_valid_frame()) { | |
| 2524 node->continue_target()->Jump(); | |
| 2525 } | |
| 2526 } else { | |
| 2527 // If there is an update statement and control flow can reach it | |
| 2528 // via falling out of the body of the loop or continuing, we | |
| 2529 // compile the update statement. | |
| 2530 if (node->continue_target()->is_linked()) { | |
| 2531 node->continue_target()->Bind(); | |
| 2532 } | |
| 2533 if (has_valid_frame()) { | |
| 2534 // Record source position of the statement as this code which is | |
| 2535 // after the code for the body actually belongs to the loop | |
| 2536 // statement and not the body. | |
| 2537 CodeForStatementPosition(node); | |
| 2538 Visit(node->next()); | |
| 2539 loop.Jump(); | |
| 2540 } | |
| 2541 } | |
| 2542 } | |
| 2543 if (node->break_target()->is_linked()) { | |
| 2544 node->break_target()->Bind(); | |
| 2545 } | |
| 2546 DecrementLoopNesting(); | |
| 2547 ASSERT(!has_valid_frame() || frame_->height() == original_height); | |
| 2548 } | |
| 2549 | |
| 2550 | |
| 2551 void CodeGenerator::VisitForInStatement(ForInStatement* node) { | |
| 2552 #ifdef DEBUG | |
| 2553 int original_height = frame_->height(); | |
| 2554 #endif | |
| 2555 Comment cmnt(masm_, "[ ForInStatement"); | |
| 2556 CodeForStatementPosition(node); | |
| 2557 | |
| 2558 JumpTarget primitive; | |
| 2559 JumpTarget jsobject; | |
| 2560 JumpTarget fixed_array; | |
| 2561 JumpTarget entry(JumpTarget::BIDIRECTIONAL); | |
| 2562 JumpTarget end_del_check; | |
| 2563 JumpTarget exit; | |
| 2564 | |
| 2565 // Get the object to enumerate over (converted to JSObject). | |
| 2566 Load(node->enumerable()); | |
| 2567 | |
| 2568 VirtualFrame::SpilledScope spilled_scope(frame_); | |
| 2569 // Both SpiderMonkey and kjs ignore null and undefined in contrast | |
| 2570 // to the specification. 12.6.4 mandates a call to ToObject. | |
| 2571 frame_->EmitPop(r0); | |
| 2572 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | |
| 2573 __ cmp(r0, ip); | |
| 2574 exit.Branch(eq); | |
| 2575 __ LoadRoot(ip, Heap::kNullValueRootIndex); | |
| 2576 __ cmp(r0, ip); | |
| 2577 exit.Branch(eq); | |
| 2578 | |
| 2579 // Stack layout in body: | |
| 2580 // [iteration counter (Smi)] | |
| 2581 // [length of array] | |
| 2582 // [FixedArray] | |
| 2583 // [Map or 0] | |
| 2584 // [Object] | |
| 2585 | |
| 2586 // Check if enumerable is already a JSObject | |
| 2587 __ tst(r0, Operand(kSmiTagMask)); | |
| 2588 primitive.Branch(eq); | |
| 2589 __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE); | |
| 2590 jsobject.Branch(hs); | |
| 2591 | |
| 2592 primitive.Bind(); | |
| 2593 frame_->EmitPush(r0); | |
| 2594 frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, 1); | |
| 2595 | |
| 2596 jsobject.Bind(); | |
| 2597 // Get the set of properties (as a FixedArray or Map). | |
| 2598 // r0: value to be iterated over | |
| 2599 frame_->EmitPush(r0); // Push the object being iterated over. | |
| 2600 | |
| 2601 // Check cache validity in generated code. This is a fast case for | |
| 2602 // the JSObject::IsSimpleEnum cache validity checks. If we cannot | |
| 2603 // guarantee cache validity, call the runtime system to check cache | |
| 2604 // validity or get the property names in a fixed array. | |
| 2605 JumpTarget call_runtime; | |
| 2606 JumpTarget loop(JumpTarget::BIDIRECTIONAL); | |
| 2607 JumpTarget check_prototype; | |
| 2608 JumpTarget use_cache; | |
| 2609 __ mov(r1, Operand(r0)); | |
| 2610 loop.Bind(); | |
| 2611 // Check that there are no elements. | |
| 2612 __ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset)); | |
| 2613 __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex); | |
| 2614 __ cmp(r2, r4); | |
| 2615 call_runtime.Branch(ne); | |
| 2616 // Check that instance descriptors are not empty so that we can | |
| 2617 // check for an enum cache. Leave the map in r3 for the subsequent | |
| 2618 // prototype load. | |
| 2619 __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); | |
| 2620 __ ldr(r2, FieldMemOperand(r3, Map::kInstanceDescriptorsOffset)); | |
| 2621 __ LoadRoot(ip, Heap::kEmptyDescriptorArrayRootIndex); | |
| 2622 __ cmp(r2, ip); | |
| 2623 call_runtime.Branch(eq); | |
| 2624 // Check that there in an enum cache in the non-empty instance | |
| 2625 // descriptors. This is the case if the next enumeration index | |
| 2626 // field does not contain a smi. | |
| 2627 __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumerationIndexOffset)); | |
| 2628 __ tst(r2, Operand(kSmiTagMask)); | |
| 2629 call_runtime.Branch(eq); | |
| 2630 // For all objects but the receiver, check that the cache is empty. | |
| 2631 // r4: empty fixed array root. | |
| 2632 __ cmp(r1, r0); | |
| 2633 check_prototype.Branch(eq); | |
| 2634 __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset)); | |
| 2635 __ cmp(r2, r4); | |
| 2636 call_runtime.Branch(ne); | |
| 2637 check_prototype.Bind(); | |
| 2638 // Load the prototype from the map and loop if non-null. | |
| 2639 __ ldr(r1, FieldMemOperand(r3, Map::kPrototypeOffset)); | |
| 2640 __ LoadRoot(ip, Heap::kNullValueRootIndex); | |
| 2641 __ cmp(r1, ip); | |
| 2642 loop.Branch(ne); | |
| 2643 // The enum cache is valid. Load the map of the object being | |
| 2644 // iterated over and use the cache for the iteration. | |
| 2645 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); | |
| 2646 use_cache.Jump(); | |
| 2647 | |
| 2648 call_runtime.Bind(); | |
| 2649 // Call the runtime to get the property names for the object. | |
| 2650 frame_->EmitPush(r0); // push the object (slot 4) for the runtime call | |
| 2651 frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); | |
| 2652 | |
| 2653 // If we got a map from the runtime call, we can do a fast | |
| 2654 // modification check. Otherwise, we got a fixed array, and we have | |
| 2655 // to do a slow check. | |
| 2656 // r0: map or fixed array (result from call to | |
| 2657 // Runtime::kGetPropertyNamesFast) | |
| 2658 __ mov(r2, Operand(r0)); | |
| 2659 __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); | |
| 2660 __ LoadRoot(ip, Heap::kMetaMapRootIndex); | |
| 2661 __ cmp(r1, ip); | |
| 2662 fixed_array.Branch(ne); | |
| 2663 | |
| 2664 use_cache.Bind(); | |
| 2665 // Get enum cache | |
| 2666 // r0: map (either the result from a call to | |
| 2667 // Runtime::kGetPropertyNamesFast or has been fetched directly from | |
| 2668 // the object) | |
| 2669 __ mov(r1, Operand(r0)); | |
| 2670 __ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset)); | |
| 2671 __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset)); | |
| 2672 __ ldr(r2, | |
| 2673 FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset)); | |
| 2674 | |
| 2675 frame_->EmitPush(r0); // map | |
| 2676 frame_->EmitPush(r2); // enum cache bridge cache | |
| 2677 __ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset)); | |
| 2678 frame_->EmitPush(r0); | |
| 2679 __ mov(r0, Operand(Smi::FromInt(0))); | |
| 2680 frame_->EmitPush(r0); | |
| 2681 entry.Jump(); | |
| 2682 | |
| 2683 fixed_array.Bind(); | |
| 2684 __ mov(r1, Operand(Smi::FromInt(0))); | |
| 2685 frame_->EmitPush(r1); // insert 0 in place of Map | |
| 2686 frame_->EmitPush(r0); | |
| 2687 | |
| 2688 // Push the length of the array and the initial index onto the stack. | |
| 2689 __ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset)); | |
| 2690 frame_->EmitPush(r0); | |
| 2691 __ mov(r0, Operand(Smi::FromInt(0))); // init index | |
| 2692 frame_->EmitPush(r0); | |
| 2693 | |
| 2694 // Condition. | |
| 2695 entry.Bind(); | |
| 2696 // sp[0] : index | |
| 2697 // sp[1] : array/enum cache length | |
| 2698 // sp[2] : array or enum cache | |
| 2699 // sp[3] : 0 or map | |
| 2700 // sp[4] : enumerable | |
| 2701 // Grab the current frame's height for the break and continue | |
| 2702 // targets only after all the state is pushed on the frame. | |
| 2703 node->break_target()->SetExpectedHeight(); | |
| 2704 node->continue_target()->SetExpectedHeight(); | |
| 2705 | |
| 2706 // Load the current count to r0, load the length to r1. | |
| 2707 __ Ldrd(r0, r1, frame_->ElementAt(0)); | |
| 2708 __ cmp(r0, r1); // compare to the array length | |
| 2709 node->break_target()->Branch(hs); | |
| 2710 | |
| 2711 // Get the i'th entry of the array. | |
| 2712 __ ldr(r2, frame_->ElementAt(2)); | |
| 2713 __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | |
| 2714 __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); | |
| 2715 | |
| 2716 // Get Map or 0. | |
| 2717 __ ldr(r2, frame_->ElementAt(3)); | |
| 2718 // Check if this (still) matches the map of the enumerable. | |
| 2719 // If not, we have to filter the key. | |
| 2720 __ ldr(r1, frame_->ElementAt(4)); | |
| 2721 __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); | |
| 2722 __ cmp(r1, Operand(r2)); | |
| 2723 end_del_check.Branch(eq); | |
| 2724 | |
| 2725 // Convert the entry to a string (or null if it isn't a property anymore). | |
| 2726 __ ldr(r0, frame_->ElementAt(4)); // push enumerable | |
| 2727 frame_->EmitPush(r0); | |
| 2728 frame_->EmitPush(r3); // push entry | |
| 2729 frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS, 2); | |
| 2730 __ mov(r3, Operand(r0), SetCC); | |
| 2731 // If the property has been removed while iterating, we just skip it. | |
| 2732 node->continue_target()->Branch(eq); | |
| 2733 | |
| 2734 end_del_check.Bind(); | |
| 2735 // Store the entry in the 'each' expression and take another spin in the | |
| 2736 // loop. r3: i'th entry of the enum cache (or string there of) | |
| 2737 frame_->EmitPush(r3); // push entry | |
| 2738 { VirtualFrame::RegisterAllocationScope scope(this); | |
| 2739 Reference each(this, node->each()); | |
| 2740 if (!each.is_illegal()) { | |
| 2741 if (each.size() > 0) { | |
| 2742 // Loading a reference may leave the frame in an unspilled state. | |
| 2743 frame_->SpillAll(); // Sync stack to memory. | |
| 2744 // Get the value (under the reference on the stack) from memory. | |
| 2745 __ ldr(r0, frame_->ElementAt(each.size())); | |
| 2746 frame_->EmitPush(r0); | |
| 2747 each.SetValue(NOT_CONST_INIT, UNLIKELY_SMI); | |
| 2748 frame_->Drop(2); // The result of the set and the extra pushed value. | |
| 2749 } else { | |
| 2750 // If the reference was to a slot we rely on the convenient property | |
| 2751 // that it doesn't matter whether a value (eg, ebx pushed above) is | |
| 2752 // right on top of or right underneath a zero-sized reference. | |
| 2753 each.SetValue(NOT_CONST_INIT, UNLIKELY_SMI); | |
| 2754 frame_->Drop(1); // Drop the result of the set operation. | |
| 2755 } | |
| 2756 } | |
| 2757 } | |
| 2758 // Body. | |
| 2759 CheckStack(); // TODO(1222600): ignore if body contains calls. | |
| 2760 { VirtualFrame::RegisterAllocationScope scope(this); | |
| 2761 Visit(node->body()); | |
| 2762 } | |
| 2763 | |
| 2764 // Next. Reestablish a spilled frame in case we are coming here via | |
| 2765 // a continue in the body. | |
| 2766 node->continue_target()->Bind(); | |
| 2767 frame_->SpillAll(); | |
| 2768 frame_->EmitPop(r0); | |
| 2769 __ add(r0, r0, Operand(Smi::FromInt(1))); | |
| 2770 frame_->EmitPush(r0); | |
| 2771 entry.Jump(); | |
| 2772 | |
| 2773 // Cleanup. No need to spill because VirtualFrame::Drop is safe for | |
| 2774 // any frame. | |
| 2775 node->break_target()->Bind(); | |
| 2776 frame_->Drop(5); | |
| 2777 | |
| 2778 // Exit. | |
| 2779 exit.Bind(); | |
| 2780 node->continue_target()->Unuse(); | |
| 2781 node->break_target()->Unuse(); | |
| 2782 ASSERT(frame_->height() == original_height); | |
| 2783 } | |
| 2784 | |
| 2785 | |
| 2786 void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { | |
| 2787 #ifdef DEBUG | |
| 2788 int original_height = frame_->height(); | |
| 2789 #endif | |
| 2790 VirtualFrame::SpilledScope spilled_scope(frame_); | |
| 2791 Comment cmnt(masm_, "[ TryCatchStatement"); | |
| 2792 CodeForStatementPosition(node); | |
| 2793 | |
| 2794 JumpTarget try_block; | |
| 2795 JumpTarget exit; | |
| 2796 | |
| 2797 try_block.Call(); | |
| 2798 // --- Catch block --- | |
| 2799 frame_->EmitPush(r0); | |
| 2800 | |
| 2801 // Store the caught exception in the catch variable. | |
| 2802 Variable* catch_var = node->catch_var()->var(); | |
| 2803 ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL); | |
| 2804 StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT); | |
| 2805 | |
| 2806 // Remove the exception from the stack. | |
| 2807 frame_->Drop(); | |
| 2808 | |
| 2809 { VirtualFrame::RegisterAllocationScope scope(this); | |
| 2810 VisitStatements(node->catch_block()->statements()); | |
| 2811 } | |
| 2812 if (frame_ != NULL) { | |
| 2813 exit.Jump(); | |
| 2814 } | |
| 2815 | |
| 2816 | |
| 2817 // --- Try block --- | |
| 2818 try_block.Bind(); | |
| 2819 | |
| 2820 frame_->PushTryHandler(TRY_CATCH_HANDLER); | |
| 2821 int handler_height = frame_->height(); | |
| 2822 | |
| 2823 // Shadow the labels for all escapes from the try block, including | |
| 2824 // returns. During shadowing, the original label is hidden as the | |
| 2825 // LabelShadow and operations on the original actually affect the | |
| 2826 // shadowing label. | |
| 2827 // | |
| 2828 // We should probably try to unify the escaping labels and the return | |
| 2829 // label. | |
| 2830 int nof_escapes = node->escaping_targets()->length(); | |
| 2831 List<ShadowTarget*> shadows(1 + nof_escapes); | |
| 2832 | |
| 2833 // Add the shadow target for the function return. | |
| 2834 static const int kReturnShadowIndex = 0; | |
| 2835 shadows.Add(new ShadowTarget(&function_return_)); | |
| 2836 bool function_return_was_shadowed = function_return_is_shadowed_; | |
| 2837 function_return_is_shadowed_ = true; | |
| 2838 ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); | |
| 2839 | |
| 2840 // Add the remaining shadow targets. | |
| 2841 for (int i = 0; i < nof_escapes; i++) { | |
| 2842 shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); | |
| 2843 } | |
| 2844 | |
| 2845 // Generate code for the statements in the try block. | |
| 2846 { VirtualFrame::RegisterAllocationScope scope(this); | |
| 2847 VisitStatements(node->try_block()->statements()); | |
| 2848 } | |
| 2849 | |
| 2850 // Stop the introduced shadowing and count the number of required unlinks. | |
| 2851 // After shadowing stops, the original labels are unshadowed and the | |
| 2852 // LabelShadows represent the formerly shadowing labels. | |
| 2853 bool has_unlinks = false; | |
| 2854 for (int i = 0; i < shadows.length(); i++) { | |
| 2855 shadows[i]->StopShadowing(); | |
| 2856 has_unlinks = has_unlinks || shadows[i]->is_linked(); | |
| 2857 } | |
| 2858 function_return_is_shadowed_ = function_return_was_shadowed; | |
| 2859 | |
| 2860 // Get an external reference to the handler address. | |
| 2861 ExternalReference handler_address(Isolate::k_handler_address, isolate()); | |
| 2862 | |
| 2863 // If we can fall off the end of the try block, unlink from try chain. | |
| 2864 if (has_valid_frame()) { | |
| 2865 // The next handler address is on top of the frame. Unlink from | |
| 2866 // the handler list and drop the rest of this handler from the | |
| 2867 // frame. | |
| 2868 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | |
| 2869 frame_->EmitPop(r1); // r0 can contain the return value. | |
| 2870 __ mov(r3, Operand(handler_address)); | |
| 2871 __ str(r1, MemOperand(r3)); | |
| 2872 frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); | |
| 2873 if (has_unlinks) { | |
| 2874 exit.Jump(); | |
| 2875 } | |
| 2876 } | |
| 2877 | |
| 2878 // Generate unlink code for the (formerly) shadowing labels that have been | |
| 2879 // jumped to. Deallocate each shadow target. | |
| 2880 for (int i = 0; i < shadows.length(); i++) { | |
| 2881 if (shadows[i]->is_linked()) { | |
| 2882 // Unlink from try chain; | |
| 2883 shadows[i]->Bind(); | |
| 2884 // Because we can be jumping here (to spilled code) from unspilled | |
| 2885 // code, we need to reestablish a spilled frame at this block. | |
| 2886 frame_->SpillAll(); | |
| 2887 | |
| 2888 // Reload sp from the top handler, because some statements that we | |
| 2889 // break from (eg, for...in) may have left stuff on the stack. | |
| 2890 __ mov(r3, Operand(handler_address)); | |
| 2891 __ ldr(sp, MemOperand(r3)); | |
| 2892 frame_->Forget(frame_->height() - handler_height); | |
| 2893 | |
| 2894 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | |
| 2895 frame_->EmitPop(r1); // r0 can contain the return value. | |
| 2896 __ str(r1, MemOperand(r3)); | |
| 2897 frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); | |
| 2898 | |
| 2899 if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { | |
| 2900 frame_->PrepareForReturn(); | |
| 2901 } | |
| 2902 shadows[i]->other_target()->Jump(); | |
| 2903 } | |
| 2904 } | |
| 2905 | |
| 2906 exit.Bind(); | |
| 2907 ASSERT(!has_valid_frame() || frame_->height() == original_height); | |
| 2908 } | |
| 2909 | |
| 2910 | |
| 2911 void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { | |
| 2912 #ifdef DEBUG | |
| 2913 int original_height = frame_->height(); | |
| 2914 #endif | |
| 2915 VirtualFrame::SpilledScope spilled_scope(frame_); | |
| 2916 Comment cmnt(masm_, "[ TryFinallyStatement"); | |
| 2917 CodeForStatementPosition(node); | |
| 2918 | |
| 2919 // State: Used to keep track of reason for entering the finally | |
| 2920 // block. Should probably be extended to hold information for | |
| 2921 // break/continue from within the try block. | |
| 2922 enum { FALLING, THROWING, JUMPING }; | |
| 2923 | |
| 2924 JumpTarget try_block; | |
| 2925 JumpTarget finally_block; | |
| 2926 | |
| 2927 try_block.Call(); | |
| 2928 | |
| 2929 frame_->EmitPush(r0); // save exception object on the stack | |
| 2930 // In case of thrown exceptions, this is where we continue. | |
| 2931 __ mov(r2, Operand(Smi::FromInt(THROWING))); | |
| 2932 finally_block.Jump(); | |
| 2933 | |
| 2934 // --- Try block --- | |
| 2935 try_block.Bind(); | |
| 2936 | |
| 2937 frame_->PushTryHandler(TRY_FINALLY_HANDLER); | |
| 2938 int handler_height = frame_->height(); | |
| 2939 | |
| 2940 // Shadow the labels for all escapes from the try block, including | |
| 2941 // returns. Shadowing hides the original label as the LabelShadow and | |
| 2942 // operations on the original actually affect the shadowing label. | |
| 2943 // | |
| 2944 // We should probably try to unify the escaping labels and the return | |
| 2945 // label. | |
| 2946 int nof_escapes = node->escaping_targets()->length(); | |
| 2947 List<ShadowTarget*> shadows(1 + nof_escapes); | |
| 2948 | |
| 2949 // Add the shadow target for the function return. | |
| 2950 static const int kReturnShadowIndex = 0; | |
| 2951 shadows.Add(new ShadowTarget(&function_return_)); | |
| 2952 bool function_return_was_shadowed = function_return_is_shadowed_; | |
| 2953 function_return_is_shadowed_ = true; | |
| 2954 ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); | |
| 2955 | |
| 2956 // Add the remaining shadow targets. | |
| 2957 for (int i = 0; i < nof_escapes; i++) { | |
| 2958 shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); | |
| 2959 } | |
| 2960 | |
| 2961 // Generate code for the statements in the try block. | |
| 2962 { VirtualFrame::RegisterAllocationScope scope(this); | |
| 2963 VisitStatements(node->try_block()->statements()); | |
| 2964 } | |
| 2965 | |
| 2966 // Stop the introduced shadowing and count the number of required unlinks. | |
| 2967 // After shadowing stops, the original labels are unshadowed and the | |
| 2968 // LabelShadows represent the formerly shadowing labels. | |
| 2969 int nof_unlinks = 0; | |
| 2970 for (int i = 0; i < shadows.length(); i++) { | |
| 2971 shadows[i]->StopShadowing(); | |
| 2972 if (shadows[i]->is_linked()) nof_unlinks++; | |
| 2973 } | |
| 2974 function_return_is_shadowed_ = function_return_was_shadowed; | |
| 2975 | |
| 2976 // Get an external reference to the handler address. | |
| 2977 ExternalReference handler_address(Isolate::k_handler_address, isolate()); | |
| 2978 | |
| 2979 // If we can fall off the end of the try block, unlink from the try | |
| 2980 // chain and set the state on the frame to FALLING. | |
| 2981 if (has_valid_frame()) { | |
| 2982 // The next handler address is on top of the frame. | |
| 2983 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | |
| 2984 frame_->EmitPop(r1); | |
| 2985 __ mov(r3, Operand(handler_address)); | |
| 2986 __ str(r1, MemOperand(r3)); | |
| 2987 frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); | |
| 2988 | |
| 2989 // Fake a top of stack value (unneeded when FALLING) and set the | |
| 2990 // state in r2, then jump around the unlink blocks if any. | |
| 2991 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); | |
| 2992 frame_->EmitPush(r0); | |
| 2993 __ mov(r2, Operand(Smi::FromInt(FALLING))); | |
| 2994 if (nof_unlinks > 0) { | |
| 2995 finally_block.Jump(); | |
| 2996 } | |
| 2997 } | |
| 2998 | |
| 2999 // Generate code to unlink and set the state for the (formerly) | |
| 3000 // shadowing targets that have been jumped to. | |
| 3001 for (int i = 0; i < shadows.length(); i++) { | |
| 3002 if (shadows[i]->is_linked()) { | |
| 3003 // If we have come from the shadowed return, the return value is | |
| 3004 // in (a non-refcounted reference to) r0. We must preserve it | |
| 3005 // until it is pushed. | |
| 3006 // | |
| 3007 // Because we can be jumping here (to spilled code) from | |
| 3008 // unspilled code, we need to reestablish a spilled frame at | |
| 3009 // this block. | |
| 3010 shadows[i]->Bind(); | |
| 3011 frame_->SpillAll(); | |
| 3012 | |
| 3013 // Reload sp from the top handler, because some statements that | |
| 3014 // we break from (eg, for...in) may have left stuff on the | |
| 3015 // stack. | |
| 3016 __ mov(r3, Operand(handler_address)); | |
| 3017 __ ldr(sp, MemOperand(r3)); | |
| 3018 frame_->Forget(frame_->height() - handler_height); | |
| 3019 | |
| 3020 // Unlink this handler and drop it from the frame. The next | |
| 3021 // handler address is currently on top of the frame. | |
| 3022 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | |
| 3023 frame_->EmitPop(r1); | |
| 3024 __ str(r1, MemOperand(r3)); | |
| 3025 frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); | |
| 3026 | |
| 3027 if (i == kReturnShadowIndex) { | |
| 3028 // If this label shadowed the function return, materialize the | |
| 3029 // return value on the stack. | |
| 3030 frame_->EmitPush(r0); | |
| 3031 } else { | |
| 3032 // Fake TOS for targets that shadowed breaks and continues. | |
| 3033 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); | |
| 3034 frame_->EmitPush(r0); | |
| 3035 } | |
| 3036 __ mov(r2, Operand(Smi::FromInt(JUMPING + i))); | |
| 3037 if (--nof_unlinks > 0) { | |
| 3038 // If this is not the last unlink block, jump around the next. | |
| 3039 finally_block.Jump(); | |
| 3040 } | |
| 3041 } | |
| 3042 } | |
| 3043 | |
| 3044 // --- Finally block --- | |
| 3045 finally_block.Bind(); | |
| 3046 | |
| 3047 // Push the state on the stack. | |
| 3048 frame_->EmitPush(r2); | |
| 3049 | |
| 3050 // We keep two elements on the stack - the (possibly faked) result | |
| 3051 // and the state - while evaluating the finally block. | |
| 3052 // | |
| 3053 // Generate code for the statements in the finally block. | |
| 3054 { VirtualFrame::RegisterAllocationScope scope(this); | |
| 3055 VisitStatements(node->finally_block()->statements()); | |
| 3056 } | |
| 3057 | |
| 3058 if (has_valid_frame()) { | |
| 3059 // Restore state and return value or faked TOS. | |
| 3060 frame_->EmitPop(r2); | |
| 3061 frame_->EmitPop(r0); | |
| 3062 } | |
| 3063 | |
| 3064 // Generate code to jump to the right destination for all used | |
| 3065 // formerly shadowing targets. Deallocate each shadow target. | |
| 3066 for (int i = 0; i < shadows.length(); i++) { | |
| 3067 if (has_valid_frame() && shadows[i]->is_bound()) { | |
| 3068 JumpTarget* original = shadows[i]->other_target(); | |
| 3069 __ cmp(r2, Operand(Smi::FromInt(JUMPING + i))); | |
| 3070 if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { | |
| 3071 JumpTarget skip; | |
| 3072 skip.Branch(ne); | |
| 3073 frame_->PrepareForReturn(); | |
| 3074 original->Jump(); | |
| 3075 skip.Bind(); | |
| 3076 } else { | |
| 3077 original->Branch(eq); | |
| 3078 } | |
| 3079 } | |
| 3080 } | |
| 3081 | |
| 3082 if (has_valid_frame()) { | |
| 3083 // Check if we need to rethrow the exception. | |
| 3084 JumpTarget exit; | |
| 3085 __ cmp(r2, Operand(Smi::FromInt(THROWING))); | |
| 3086 exit.Branch(ne); | |
| 3087 | |
| 3088 // Rethrow exception. | |
| 3089 frame_->EmitPush(r0); | |
| 3090 frame_->CallRuntime(Runtime::kReThrow, 1); | |
| 3091 | |
| 3092 // Done. | |
| 3093 exit.Bind(); | |
| 3094 } | |
| 3095 ASSERT(!has_valid_frame() || frame_->height() == original_height); | |
| 3096 } | |
| 3097 | |
| 3098 | |
| 3099 void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { | |
| 3100 #ifdef DEBUG | |
| 3101 int original_height = frame_->height(); | |
| 3102 #endif | |
| 3103 Comment cmnt(masm_, "[ DebuggerStatament"); | |
| 3104 CodeForStatementPosition(node); | |
| 3105 #ifdef ENABLE_DEBUGGER_SUPPORT | |
| 3106 frame_->DebugBreak(); | |
| 3107 #endif | |
| 3108 // Ignore the return value. | |
| 3109 ASSERT(frame_->height() == original_height); | |
| 3110 } | |
| 3111 | |
| 3112 | |
| 3113 void CodeGenerator::InstantiateFunction( | |
| 3114 Handle<SharedFunctionInfo> function_info, | |
| 3115 bool pretenure) { | |
| 3116 // Use the fast case closure allocation code that allocates in new | |
| 3117 // space for nested functions that don't need literals cloning. | |
| 3118 if (!pretenure && | |
| 3119 scope()->is_function_scope() && | |
| 3120 function_info->num_literals() == 0) { | |
| 3121 FastNewClosureStub stub( | |
| 3122 function_info->strict_mode() ? kStrictMode : kNonStrictMode); | |
| 3123 frame_->EmitPush(Operand(function_info)); | |
| 3124 frame_->SpillAll(); | |
| 3125 frame_->CallStub(&stub, 1); | |
| 3126 frame_->EmitPush(r0); | |
| 3127 } else { | |
| 3128 // Create a new closure. | |
| 3129 frame_->EmitPush(cp); | |
| 3130 frame_->EmitPush(Operand(function_info)); | |
| 3131 frame_->EmitPush(Operand(pretenure | |
| 3132 ? FACTORY->true_value() | |
| 3133 : FACTORY->false_value())); | |
| 3134 frame_->CallRuntime(Runtime::kNewClosure, 3); | |
| 3135 frame_->EmitPush(r0); | |
| 3136 } | |
| 3137 } | |
| 3138 | |
| 3139 | |
| 3140 void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { | |
| 3141 #ifdef DEBUG | |
| 3142 int original_height = frame_->height(); | |
| 3143 #endif | |
| 3144 Comment cmnt(masm_, "[ FunctionLiteral"); | |
| 3145 | |
| 3146 // Build the function info and instantiate it. | |
| 3147 Handle<SharedFunctionInfo> function_info = | |
| 3148 Compiler::BuildFunctionInfo(node, script()); | |
| 3149 if (function_info.is_null()) { | |
| 3150 SetStackOverflow(); | |
| 3151 ASSERT(frame_->height() == original_height); | |
| 3152 return; | |
| 3153 } | |
| 3154 InstantiateFunction(function_info, node->pretenure()); | |
| 3155 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3156 } | |
| 3157 | |
| 3158 | |
| 3159 void CodeGenerator::VisitSharedFunctionInfoLiteral( | |
| 3160 SharedFunctionInfoLiteral* node) { | |
| 3161 #ifdef DEBUG | |
| 3162 int original_height = frame_->height(); | |
| 3163 #endif | |
| 3164 Comment cmnt(masm_, "[ SharedFunctionInfoLiteral"); | |
| 3165 InstantiateFunction(node->shared_function_info(), false); | |
| 3166 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3167 } | |
| 3168 | |
| 3169 | |
| 3170 void CodeGenerator::VisitConditional(Conditional* node) { | |
| 3171 #ifdef DEBUG | |
| 3172 int original_height = frame_->height(); | |
| 3173 #endif | |
| 3174 Comment cmnt(masm_, "[ Conditional"); | |
| 3175 JumpTarget then; | |
| 3176 JumpTarget else_; | |
| 3177 LoadCondition(node->condition(), &then, &else_, true); | |
| 3178 if (has_valid_frame()) { | |
| 3179 Branch(false, &else_); | |
| 3180 } | |
| 3181 if (has_valid_frame() || then.is_linked()) { | |
| 3182 then.Bind(); | |
| 3183 Load(node->then_expression()); | |
| 3184 } | |
| 3185 if (else_.is_linked()) { | |
| 3186 JumpTarget exit; | |
| 3187 if (has_valid_frame()) exit.Jump(); | |
| 3188 else_.Bind(); | |
| 3189 Load(node->else_expression()); | |
| 3190 if (exit.is_linked()) exit.Bind(); | |
| 3191 } | |
| 3192 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3193 } | |
| 3194 | |
| 3195 | |
| 3196 void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { | |
| 3197 if (slot->type() == Slot::LOOKUP) { | |
| 3198 ASSERT(slot->var()->is_dynamic()); | |
| 3199 | |
| 3200 // JumpTargets do not yet support merging frames so the frame must be | |
| 3201 // spilled when jumping to these targets. | |
| 3202 JumpTarget slow; | |
| 3203 JumpTarget done; | |
| 3204 | |
| 3205 // Generate fast case for loading from slots that correspond to | |
| 3206 // local/global variables or arguments unless they are shadowed by | |
| 3207 // eval-introduced bindings. | |
| 3208 EmitDynamicLoadFromSlotFastCase(slot, | |
| 3209 typeof_state, | |
| 3210 &slow, | |
| 3211 &done); | |
| 3212 | |
| 3213 slow.Bind(); | |
| 3214 frame_->EmitPush(cp); | |
| 3215 frame_->EmitPush(Operand(slot->var()->name())); | |
| 3216 | |
| 3217 if (typeof_state == INSIDE_TYPEOF) { | |
| 3218 frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); | |
| 3219 } else { | |
| 3220 frame_->CallRuntime(Runtime::kLoadContextSlot, 2); | |
| 3221 } | |
| 3222 | |
| 3223 done.Bind(); | |
| 3224 frame_->EmitPush(r0); | |
| 3225 | |
| 3226 } else { | |
| 3227 Register scratch = VirtualFrame::scratch0(); | |
| 3228 TypeInfo info = type_info(slot); | |
| 3229 frame_->EmitPush(SlotOperand(slot, scratch), info); | |
| 3230 | |
| 3231 if (slot->var()->mode() == Variable::CONST) { | |
| 3232 // Const slots may contain 'the hole' value (the constant hasn't been | |
| 3233 // initialized yet) which needs to be converted into the 'undefined' | |
| 3234 // value. | |
| 3235 Comment cmnt(masm_, "[ Unhole const"); | |
| 3236 Register tos = frame_->PopToRegister(); | |
| 3237 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); | |
| 3238 __ cmp(tos, ip); | |
| 3239 __ LoadRoot(tos, Heap::kUndefinedValueRootIndex, eq); | |
| 3240 frame_->EmitPush(tos); | |
| 3241 } | |
| 3242 } | |
| 3243 } | |
| 3244 | |
| 3245 | |
| 3246 void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, | |
| 3247 TypeofState state) { | |
| 3248 VirtualFrame::RegisterAllocationScope scope(this); | |
| 3249 LoadFromSlot(slot, state); | |
| 3250 | |
| 3251 // Bail out quickly if we're not using lazy arguments allocation. | |
| 3252 if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; | |
| 3253 | |
| 3254 // ... or if the slot isn't a non-parameter arguments slot. | |
| 3255 if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; | |
| 3256 | |
| 3257 // Load the loaded value from the stack into a register but leave it on the | |
| 3258 // stack. | |
| 3259 Register tos = frame_->Peek(); | |
| 3260 | |
| 3261 // If the loaded value is the sentinel that indicates that we | |
| 3262 // haven't loaded the arguments object yet, we need to do it now. | |
| 3263 JumpTarget exit; | |
| 3264 __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); | |
| 3265 __ cmp(tos, ip); | |
| 3266 exit.Branch(ne); | |
| 3267 frame_->Drop(); | |
| 3268 StoreArgumentsObject(false); | |
| 3269 exit.Bind(); | |
| 3270 } | |
| 3271 | |
| 3272 | |
| 3273 void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { | |
| 3274 ASSERT(slot != NULL); | |
| 3275 VirtualFrame::RegisterAllocationScope scope(this); | |
| 3276 if (slot->type() == Slot::LOOKUP) { | |
| 3277 ASSERT(slot->var()->is_dynamic()); | |
| 3278 | |
| 3279 // For now, just do a runtime call. | |
| 3280 frame_->EmitPush(cp); | |
| 3281 frame_->EmitPush(Operand(slot->var()->name())); | |
| 3282 | |
| 3283 if (init_state == CONST_INIT) { | |
| 3284 // Same as the case for a normal store, but ignores attribute | |
| 3285 // (e.g. READ_ONLY) of context slot so that we can initialize | |
| 3286 // const properties (introduced via eval("const foo = (some | |
| 3287 // expr);")). Also, uses the current function context instead of | |
| 3288 // the top context. | |
| 3289 // | |
| 3290 // Note that we must declare the foo upon entry of eval(), via a | |
| 3291 // context slot declaration, but we cannot initialize it at the | |
| 3292 // same time, because the const declaration may be at the end of | |
| 3293 // the eval code (sigh...) and the const variable may have been | |
| 3294 // used before (where its value is 'undefined'). Thus, we can only | |
| 3295 // do the initialization when we actually encounter the expression | |
| 3296 // and when the expression operands are defined and valid, and | |
| 3297 // thus we need the split into 2 operations: declaration of the | |
| 3298 // context slot followed by initialization. | |
| 3299 frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); | |
| 3300 } else { | |
| 3301 frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); | |
| 3302 frame_->CallRuntime(Runtime::kStoreContextSlot, 4); | |
| 3303 } | |
| 3304 // Storing a variable must keep the (new) value on the expression | |
| 3305 // stack. This is necessary for compiling assignment expressions. | |
| 3306 frame_->EmitPush(r0); | |
| 3307 | |
| 3308 } else { | |
| 3309 ASSERT(!slot->var()->is_dynamic()); | |
| 3310 Register scratch = VirtualFrame::scratch0(); | |
| 3311 Register scratch2 = VirtualFrame::scratch1(); | |
| 3312 | |
| 3313 // The frame must be spilled when branching to this target. | |
| 3314 JumpTarget exit; | |
| 3315 | |
| 3316 if (init_state == CONST_INIT) { | |
| 3317 ASSERT(slot->var()->mode() == Variable::CONST); | |
| 3318 // Only the first const initialization must be executed (the slot | |
| 3319 // still contains 'the hole' value). When the assignment is | |
| 3320 // executed, the code is identical to a normal store (see below). | |
| 3321 Comment cmnt(masm_, "[ Init const"); | |
| 3322 __ ldr(scratch, SlotOperand(slot, scratch)); | |
| 3323 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); | |
| 3324 __ cmp(scratch, ip); | |
| 3325 exit.Branch(ne); | |
| 3326 } | |
| 3327 | |
| 3328 // We must execute the store. Storing a variable must keep the | |
| 3329 // (new) value on the stack. This is necessary for compiling | |
| 3330 // assignment expressions. | |
| 3331 // | |
| 3332 // Note: We will reach here even with slot->var()->mode() == | |
| 3333 // Variable::CONST because of const declarations which will | |
| 3334 // initialize consts to 'the hole' value and by doing so, end up | |
| 3335 // calling this code. r2 may be loaded with context; used below in | |
| 3336 // RecordWrite. | |
| 3337 Register tos = frame_->Peek(); | |
| 3338 __ str(tos, SlotOperand(slot, scratch)); | |
| 3339 if (slot->type() == Slot::CONTEXT) { | |
| 3340 // Skip write barrier if the written value is a smi. | |
| 3341 __ tst(tos, Operand(kSmiTagMask)); | |
| 3342 // We don't use tos any more after here. | |
| 3343 exit.Branch(eq); | |
| 3344 // scratch is loaded with context when calling SlotOperand above. | |
| 3345 int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; | |
| 3346 // We need an extra register. Until we have a way to do that in the | |
| 3347 // virtual frame we will cheat and ask for a free TOS register. | |
| 3348 Register scratch3 = frame_->GetTOSRegister(); | |
| 3349 __ RecordWrite(scratch, Operand(offset), scratch2, scratch3); | |
| 3350 } | |
| 3351 // If we definitely did not jump over the assignment, we do not need | |
| 3352 // to bind the exit label. Doing so can defeat peephole | |
| 3353 // optimization. | |
| 3354 if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) { | |
| 3355 exit.Bind(); | |
| 3356 } | |
| 3357 } | |
| 3358 } | |
| 3359 | |
| 3360 | |
| 3361 void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot, | |
| 3362 TypeofState typeof_state, | |
| 3363 JumpTarget* slow) { | |
| 3364 // Check that no extension objects have been created by calls to | |
| 3365 // eval from the current scope to the global scope. | |
| 3366 Register tmp = frame_->scratch0(); | |
| 3367 Register tmp2 = frame_->scratch1(); | |
| 3368 Register context = cp; | |
| 3369 Scope* s = scope(); | |
| 3370 while (s != NULL) { | |
| 3371 if (s->num_heap_slots() > 0) { | |
| 3372 if (s->calls_eval()) { | |
| 3373 frame_->SpillAll(); | |
| 3374 // Check that extension is NULL. | |
| 3375 __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); | |
| 3376 __ tst(tmp2, tmp2); | |
| 3377 slow->Branch(ne); | |
| 3378 } | |
| 3379 // Load next context in chain. | |
| 3380 __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); | |
| 3381 __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); | |
| 3382 context = tmp; | |
| 3383 } | |
| 3384 // If no outer scope calls eval, we do not need to check more | |
| 3385 // context extensions. | |
| 3386 if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; | |
| 3387 s = s->outer_scope(); | |
| 3388 } | |
| 3389 | |
| 3390 if (s->is_eval_scope()) { | |
| 3391 frame_->SpillAll(); | |
| 3392 Label next, fast; | |
| 3393 __ Move(tmp, context); | |
| 3394 __ bind(&next); | |
| 3395 // Terminate at global context. | |
| 3396 __ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset)); | |
| 3397 __ LoadRoot(ip, Heap::kGlobalContextMapRootIndex); | |
| 3398 __ cmp(tmp2, ip); | |
| 3399 __ b(eq, &fast); | |
| 3400 // Check that extension is NULL. | |
| 3401 __ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX)); | |
| 3402 __ tst(tmp2, tmp2); | |
| 3403 slow->Branch(ne); | |
| 3404 // Load next context in chain. | |
| 3405 __ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX)); | |
| 3406 __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); | |
| 3407 __ b(&next); | |
| 3408 __ bind(&fast); | |
| 3409 } | |
| 3410 | |
| 3411 // Load the global object. | |
| 3412 LoadGlobal(); | |
| 3413 // Setup the name register and call load IC. | |
| 3414 frame_->CallLoadIC(slot->var()->name(), | |
| 3415 typeof_state == INSIDE_TYPEOF | |
| 3416 ? RelocInfo::CODE_TARGET | |
| 3417 : RelocInfo::CODE_TARGET_CONTEXT); | |
| 3418 } | |
| 3419 | |
| 3420 | |
| 3421 void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot, | |
| 3422 TypeofState typeof_state, | |
| 3423 JumpTarget* slow, | |
| 3424 JumpTarget* done) { | |
| 3425 // Generate fast-case code for variables that might be shadowed by | |
| 3426 // eval-introduced variables. Eval is used a lot without | |
| 3427 // introducing variables. In those cases, we do not want to | |
| 3428 // perform a runtime call for all variables in the scope | |
| 3429 // containing the eval. | |
| 3430 if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { | |
| 3431 LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow); | |
| 3432 frame_->SpillAll(); | |
| 3433 done->Jump(); | |
| 3434 | |
| 3435 } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { | |
| 3436 frame_->SpillAll(); | |
| 3437 Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot(); | |
| 3438 Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); | |
| 3439 if (potential_slot != NULL) { | |
| 3440 // Generate fast case for locals that rewrite to slots. | |
| 3441 __ ldr(r0, | |
| 3442 ContextSlotOperandCheckExtensions(potential_slot, | |
| 3443 r1, | |
| 3444 r2, | |
| 3445 slow)); | |
| 3446 if (potential_slot->var()->mode() == Variable::CONST) { | |
| 3447 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); | |
| 3448 __ cmp(r0, ip); | |
| 3449 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); | |
| 3450 } | |
| 3451 done->Jump(); | |
| 3452 } else if (rewrite != NULL) { | |
| 3453 // Generate fast case for argument loads. | |
| 3454 Property* property = rewrite->AsProperty(); | |
| 3455 if (property != NULL) { | |
| 3456 VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); | |
| 3457 Literal* key_literal = property->key()->AsLiteral(); | |
| 3458 if (obj_proxy != NULL && | |
| 3459 key_literal != NULL && | |
| 3460 obj_proxy->IsArguments() && | |
| 3461 key_literal->handle()->IsSmi()) { | |
| 3462 // Load arguments object if there are no eval-introduced | |
| 3463 // variables. Then load the argument from the arguments | |
| 3464 // object using keyed load. | |
| 3465 __ ldr(r0, | |
| 3466 ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(), | |
| 3467 r1, | |
| 3468 r2, | |
| 3469 slow)); | |
| 3470 frame_->EmitPush(r0); | |
| 3471 __ mov(r1, Operand(key_literal->handle())); | |
| 3472 frame_->EmitPush(r1); | |
| 3473 EmitKeyedLoad(); | |
| 3474 done->Jump(); | |
| 3475 } | |
| 3476 } | |
| 3477 } | |
| 3478 } | |
| 3479 } | |
| 3480 | |
| 3481 | |
| 3482 void CodeGenerator::VisitSlot(Slot* node) { | |
| 3483 #ifdef DEBUG | |
| 3484 int original_height = frame_->height(); | |
| 3485 #endif | |
| 3486 Comment cmnt(masm_, "[ Slot"); | |
| 3487 LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF); | |
| 3488 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3489 } | |
| 3490 | |
| 3491 | |
| 3492 void CodeGenerator::VisitVariableProxy(VariableProxy* node) { | |
| 3493 #ifdef DEBUG | |
| 3494 int original_height = frame_->height(); | |
| 3495 #endif | |
| 3496 Comment cmnt(masm_, "[ VariableProxy"); | |
| 3497 | |
| 3498 Variable* var = node->var(); | |
| 3499 Expression* expr = var->rewrite(); | |
| 3500 if (expr != NULL) { | |
| 3501 Visit(expr); | |
| 3502 } else { | |
| 3503 ASSERT(var->is_global()); | |
| 3504 Reference ref(this, node); | |
| 3505 ref.GetValue(); | |
| 3506 } | |
| 3507 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3508 } | |
| 3509 | |
| 3510 | |
| 3511 void CodeGenerator::VisitLiteral(Literal* node) { | |
| 3512 #ifdef DEBUG | |
| 3513 int original_height = frame_->height(); | |
| 3514 #endif | |
| 3515 Comment cmnt(masm_, "[ Literal"); | |
| 3516 Register reg = frame_->GetTOSRegister(); | |
| 3517 bool is_smi = node->handle()->IsSmi(); | |
| 3518 __ mov(reg, Operand(node->handle())); | |
| 3519 frame_->EmitPush(reg, is_smi ? TypeInfo::Smi() : TypeInfo::Unknown()); | |
| 3520 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3521 } | |
| 3522 | |
| 3523 | |
| 3524 void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { | |
| 3525 #ifdef DEBUG | |
| 3526 int original_height = frame_->height(); | |
| 3527 #endif | |
| 3528 Comment cmnt(masm_, "[ RexExp Literal"); | |
| 3529 | |
| 3530 Register tmp = VirtualFrame::scratch0(); | |
| 3531 // Free up a TOS register that can be used to push the literal. | |
| 3532 Register literal = frame_->GetTOSRegister(); | |
| 3533 | |
| 3534 // Retrieve the literal array and check the allocated entry. | |
| 3535 | |
| 3536 // Load the function of this activation. | |
| 3537 __ ldr(tmp, frame_->Function()); | |
| 3538 | |
| 3539 // Load the literals array of the function. | |
| 3540 __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kLiteralsOffset)); | |
| 3541 | |
| 3542 // Load the literal at the ast saved index. | |
| 3543 int literal_offset = | |
| 3544 FixedArray::kHeaderSize + node->literal_index() * kPointerSize; | |
| 3545 __ ldr(literal, FieldMemOperand(tmp, literal_offset)); | |
| 3546 | |
| 3547 JumpTarget materialized; | |
| 3548 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | |
| 3549 __ cmp(literal, ip); | |
| 3550 // This branch locks the virtual frame at the done label to match the | |
| 3551 // one we have here, where the literal register is not on the stack and | |
| 3552 // nothing is spilled. | |
| 3553 materialized.Branch(ne); | |
| 3554 | |
| 3555 // If the entry is undefined we call the runtime system to compute | |
| 3556 // the literal. | |
| 3557 // literal array (0) | |
| 3558 frame_->EmitPush(tmp); | |
| 3559 // literal index (1) | |
| 3560 frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); | |
| 3561 // RegExp pattern (2) | |
| 3562 frame_->EmitPush(Operand(node->pattern())); | |
| 3563 // RegExp flags (3) | |
| 3564 frame_->EmitPush(Operand(node->flags())); | |
| 3565 frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); | |
| 3566 __ Move(literal, r0); | |
| 3567 | |
| 3568 materialized.Bind(); | |
| 3569 | |
| 3570 frame_->EmitPush(literal); | |
| 3571 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; | |
| 3572 frame_->EmitPush(Operand(Smi::FromInt(size))); | |
| 3573 frame_->CallRuntime(Runtime::kAllocateInNewSpace, 1); | |
| 3574 // TODO(lrn): Use AllocateInNewSpace macro with fallback to runtime. | |
| 3575 // r0 is newly allocated space. | |
| 3576 | |
| 3577 // Reuse literal variable with (possibly) a new register, still holding | |
| 3578 // the materialized boilerplate. | |
| 3579 literal = frame_->PopToRegister(r0); | |
| 3580 | |
| 3581 __ CopyFields(r0, literal, tmp.bit(), size / kPointerSize); | |
| 3582 | |
| 3583 // Push the clone. | |
| 3584 frame_->EmitPush(r0); | |
| 3585 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3586 } | |
| 3587 | |
| 3588 | |
| 3589 void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { | |
| 3590 #ifdef DEBUG | |
| 3591 int original_height = frame_->height(); | |
| 3592 #endif | |
| 3593 Comment cmnt(masm_, "[ ObjectLiteral"); | |
| 3594 | |
| 3595 Register literal = frame_->GetTOSRegister(); | |
| 3596 // Load the function of this activation. | |
| 3597 __ ldr(literal, frame_->Function()); | |
| 3598 // Literal array. | |
| 3599 __ ldr(literal, FieldMemOperand(literal, JSFunction::kLiteralsOffset)); | |
| 3600 frame_->EmitPush(literal); | |
| 3601 // Literal index. | |
| 3602 frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); | |
| 3603 // Constant properties. | |
| 3604 frame_->EmitPush(Operand(node->constant_properties())); | |
| 3605 // Should the object literal have fast elements? | |
| 3606 frame_->EmitPush(Operand(Smi::FromInt(node->fast_elements() ? 1 : 0))); | |
| 3607 if (node->depth() > 1) { | |
| 3608 frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4); | |
| 3609 } else { | |
| 3610 frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); | |
| 3611 } | |
| 3612 frame_->EmitPush(r0); // save the result | |
| 3613 | |
| 3614 // Mark all computed expressions that are bound to a key that | |
| 3615 // is shadowed by a later occurrence of the same key. For the | |
| 3616 // marked expressions, no store code is emitted. | |
| 3617 node->CalculateEmitStore(); | |
| 3618 | |
| 3619 for (int i = 0; i < node->properties()->length(); i++) { | |
| 3620 // At the start of each iteration, the top of stack contains | |
| 3621 // the newly created object literal. | |
| 3622 ObjectLiteral::Property* property = node->properties()->at(i); | |
| 3623 Literal* key = property->key(); | |
| 3624 Expression* value = property->value(); | |
| 3625 switch (property->kind()) { | |
| 3626 case ObjectLiteral::Property::CONSTANT: | |
| 3627 break; | |
| 3628 case ObjectLiteral::Property::MATERIALIZED_LITERAL: | |
| 3629 if (CompileTimeValue::IsCompileTimeValue(property->value())) break; | |
| 3630 // else fall through | |
| 3631 case ObjectLiteral::Property::COMPUTED: | |
| 3632 if (key->handle()->IsSymbol()) { | |
| 3633 Handle<Code> ic(Isolate::Current()->builtins()->builtin( | |
| 3634 Builtins::kStoreIC_Initialize)); | |
| 3635 Load(value); | |
| 3636 if (property->emit_store()) { | |
| 3637 frame_->PopToR0(); | |
| 3638 // Fetch the object literal. | |
| 3639 frame_->SpillAllButCopyTOSToR1(); | |
| 3640 __ mov(r2, Operand(key->handle())); | |
| 3641 frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, 0); | |
| 3642 } else { | |
| 3643 frame_->Drop(); | |
| 3644 } | |
| 3645 break; | |
| 3646 } | |
| 3647 // else fall through | |
| 3648 case ObjectLiteral::Property::PROTOTYPE: { | |
| 3649 frame_->Dup(); | |
| 3650 Load(key); | |
| 3651 Load(value); | |
| 3652 if (property->emit_store()) { | |
| 3653 frame_->EmitPush(Operand(Smi::FromInt(NONE))); // PropertyAttributes | |
| 3654 frame_->CallRuntime(Runtime::kSetProperty, 4); | |
| 3655 } else { | |
| 3656 frame_->Drop(3); | |
| 3657 } | |
| 3658 break; | |
| 3659 } | |
| 3660 case ObjectLiteral::Property::SETTER: { | |
| 3661 frame_->Dup(); | |
| 3662 Load(key); | |
| 3663 frame_->EmitPush(Operand(Smi::FromInt(1))); | |
| 3664 Load(value); | |
| 3665 frame_->CallRuntime(Runtime::kDefineAccessor, 4); | |
| 3666 break; | |
| 3667 } | |
| 3668 case ObjectLiteral::Property::GETTER: { | |
| 3669 frame_->Dup(); | |
| 3670 Load(key); | |
| 3671 frame_->EmitPush(Operand(Smi::FromInt(0))); | |
| 3672 Load(value); | |
| 3673 frame_->CallRuntime(Runtime::kDefineAccessor, 4); | |
| 3674 break; | |
| 3675 } | |
| 3676 } | |
| 3677 } | |
| 3678 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3679 } | |
| 3680 | |
| 3681 | |
| 3682 void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { | |
| 3683 #ifdef DEBUG | |
| 3684 int original_height = frame_->height(); | |
| 3685 #endif | |
| 3686 Comment cmnt(masm_, "[ ArrayLiteral"); | |
| 3687 | |
| 3688 Register tos = frame_->GetTOSRegister(); | |
| 3689 // Load the function of this activation. | |
| 3690 __ ldr(tos, frame_->Function()); | |
| 3691 // Load the literals array of the function. | |
| 3692 __ ldr(tos, FieldMemOperand(tos, JSFunction::kLiteralsOffset)); | |
| 3693 frame_->EmitPush(tos); | |
| 3694 frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); | |
| 3695 frame_->EmitPush(Operand(node->constant_elements())); | |
| 3696 int length = node->values()->length(); | |
| 3697 if (node->constant_elements()->map() == HEAP->fixed_cow_array_map()) { | |
| 3698 FastCloneShallowArrayStub stub( | |
| 3699 FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); | |
| 3700 frame_->CallStub(&stub, 3); | |
| 3701 __ IncrementCounter(masm_->isolate()->counters()->cow_arrays_created_stub(), | |
| 3702 1, r1, r2); | |
| 3703 } else if (node->depth() > 1) { | |
| 3704 frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); | |
| 3705 } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { | |
| 3706 frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); | |
| 3707 } else { | |
| 3708 FastCloneShallowArrayStub stub( | |
| 3709 FastCloneShallowArrayStub::CLONE_ELEMENTS, length); | |
| 3710 frame_->CallStub(&stub, 3); | |
| 3711 } | |
| 3712 frame_->EmitPush(r0); // save the result | |
| 3713 // r0: created object literal | |
| 3714 | |
| 3715 // Generate code to set the elements in the array that are not | |
| 3716 // literals. | |
| 3717 for (int i = 0; i < node->values()->length(); i++) { | |
| 3718 Expression* value = node->values()->at(i); | |
| 3719 | |
| 3720 // If value is a literal the property value is already set in the | |
| 3721 // boilerplate object. | |
| 3722 if (value->AsLiteral() != NULL) continue; | |
| 3723 // If value is a materialized literal the property value is already set | |
| 3724 // in the boilerplate object if it is simple. | |
| 3725 if (CompileTimeValue::IsCompileTimeValue(value)) continue; | |
| 3726 | |
| 3727 // The property must be set by generated code. | |
| 3728 Load(value); | |
| 3729 frame_->PopToR0(); | |
| 3730 // Fetch the object literal. | |
| 3731 frame_->SpillAllButCopyTOSToR1(); | |
| 3732 | |
| 3733 // Get the elements array. | |
| 3734 __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); | |
| 3735 | |
| 3736 // Write to the indexed properties array. | |
| 3737 int offset = i * kPointerSize + FixedArray::kHeaderSize; | |
| 3738 __ str(r0, FieldMemOperand(r1, offset)); | |
| 3739 | |
| 3740 // Update the write barrier for the array address. | |
| 3741 __ RecordWrite(r1, Operand(offset), r3, r2); | |
| 3742 } | |
| 3743 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3744 } | |
| 3745 | |
| 3746 | |
| 3747 void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { | |
| 3748 #ifdef DEBUG | |
| 3749 int original_height = frame_->height(); | |
| 3750 #endif | |
| 3751 // Call runtime routine to allocate the catch extension object and | |
| 3752 // assign the exception value to the catch variable. | |
| 3753 Comment cmnt(masm_, "[ CatchExtensionObject"); | |
| 3754 Load(node->key()); | |
| 3755 Load(node->value()); | |
| 3756 frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); | |
| 3757 frame_->EmitPush(r0); | |
| 3758 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3759 } | |
| 3760 | |
| 3761 | |
| 3762 void CodeGenerator::EmitSlotAssignment(Assignment* node) { | |
| 3763 #ifdef DEBUG | |
| 3764 int original_height = frame_->height(); | |
| 3765 #endif | |
| 3766 Comment cmnt(masm(), "[ Variable Assignment"); | |
| 3767 Variable* var = node->target()->AsVariableProxy()->AsVariable(); | |
| 3768 ASSERT(var != NULL); | |
| 3769 Slot* slot = var->AsSlot(); | |
| 3770 ASSERT(slot != NULL); | |
| 3771 | |
| 3772 // Evaluate the right-hand side. | |
| 3773 if (node->is_compound()) { | |
| 3774 // For a compound assignment the right-hand side is a binary operation | |
| 3775 // between the current property value and the actual right-hand side. | |
| 3776 LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); | |
| 3777 | |
| 3778 // Perform the binary operation. | |
| 3779 Literal* literal = node->value()->AsLiteral(); | |
| 3780 bool overwrite_value = node->value()->ResultOverwriteAllowed(); | |
| 3781 if (literal != NULL && literal->handle()->IsSmi()) { | |
| 3782 SmiOperation(node->binary_op(), | |
| 3783 literal->handle(), | |
| 3784 false, | |
| 3785 overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); | |
| 3786 } else { | |
| 3787 GenerateInlineSmi inline_smi = | |
| 3788 loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; | |
| 3789 if (literal != NULL) { | |
| 3790 ASSERT(!literal->handle()->IsSmi()); | |
| 3791 inline_smi = DONT_GENERATE_INLINE_SMI; | |
| 3792 } | |
| 3793 Load(node->value()); | |
| 3794 GenericBinaryOperation(node->binary_op(), | |
| 3795 overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, | |
| 3796 inline_smi); | |
| 3797 } | |
| 3798 } else { | |
| 3799 Load(node->value()); | |
| 3800 } | |
| 3801 | |
| 3802 // Perform the assignment. | |
| 3803 if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) { | |
| 3804 CodeForSourcePosition(node->position()); | |
| 3805 StoreToSlot(slot, | |
| 3806 node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT); | |
| 3807 } | |
| 3808 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3809 } | |
| 3810 | |
| 3811 | |
| 3812 void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) { | |
| 3813 #ifdef DEBUG | |
| 3814 int original_height = frame_->height(); | |
| 3815 #endif | |
| 3816 Comment cmnt(masm(), "[ Named Property Assignment"); | |
| 3817 Variable* var = node->target()->AsVariableProxy()->AsVariable(); | |
| 3818 Property* prop = node->target()->AsProperty(); | |
| 3819 ASSERT(var == NULL || (prop == NULL && var->is_global())); | |
| 3820 | |
| 3821 // Initialize name and evaluate the receiver sub-expression if necessary. If | |
| 3822 // the receiver is trivial it is not placed on the stack at this point, but | |
| 3823 // loaded whenever actually needed. | |
| 3824 Handle<String> name; | |
| 3825 bool is_trivial_receiver = false; | |
| 3826 if (var != NULL) { | |
| 3827 name = var->name(); | |
| 3828 } else { | |
| 3829 Literal* lit = prop->key()->AsLiteral(); | |
| 3830 ASSERT_NOT_NULL(lit); | |
| 3831 name = Handle<String>::cast(lit->handle()); | |
| 3832 // Do not materialize the receiver on the frame if it is trivial. | |
| 3833 is_trivial_receiver = prop->obj()->IsTrivial(); | |
| 3834 if (!is_trivial_receiver) Load(prop->obj()); | |
| 3835 } | |
| 3836 | |
| 3837 // Change to slow case in the beginning of an initialization block to | |
| 3838 // avoid the quadratic behavior of repeatedly adding fast properties. | |
| 3839 if (node->starts_initialization_block()) { | |
| 3840 // Initialization block consists of assignments of the form expr.x = ..., so | |
| 3841 // this will never be an assignment to a variable, so there must be a | |
| 3842 // receiver object. | |
| 3843 ASSERT_EQ(NULL, var); | |
| 3844 if (is_trivial_receiver) { | |
| 3845 Load(prop->obj()); | |
| 3846 } else { | |
| 3847 frame_->Dup(); | |
| 3848 } | |
| 3849 frame_->CallRuntime(Runtime::kToSlowProperties, 1); | |
| 3850 } | |
| 3851 | |
| 3852 // Change to fast case at the end of an initialization block. To prepare for | |
| 3853 // that add an extra copy of the receiver to the frame, so that it can be | |
| 3854 // converted back to fast case after the assignment. | |
| 3855 if (node->ends_initialization_block() && !is_trivial_receiver) { | |
| 3856 frame_->Dup(); | |
| 3857 } | |
| 3858 | |
| 3859 // Stack layout: | |
| 3860 // [tos] : receiver (only materialized if non-trivial) | |
| 3861 // [tos+1] : receiver if at the end of an initialization block | |
| 3862 | |
| 3863 // Evaluate the right-hand side. | |
| 3864 if (node->is_compound()) { | |
| 3865 // For a compound assignment the right-hand side is a binary operation | |
| 3866 // between the current property value and the actual right-hand side. | |
| 3867 if (is_trivial_receiver) { | |
| 3868 Load(prop->obj()); | |
| 3869 } else if (var != NULL) { | |
| 3870 LoadGlobal(); | |
| 3871 } else { | |
| 3872 frame_->Dup(); | |
| 3873 } | |
| 3874 EmitNamedLoad(name, var != NULL); | |
| 3875 | |
| 3876 // Perform the binary operation. | |
| 3877 Literal* literal = node->value()->AsLiteral(); | |
| 3878 bool overwrite_value = node->value()->ResultOverwriteAllowed(); | |
| 3879 if (literal != NULL && literal->handle()->IsSmi()) { | |
| 3880 SmiOperation(node->binary_op(), | |
| 3881 literal->handle(), | |
| 3882 false, | |
| 3883 overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); | |
| 3884 } else { | |
| 3885 GenerateInlineSmi inline_smi = | |
| 3886 loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; | |
| 3887 if (literal != NULL) { | |
| 3888 ASSERT(!literal->handle()->IsSmi()); | |
| 3889 inline_smi = DONT_GENERATE_INLINE_SMI; | |
| 3890 } | |
| 3891 Load(node->value()); | |
| 3892 GenericBinaryOperation(node->binary_op(), | |
| 3893 overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, | |
| 3894 inline_smi); | |
| 3895 } | |
| 3896 } else { | |
| 3897 // For non-compound assignment just load the right-hand side. | |
| 3898 Load(node->value()); | |
| 3899 } | |
| 3900 | |
| 3901 // Stack layout: | |
| 3902 // [tos] : value | |
| 3903 // [tos+1] : receiver (only materialized if non-trivial) | |
| 3904 // [tos+2] : receiver if at the end of an initialization block | |
| 3905 | |
| 3906 // Perform the assignment. It is safe to ignore constants here. | |
| 3907 ASSERT(var == NULL || var->mode() != Variable::CONST); | |
| 3908 ASSERT_NE(Token::INIT_CONST, node->op()); | |
| 3909 if (is_trivial_receiver) { | |
| 3910 // Load the receiver and swap with the value. | |
| 3911 Load(prop->obj()); | |
| 3912 Register t0 = frame_->PopToRegister(); | |
| 3913 Register t1 = frame_->PopToRegister(t0); | |
| 3914 frame_->EmitPush(t0); | |
| 3915 frame_->EmitPush(t1); | |
| 3916 } | |
| 3917 CodeForSourcePosition(node->position()); | |
| 3918 bool is_contextual = (var != NULL); | |
| 3919 EmitNamedStore(name, is_contextual); | |
| 3920 frame_->EmitPush(r0); | |
| 3921 | |
| 3922 // Change to fast case at the end of an initialization block. | |
| 3923 if (node->ends_initialization_block()) { | |
| 3924 ASSERT_EQ(NULL, var); | |
| 3925 // The argument to the runtime call is the receiver. | |
| 3926 if (is_trivial_receiver) { | |
| 3927 Load(prop->obj()); | |
| 3928 } else { | |
| 3929 // A copy of the receiver is below the value of the assignment. Swap | |
| 3930 // the receiver and the value of the assignment expression. | |
| 3931 Register t0 = frame_->PopToRegister(); | |
| 3932 Register t1 = frame_->PopToRegister(t0); | |
| 3933 frame_->EmitPush(t0); | |
| 3934 frame_->EmitPush(t1); | |
| 3935 } | |
| 3936 frame_->CallRuntime(Runtime::kToFastProperties, 1); | |
| 3937 } | |
| 3938 | |
| 3939 // Stack layout: | |
| 3940 // [tos] : result | |
| 3941 | |
| 3942 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 3943 } | |
| 3944 | |
| 3945 | |
| 3946 void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) { | |
| 3947 #ifdef DEBUG | |
| 3948 int original_height = frame_->height(); | |
| 3949 #endif | |
| 3950 Comment cmnt(masm_, "[ Keyed Property Assignment"); | |
| 3951 Property* prop = node->target()->AsProperty(); | |
| 3952 ASSERT_NOT_NULL(prop); | |
| 3953 | |
| 3954 // Evaluate the receiver subexpression. | |
| 3955 Load(prop->obj()); | |
| 3956 | |
| 3957 WriteBarrierCharacter wb_info; | |
| 3958 | |
| 3959 // Change to slow case in the beginning of an initialization block to | |
| 3960 // avoid the quadratic behavior of repeatedly adding fast properties. | |
| 3961 if (node->starts_initialization_block()) { | |
| 3962 frame_->Dup(); | |
| 3963 frame_->CallRuntime(Runtime::kToSlowProperties, 1); | |
| 3964 } | |
| 3965 | |
| 3966 // Change to fast case at the end of an initialization block. To prepare for | |
| 3967 // that add an extra copy of the receiver to the frame, so that it can be | |
| 3968 // converted back to fast case after the assignment. | |
| 3969 if (node->ends_initialization_block()) { | |
| 3970 frame_->Dup(); | |
| 3971 } | |
| 3972 | |
| 3973 // Evaluate the key subexpression. | |
| 3974 Load(prop->key()); | |
| 3975 | |
| 3976 // Stack layout: | |
| 3977 // [tos] : key | |
| 3978 // [tos+1] : receiver | |
| 3979 // [tos+2] : receiver if at the end of an initialization block | |
| 3980 // | |
| 3981 // Evaluate the right-hand side. | |
| 3982 if (node->is_compound()) { | |
| 3983 // For a compound assignment the right-hand side is a binary operation | |
| 3984 // between the current property value and the actual right-hand side. | |
| 3985 // Duplicate receiver and key for loading the current property value. | |
| 3986 frame_->Dup2(); | |
| 3987 EmitKeyedLoad(); | |
| 3988 frame_->EmitPush(r0); | |
| 3989 | |
| 3990 // Perform the binary operation. | |
| 3991 Literal* literal = node->value()->AsLiteral(); | |
| 3992 bool overwrite_value = node->value()->ResultOverwriteAllowed(); | |
| 3993 if (literal != NULL && literal->handle()->IsSmi()) { | |
| 3994 SmiOperation(node->binary_op(), | |
| 3995 literal->handle(), | |
| 3996 false, | |
| 3997 overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); | |
| 3998 } else { | |
| 3999 GenerateInlineSmi inline_smi = | |
| 4000 loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; | |
| 4001 if (literal != NULL) { | |
| 4002 ASSERT(!literal->handle()->IsSmi()); | |
| 4003 inline_smi = DONT_GENERATE_INLINE_SMI; | |
| 4004 } | |
| 4005 Load(node->value()); | |
| 4006 GenericBinaryOperation(node->binary_op(), | |
| 4007 overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, | |
| 4008 inline_smi); | |
| 4009 } | |
| 4010 wb_info = node->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI; | |
| 4011 } else { | |
| 4012 // For non-compound assignment just load the right-hand side. | |
| 4013 Load(node->value()); | |
| 4014 wb_info = node->value()->AsLiteral() != NULL ? | |
| 4015 NEVER_NEWSPACE : | |
| 4016 (node->value()->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI); | |
| 4017 } | |
| 4018 | |
| 4019 // Stack layout: | |
| 4020 // [tos] : value | |
| 4021 // [tos+1] : key | |
| 4022 // [tos+2] : receiver | |
| 4023 // [tos+3] : receiver if at the end of an initialization block | |
| 4024 | |
| 4025 // Perform the assignment. It is safe to ignore constants here. | |
| 4026 ASSERT(node->op() != Token::INIT_CONST); | |
| 4027 CodeForSourcePosition(node->position()); | |
| 4028 EmitKeyedStore(prop->key()->type(), wb_info); | |
| 4029 frame_->EmitPush(r0); | |
| 4030 | |
| 4031 // Stack layout: | |
| 4032 // [tos] : result | |
| 4033 // [tos+1] : receiver if at the end of an initialization block | |
| 4034 | |
| 4035 // Change to fast case at the end of an initialization block. | |
| 4036 if (node->ends_initialization_block()) { | |
| 4037 // The argument to the runtime call is the extra copy of the receiver, | |
| 4038 // which is below the value of the assignment. Swap the receiver and | |
| 4039 // the value of the assignment expression. | |
| 4040 Register t0 = frame_->PopToRegister(); | |
| 4041 Register t1 = frame_->PopToRegister(t0); | |
| 4042 frame_->EmitPush(t1); | |
| 4043 frame_->EmitPush(t0); | |
| 4044 frame_->CallRuntime(Runtime::kToFastProperties, 1); | |
| 4045 } | |
| 4046 | |
| 4047 // Stack layout: | |
| 4048 // [tos] : result | |
| 4049 | |
| 4050 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 4051 } | |
| 4052 | |
| 4053 | |
| 4054 void CodeGenerator::VisitAssignment(Assignment* node) { | |
| 4055 VirtualFrame::RegisterAllocationScope scope(this); | |
| 4056 #ifdef DEBUG | |
| 4057 int original_height = frame_->height(); | |
| 4058 #endif | |
| 4059 Comment cmnt(masm_, "[ Assignment"); | |
| 4060 | |
| 4061 Variable* var = node->target()->AsVariableProxy()->AsVariable(); | |
| 4062 Property* prop = node->target()->AsProperty(); | |
| 4063 | |
| 4064 if (var != NULL && !var->is_global()) { | |
| 4065 EmitSlotAssignment(node); | |
| 4066 | |
| 4067 } else if ((prop != NULL && prop->key()->IsPropertyName()) || | |
| 4068 (var != NULL && var->is_global())) { | |
| 4069 // Properties whose keys are property names and global variables are | |
| 4070 // treated as named property references. We do not need to consider | |
| 4071 // global 'this' because it is not a valid left-hand side. | |
| 4072 EmitNamedPropertyAssignment(node); | |
| 4073 | |
| 4074 } else if (prop != NULL) { | |
| 4075 // Other properties (including rewritten parameters for a function that | |
| 4076 // uses arguments) are keyed property assignments. | |
| 4077 EmitKeyedPropertyAssignment(node); | |
| 4078 | |
| 4079 } else { | |
| 4080 // Invalid left-hand side. | |
| 4081 Load(node->target()); | |
| 4082 frame_->CallRuntime(Runtime::kThrowReferenceError, 1); | |
| 4083 // The runtime call doesn't actually return but the code generator will | |
| 4084 // still generate code and expects a certain frame height. | |
| 4085 frame_->EmitPush(r0); | |
| 4086 } | |
| 4087 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 4088 } | |
| 4089 | |
| 4090 | |
| 4091 void CodeGenerator::VisitThrow(Throw* node) { | |
| 4092 #ifdef DEBUG | |
| 4093 int original_height = frame_->height(); | |
| 4094 #endif | |
| 4095 Comment cmnt(masm_, "[ Throw"); | |
| 4096 | |
| 4097 Load(node->exception()); | |
| 4098 CodeForSourcePosition(node->position()); | |
| 4099 frame_->CallRuntime(Runtime::kThrow, 1); | |
| 4100 frame_->EmitPush(r0); | |
| 4101 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 4102 } | |
| 4103 | |
| 4104 | |
| 4105 void CodeGenerator::VisitProperty(Property* node) { | |
| 4106 #ifdef DEBUG | |
| 4107 int original_height = frame_->height(); | |
| 4108 #endif | |
| 4109 Comment cmnt(masm_, "[ Property"); | |
| 4110 | |
| 4111 { Reference property(this, node); | |
| 4112 property.GetValue(); | |
| 4113 } | |
| 4114 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 4115 } | |
| 4116 | |
| 4117 | |
| 4118 void CodeGenerator::VisitCall(Call* node) { | |
| 4119 #ifdef DEBUG | |
| 4120 int original_height = frame_->height(); | |
| 4121 #endif | |
| 4122 Comment cmnt(masm_, "[ Call"); | |
| 4123 | |
| 4124 Expression* function = node->expression(); | |
| 4125 ZoneList<Expression*>* args = node->arguments(); | |
| 4126 | |
| 4127 // Standard function call. | |
| 4128 // Check if the function is a variable or a property. | |
| 4129 Variable* var = function->AsVariableProxy()->AsVariable(); | |
| 4130 Property* property = function->AsProperty(); | |
| 4131 | |
| 4132 // ------------------------------------------------------------------------ | |
| 4133 // Fast-case: Use inline caching. | |
| 4134 // --- | |
| 4135 // According to ECMA-262, section 11.2.3, page 44, the function to call | |
| 4136 // must be resolved after the arguments have been evaluated. The IC code | |
| 4137 // automatically handles this by loading the arguments before the function | |
| 4138 // is resolved in cache misses (this also holds for megamorphic calls). | |
| 4139 // ------------------------------------------------------------------------ | |
| 4140 | |
| 4141 if (var != NULL && var->is_possibly_eval()) { | |
| 4142 // ---------------------------------- | |
| 4143 // JavaScript example: 'eval(arg)' // eval is not known to be shadowed | |
| 4144 // ---------------------------------- | |
| 4145 | |
| 4146 // In a call to eval, we first call %ResolvePossiblyDirectEval to | |
| 4147 // resolve the function we need to call and the receiver of the | |
| 4148 // call. Then we call the resolved function using the given | |
| 4149 // arguments. | |
| 4150 | |
| 4151 // Prepare stack for call to resolved function. | |
| 4152 Load(function); | |
| 4153 | |
| 4154 // Allocate a frame slot for the receiver. | |
| 4155 frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); | |
| 4156 | |
| 4157 // Load the arguments. | |
| 4158 int arg_count = args->length(); | |
| 4159 for (int i = 0; i < arg_count; i++) { | |
| 4160 Load(args->at(i)); | |
| 4161 } | |
| 4162 | |
| 4163 VirtualFrame::SpilledScope spilled_scope(frame_); | |
| 4164 | |
| 4165 // If we know that eval can only be shadowed by eval-introduced | |
| 4166 // variables we attempt to load the global eval function directly | |
| 4167 // in generated code. If we succeed, there is no need to perform a | |
| 4168 // context lookup in the runtime system. | |
| 4169 JumpTarget done; | |
| 4170 if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) { | |
| 4171 ASSERT(var->AsSlot()->type() == Slot::LOOKUP); | |
| 4172 JumpTarget slow; | |
| 4173 // Prepare the stack for the call to | |
| 4174 // ResolvePossiblyDirectEvalNoLookup by pushing the loaded | |
| 4175 // function, the first argument to the eval call and the | |
| 4176 // receiver. | |
| 4177 LoadFromGlobalSlotCheckExtensions(var->AsSlot(), | |
| 4178 NOT_INSIDE_TYPEOF, | |
| 4179 &slow); | |
| 4180 frame_->EmitPush(r0); | |
| 4181 if (arg_count > 0) { | |
| 4182 __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); | |
| 4183 frame_->EmitPush(r1); | |
| 4184 } else { | |
| 4185 frame_->EmitPush(r2); | |
| 4186 } | |
| 4187 __ ldr(r1, frame_->Receiver()); | |
| 4188 frame_->EmitPush(r1); | |
| 4189 | |
| 4190 // Push the strict mode flag. | |
| 4191 frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); | |
| 4192 | |
| 4193 frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 4); | |
| 4194 | |
| 4195 done.Jump(); | |
| 4196 slow.Bind(); | |
| 4197 } | |
| 4198 | |
| 4199 // Prepare the stack for the call to ResolvePossiblyDirectEval by | |
| 4200 // pushing the loaded function, the first argument to the eval | |
| 4201 // call and the receiver. | |
| 4202 __ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize)); | |
| 4203 frame_->EmitPush(r1); | |
| 4204 if (arg_count > 0) { | |
| 4205 __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); | |
| 4206 frame_->EmitPush(r1); | |
| 4207 } else { | |
| 4208 frame_->EmitPush(r2); | |
| 4209 } | |
| 4210 __ ldr(r1, frame_->Receiver()); | |
| 4211 frame_->EmitPush(r1); | |
| 4212 | |
| 4213 // Push the strict mode flag. | |
| 4214 frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); | |
| 4215 | |
| 4216 // Resolve the call. | |
| 4217 frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 4); | |
| 4218 | |
| 4219 // If we generated fast-case code bind the jump-target where fast | |
| 4220 // and slow case merge. | |
| 4221 if (done.is_linked()) done.Bind(); | |
| 4222 | |
| 4223 // Touch up stack with the right values for the function and the receiver. | |
| 4224 __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize)); | |
| 4225 __ str(r1, MemOperand(sp, arg_count * kPointerSize)); | |
| 4226 | |
| 4227 // Call the function. | |
| 4228 CodeForSourcePosition(node->position()); | |
| 4229 | |
| 4230 InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; | |
| 4231 CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); | |
| 4232 frame_->CallStub(&call_function, arg_count + 1); | |
| 4233 | |
| 4234 __ ldr(cp, frame_->Context()); | |
| 4235 // Remove the function from the stack. | |
| 4236 frame_->Drop(); | |
| 4237 frame_->EmitPush(r0); | |
| 4238 | |
| 4239 } else if (var != NULL && !var->is_this() && var->is_global()) { | |
| 4240 // ---------------------------------- | |
| 4241 // JavaScript example: 'foo(1, 2, 3)' // foo is global | |
| 4242 // ---------------------------------- | |
| 4243 // Pass the global object as the receiver and let the IC stub | |
| 4244 // patch the stack to use the global proxy as 'this' in the | |
| 4245 // invoked function. | |
| 4246 LoadGlobal(); | |
| 4247 | |
| 4248 // Load the arguments. | |
| 4249 int arg_count = args->length(); | |
| 4250 for (int i = 0; i < arg_count; i++) { | |
| 4251 Load(args->at(i)); | |
| 4252 } | |
| 4253 | |
| 4254 VirtualFrame::SpilledScope spilled_scope(frame_); | |
| 4255 // Setup the name register and call the IC initialization code. | |
| 4256 __ mov(r2, Operand(var->name())); | |
| 4257 InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; | |
| 4258 Handle<Code> stub = | |
| 4259 ISOLATE->stub_cache()->ComputeCallInitialize(arg_count, in_loop); | |
| 4260 CodeForSourcePosition(node->position()); | |
| 4261 frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT, | |
| 4262 arg_count + 1); | |
| 4263 __ ldr(cp, frame_->Context()); | |
| 4264 frame_->EmitPush(r0); | |
| 4265 | |
| 4266 } else if (var != NULL && var->AsSlot() != NULL && | |
| 4267 var->AsSlot()->type() == Slot::LOOKUP) { | |
| 4268 // ---------------------------------- | |
| 4269 // JavaScript examples: | |
| 4270 // | |
| 4271 // with (obj) foo(1, 2, 3) // foo may be in obj. | |
| 4272 // | |
| 4273 // function f() {}; | |
| 4274 // function g() { | |
| 4275 // eval(...); | |
| 4276 // f(); // f could be in extension object. | |
| 4277 // } | |
| 4278 // ---------------------------------- | |
| 4279 | |
| 4280 JumpTarget slow, done; | |
| 4281 | |
| 4282 // Generate fast case for loading functions from slots that | |
| 4283 // correspond to local/global variables or arguments unless they | |
| 4284 // are shadowed by eval-introduced bindings. | |
| 4285 EmitDynamicLoadFromSlotFastCase(var->AsSlot(), | |
| 4286 NOT_INSIDE_TYPEOF, | |
| 4287 &slow, | |
| 4288 &done); | |
| 4289 | |
| 4290 slow.Bind(); | |
| 4291 // Load the function | |
| 4292 frame_->EmitPush(cp); | |
| 4293 frame_->EmitPush(Operand(var->name())); | |
| 4294 frame_->CallRuntime(Runtime::kLoadContextSlot, 2); | |
| 4295 // r0: slot value; r1: receiver | |
| 4296 | |
| 4297 // Load the receiver. | |
| 4298 frame_->EmitPush(r0); // function | |
| 4299 frame_->EmitPush(r1); // receiver | |
| 4300 | |
| 4301 // If fast case code has been generated, emit code to push the | |
| 4302 // function and receiver and have the slow path jump around this | |
| 4303 // code. | |
| 4304 if (done.is_linked()) { | |
| 4305 JumpTarget call; | |
| 4306 call.Jump(); | |
| 4307 done.Bind(); | |
| 4308 frame_->EmitPush(r0); // function | |
| 4309 LoadGlobalReceiver(VirtualFrame::scratch0()); // receiver | |
| 4310 call.Bind(); | |
| 4311 } | |
| 4312 | |
| 4313 // Call the function. At this point, everything is spilled but the | |
| 4314 // function and receiver are in r0 and r1. | |
| 4315 CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); | |
| 4316 frame_->EmitPush(r0); | |
| 4317 | |
| 4318 } else if (property != NULL) { | |
| 4319 // Check if the key is a literal string. | |
| 4320 Literal* literal = property->key()->AsLiteral(); | |
| 4321 | |
| 4322 if (literal != NULL && literal->handle()->IsSymbol()) { | |
| 4323 // ------------------------------------------------------------------ | |
| 4324 // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' | |
| 4325 // ------------------------------------------------------------------ | |
| 4326 | |
| 4327 Handle<String> name = Handle<String>::cast(literal->handle()); | |
| 4328 | |
| 4329 if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && | |
| 4330 name->IsEqualTo(CStrVector("apply")) && | |
| 4331 args->length() == 2 && | |
| 4332 args->at(1)->AsVariableProxy() != NULL && | |
| 4333 args->at(1)->AsVariableProxy()->IsArguments()) { | |
| 4334 // Use the optimized Function.prototype.apply that avoids | |
| 4335 // allocating lazily allocated arguments objects. | |
| 4336 CallApplyLazy(property->obj(), | |
| 4337 args->at(0), | |
| 4338 args->at(1)->AsVariableProxy(), | |
| 4339 node->position()); | |
| 4340 | |
| 4341 } else { | |
| 4342 Load(property->obj()); // Receiver. | |
| 4343 // Load the arguments. | |
| 4344 int arg_count = args->length(); | |
| 4345 for (int i = 0; i < arg_count; i++) { | |
| 4346 Load(args->at(i)); | |
| 4347 } | |
| 4348 | |
| 4349 VirtualFrame::SpilledScope spilled_scope(frame_); | |
| 4350 // Set the name register and call the IC initialization code. | |
| 4351 __ mov(r2, Operand(name)); | |
| 4352 InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; | |
| 4353 Handle<Code> stub = | |
| 4354 ISOLATE->stub_cache()->ComputeCallInitialize(arg_count, in_loop); | |
| 4355 CodeForSourcePosition(node->position()); | |
| 4356 frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); | |
| 4357 __ ldr(cp, frame_->Context()); | |
| 4358 frame_->EmitPush(r0); | |
| 4359 } | |
| 4360 | |
| 4361 } else { | |
| 4362 // ------------------------------------------- | |
| 4363 // JavaScript example: 'array[index](1, 2, 3)' | |
| 4364 // ------------------------------------------- | |
| 4365 | |
| 4366 // Load the receiver and name of the function. | |
| 4367 Load(property->obj()); | |
| 4368 Load(property->key()); | |
| 4369 | |
| 4370 if (property->is_synthetic()) { | |
| 4371 EmitKeyedLoad(); | |
| 4372 // Put the function below the receiver. | |
| 4373 // Use the global receiver. | |
| 4374 frame_->EmitPush(r0); // Function. | |
| 4375 LoadGlobalReceiver(VirtualFrame::scratch0()); | |
| 4376 // Call the function. | |
| 4377 CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); | |
| 4378 frame_->EmitPush(r0); | |
| 4379 } else { | |
| 4380 // Swap the name of the function and the receiver on the stack to follow | |
| 4381 // the calling convention for call ICs. | |
| 4382 Register key = frame_->PopToRegister(); | |
| 4383 Register receiver = frame_->PopToRegister(key); | |
| 4384 frame_->EmitPush(key); | |
| 4385 frame_->EmitPush(receiver); | |
| 4386 | |
| 4387 // Load the arguments. | |
| 4388 int arg_count = args->length(); | |
| 4389 for (int i = 0; i < arg_count; i++) { | |
| 4390 Load(args->at(i)); | |
| 4391 } | |
| 4392 | |
| 4393 // Load the key into r2 and call the IC initialization code. | |
| 4394 InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; | |
| 4395 Handle<Code> stub = | |
| 4396 ISOLATE->stub_cache()->ComputeKeyedCallInitialize(arg_count, | |
| 4397 in_loop); | |
| 4398 CodeForSourcePosition(node->position()); | |
| 4399 frame_->SpillAll(); | |
| 4400 __ ldr(r2, frame_->ElementAt(arg_count + 1)); | |
| 4401 frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); | |
| 4402 frame_->Drop(); // Drop the key still on the stack. | |
| 4403 __ ldr(cp, frame_->Context()); | |
| 4404 frame_->EmitPush(r0); | |
| 4405 } | |
| 4406 } | |
| 4407 | |
| 4408 } else { | |
| 4409 // ---------------------------------- | |
| 4410 // JavaScript example: 'foo(1, 2, 3)' // foo is not global | |
| 4411 // ---------------------------------- | |
| 4412 | |
| 4413 // Load the function. | |
| 4414 Load(function); | |
| 4415 | |
| 4416 // Pass the global proxy as the receiver. | |
| 4417 LoadGlobalReceiver(VirtualFrame::scratch0()); | |
| 4418 | |
| 4419 // Call the function. | |
| 4420 CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); | |
| 4421 frame_->EmitPush(r0); | |
| 4422 } | |
| 4423 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 4424 } | |
| 4425 | |
| 4426 | |
| 4427 void CodeGenerator::VisitCallNew(CallNew* node) { | |
| 4428 #ifdef DEBUG | |
| 4429 int original_height = frame_->height(); | |
| 4430 #endif | |
| 4431 Comment cmnt(masm_, "[ CallNew"); | |
| 4432 | |
| 4433 // According to ECMA-262, section 11.2.2, page 44, the function | |
| 4434 // expression in new calls must be evaluated before the | |
| 4435 // arguments. This is different from ordinary calls, where the | |
| 4436 // actual function to call is resolved after the arguments have been | |
| 4437 // evaluated. | |
| 4438 | |
| 4439 // Push constructor on the stack. If it's not a function it's used as | |
| 4440 // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is | |
| 4441 // ignored. | |
| 4442 Load(node->expression()); | |
| 4443 | |
| 4444 // Push the arguments ("left-to-right") on the stack. | |
| 4445 ZoneList<Expression*>* args = node->arguments(); | |
| 4446 int arg_count = args->length(); | |
| 4447 for (int i = 0; i < arg_count; i++) { | |
| 4448 Load(args->at(i)); | |
| 4449 } | |
| 4450 | |
| 4451 // Spill everything from here to simplify the implementation. | |
| 4452 VirtualFrame::SpilledScope spilled_scope(frame_); | |
| 4453 | |
| 4454 // Load the argument count into r0 and the function into r1 as per | |
| 4455 // calling convention. | |
| 4456 __ mov(r0, Operand(arg_count)); | |
| 4457 __ ldr(r1, frame_->ElementAt(arg_count)); | |
| 4458 | |
| 4459 // Call the construct call builtin that handles allocation and | |
| 4460 // constructor invocation. | |
| 4461 CodeForSourcePosition(node->position()); | |
| 4462 Handle<Code> ic(Isolate::Current()->builtins()->builtin( | |
| 4463 Builtins::kJSConstructCall)); | |
| 4464 frame_->CallCodeObject(ic, RelocInfo::CONSTRUCT_CALL, arg_count + 1); | |
| 4465 frame_->EmitPush(r0); | |
| 4466 | |
| 4467 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 4468 } | |
| 4469 | |
| 4470 | |
| 4471 void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { | |
| 4472 Register scratch = VirtualFrame::scratch0(); | |
| 4473 JumpTarget null, function, leave, non_function_constructor; | |
| 4474 | |
| 4475 // Load the object into register. | |
| 4476 ASSERT(args->length() == 1); | |
| 4477 Load(args->at(0)); | |
| 4478 Register tos = frame_->PopToRegister(); | |
| 4479 | |
| 4480 // If the object is a smi, we return null. | |
| 4481 __ tst(tos, Operand(kSmiTagMask)); | |
| 4482 null.Branch(eq); | |
| 4483 | |
| 4484 // Check that the object is a JS object but take special care of JS | |
| 4485 // functions to make sure they have 'Function' as their class. | |
| 4486 __ CompareObjectType(tos, tos, scratch, FIRST_JS_OBJECT_TYPE); | |
| 4487 null.Branch(lt); | |
| 4488 | |
| 4489 // As long as JS_FUNCTION_TYPE is the last instance type and it is | |
| 4490 // right after LAST_JS_OBJECT_TYPE, we can avoid checking for | |
| 4491 // LAST_JS_OBJECT_TYPE. | |
| 4492 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); | |
| 4493 STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); | |
| 4494 __ cmp(scratch, Operand(JS_FUNCTION_TYPE)); | |
| 4495 function.Branch(eq); | |
| 4496 | |
| 4497 // Check if the constructor in the map is a function. | |
| 4498 __ ldr(tos, FieldMemOperand(tos, Map::kConstructorOffset)); | |
| 4499 __ CompareObjectType(tos, scratch, scratch, JS_FUNCTION_TYPE); | |
| 4500 non_function_constructor.Branch(ne); | |
| 4501 | |
| 4502 // The tos register now contains the constructor function. Grab the | |
| 4503 // instance class name from there. | |
| 4504 __ ldr(tos, FieldMemOperand(tos, JSFunction::kSharedFunctionInfoOffset)); | |
| 4505 __ ldr(tos, | |
| 4506 FieldMemOperand(tos, SharedFunctionInfo::kInstanceClassNameOffset)); | |
| 4507 frame_->EmitPush(tos); | |
| 4508 leave.Jump(); | |
| 4509 | |
| 4510 // Functions have class 'Function'. | |
| 4511 function.Bind(); | |
| 4512 __ mov(tos, Operand(FACTORY->function_class_symbol())); | |
| 4513 frame_->EmitPush(tos); | |
| 4514 leave.Jump(); | |
| 4515 | |
| 4516 // Objects with a non-function constructor have class 'Object'. | |
| 4517 non_function_constructor.Bind(); | |
| 4518 __ mov(tos, Operand(FACTORY->Object_symbol())); | |
| 4519 frame_->EmitPush(tos); | |
| 4520 leave.Jump(); | |
| 4521 | |
| 4522 // Non-JS objects have class null. | |
| 4523 null.Bind(); | |
| 4524 __ LoadRoot(tos, Heap::kNullValueRootIndex); | |
| 4525 frame_->EmitPush(tos); | |
| 4526 | |
| 4527 // All done. | |
| 4528 leave.Bind(); | |
| 4529 } | |
| 4530 | |
| 4531 | |
| 4532 void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { | |
| 4533 Register scratch = VirtualFrame::scratch0(); | |
| 4534 JumpTarget leave; | |
| 4535 | |
| 4536 ASSERT(args->length() == 1); | |
| 4537 Load(args->at(0)); | |
| 4538 Register tos = frame_->PopToRegister(); // tos contains object. | |
| 4539 // if (object->IsSmi()) return the object. | |
| 4540 __ tst(tos, Operand(kSmiTagMask)); | |
| 4541 leave.Branch(eq); | |
| 4542 // It is a heap object - get map. If (!object->IsJSValue()) return the object. | |
| 4543 __ CompareObjectType(tos, scratch, scratch, JS_VALUE_TYPE); | |
| 4544 leave.Branch(ne); | |
| 4545 // Load the value. | |
| 4546 __ ldr(tos, FieldMemOperand(tos, JSValue::kValueOffset)); | |
| 4547 leave.Bind(); | |
| 4548 frame_->EmitPush(tos); | |
| 4549 } | |
| 4550 | |
| 4551 | |
| 4552 void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { | |
| 4553 Register scratch1 = VirtualFrame::scratch0(); | |
| 4554 Register scratch2 = VirtualFrame::scratch1(); | |
| 4555 JumpTarget leave; | |
| 4556 | |
| 4557 ASSERT(args->length() == 2); | |
| 4558 Load(args->at(0)); // Load the object. | |
| 4559 Load(args->at(1)); // Load the value. | |
| 4560 Register value = frame_->PopToRegister(); | |
| 4561 Register object = frame_->PopToRegister(value); | |
| 4562 // if (object->IsSmi()) return object. | |
| 4563 __ tst(object, Operand(kSmiTagMask)); | |
| 4564 leave.Branch(eq); | |
| 4565 // It is a heap object - get map. If (!object->IsJSValue()) return the object. | |
| 4566 __ CompareObjectType(object, scratch1, scratch1, JS_VALUE_TYPE); | |
| 4567 leave.Branch(ne); | |
| 4568 // Store the value. | |
| 4569 __ str(value, FieldMemOperand(object, JSValue::kValueOffset)); | |
| 4570 // Update the write barrier. | |
| 4571 __ RecordWrite(object, | |
| 4572 Operand(JSValue::kValueOffset - kHeapObjectTag), | |
| 4573 scratch1, | |
| 4574 scratch2); | |
| 4575 // Leave. | |
| 4576 leave.Bind(); | |
| 4577 frame_->EmitPush(value); | |
| 4578 } | |
| 4579 | |
| 4580 | |
| 4581 void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { | |
| 4582 ASSERT(args->length() == 1); | |
| 4583 Load(args->at(0)); | |
| 4584 Register reg = frame_->PopToRegister(); | |
| 4585 __ tst(reg, Operand(kSmiTagMask)); | |
| 4586 cc_reg_ = eq; | |
| 4587 } | |
| 4588 | |
| 4589 | |
| 4590 void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { | |
| 4591 // See comment in CodeGenerator::GenerateLog in codegen-ia32.cc. | |
| 4592 ASSERT_EQ(args->length(), 3); | |
| 4593 #ifdef ENABLE_LOGGING_AND_PROFILING | |
| 4594 if (ShouldGenerateLog(args->at(0))) { | |
| 4595 Load(args->at(1)); | |
| 4596 Load(args->at(2)); | |
| 4597 frame_->CallRuntime(Runtime::kLog, 2); | |
| 4598 } | |
| 4599 #endif | |
| 4600 frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); | |
| 4601 } | |
| 4602 | |
| 4603 | |
| 4604 void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { | |
| 4605 ASSERT(args->length() == 1); | |
| 4606 Load(args->at(0)); | |
| 4607 Register reg = frame_->PopToRegister(); | |
| 4608 __ tst(reg, Operand(kSmiTagMask | 0x80000000u)); | |
| 4609 cc_reg_ = eq; | |
| 4610 } | |
| 4611 | |
| 4612 | |
| 4613 // Generates the Math.pow method. | |
| 4614 void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) { | |
| 4615 ASSERT(args->length() == 2); | |
| 4616 Load(args->at(0)); | |
| 4617 Load(args->at(1)); | |
| 4618 | |
| 4619 if (!CpuFeatures::IsSupported(VFP3)) { | |
| 4620 frame_->CallRuntime(Runtime::kMath_pow, 2); | |
| 4621 frame_->EmitPush(r0); | |
| 4622 } else { | |
| 4623 CpuFeatures::Scope scope(VFP3); | |
| 4624 JumpTarget runtime, done; | |
| 4625 Label exponent_nonsmi, base_nonsmi, powi, not_minus_half, allocate_return; | |
| 4626 | |
| 4627 Register scratch1 = VirtualFrame::scratch0(); | |
| 4628 Register scratch2 = VirtualFrame::scratch1(); | |
| 4629 | |
| 4630 // Get base and exponent to registers. | |
| 4631 Register exponent = frame_->PopToRegister(); | |
| 4632 Register base = frame_->PopToRegister(exponent); | |
| 4633 Register heap_number_map = no_reg; | |
| 4634 | |
| 4635 // Set the frame for the runtime jump target. The code below jumps to the | |
| 4636 // jump target label so the frame needs to be established before that. | |
| 4637 ASSERT(runtime.entry_frame() == NULL); | |
| 4638 runtime.set_entry_frame(frame_); | |
| 4639 | |
| 4640 __ JumpIfNotSmi(exponent, &exponent_nonsmi); | |
| 4641 __ JumpIfNotSmi(base, &base_nonsmi); | |
| 4642 | |
| 4643 heap_number_map = r6; | |
| 4644 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); | |
| 4645 | |
| 4646 // Exponent is a smi and base is a smi. Get the smi value into vfp register | |
| 4647 // d1. | |
| 4648 __ SmiToDoubleVFPRegister(base, d1, scratch1, s0); | |
| 4649 __ b(&powi); | |
| 4650 | |
| 4651 __ bind(&base_nonsmi); | |
| 4652 // Exponent is smi and base is non smi. Get the double value from the base | |
| 4653 // into vfp register d1. | |
| 4654 __ ObjectToDoubleVFPRegister(base, d1, | |
| 4655 scratch1, scratch2, heap_number_map, s0, | |
| 4656 runtime.entry_label()); | |
| 4657 | |
| 4658 __ bind(&powi); | |
| 4659 | |
| 4660 // Load 1.0 into d0. | |
| 4661 __ vmov(d0, 1.0); | |
| 4662 | |
| 4663 // Get the absolute untagged value of the exponent and use that for the | |
| 4664 // calculation. | |
| 4665 __ mov(scratch1, Operand(exponent, ASR, kSmiTagSize), SetCC); | |
| 4666 // Negate if negative. | |
| 4667 __ rsb(scratch1, scratch1, Operand(0, RelocInfo::NONE), LeaveCC, mi); | |
| 4668 __ vmov(d2, d0, mi); // 1.0 needed in d2 later if exponent is negative. | |
| 4669 | |
| 4670 // Run through all the bits in the exponent. The result is calculated in d0 | |
| 4671 // and d1 holds base^(bit^2). | |
| 4672 Label more_bits; | |
| 4673 __ bind(&more_bits); | |
| 4674 __ mov(scratch1, Operand(scratch1, LSR, 1), SetCC); | |
| 4675 __ vmul(d0, d0, d1, cs); // Multiply with base^(bit^2) if bit is set. | |
| 4676 __ vmul(d1, d1, d1, ne); // Don't bother calculating next d1 if done. | |
| 4677 __ b(ne, &more_bits); | |
| 4678 | |
| 4679 // If exponent is positive we are done. | |
| 4680 __ cmp(exponent, Operand(0, RelocInfo::NONE)); | |
| 4681 __ b(ge, &allocate_return); | |
| 4682 | |
| 4683 // If exponent is negative result is 1/result (d2 already holds 1.0 in that | |
| 4684 // case). However if d0 has reached infinity this will not provide the | |
| 4685 // correct result, so call runtime if that is the case. | |
| 4686 __ mov(scratch2, Operand(0x7FF00000)); | |
| 4687 __ mov(scratch1, Operand(0, RelocInfo::NONE)); | |
| 4688 __ vmov(d1, scratch1, scratch2); // Load infinity into d1. | |
| 4689 __ VFPCompareAndSetFlags(d0, d1); | |
| 4690 runtime.Branch(eq); // d0 reached infinity. | |
| 4691 __ vdiv(d0, d2, d0); | |
| 4692 __ b(&allocate_return); | |
| 4693 | |
| 4694 __ bind(&exponent_nonsmi); | |
| 4695 // Special handling of raising to the power of -0.5 and 0.5. First check | |
| 4696 // that the value is a heap number and that the lower bits (which for both | |
| 4697 // values are zero). | |
| 4698 heap_number_map = r6; | |
| 4699 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); | |
| 4700 __ ldr(scratch1, FieldMemOperand(exponent, HeapObject::kMapOffset)); | |
| 4701 __ ldr(scratch2, FieldMemOperand(exponent, HeapNumber::kMantissaOffset)); | |
| 4702 __ cmp(scratch1, heap_number_map); | |
| 4703 runtime.Branch(ne); | |
| 4704 __ tst(scratch2, scratch2); | |
| 4705 runtime.Branch(ne); | |
| 4706 | |
| 4707 // Load the higher bits (which contains the floating point exponent). | |
| 4708 __ ldr(scratch1, FieldMemOperand(exponent, HeapNumber::kExponentOffset)); | |
| 4709 | |
| 4710 // Compare exponent with -0.5. | |
| 4711 __ cmp(scratch1, Operand(0xbfe00000)); | |
| 4712 __ b(ne, ¬_minus_half); | |
| 4713 | |
| 4714 // Get the double value from the base into vfp register d0. | |
| 4715 __ ObjectToDoubleVFPRegister(base, d0, | |
| 4716 scratch1, scratch2, heap_number_map, s0, | |
| 4717 runtime.entry_label(), | |
| 4718 AVOID_NANS_AND_INFINITIES); | |
| 4719 | |
| 4720 // Convert -0 into +0 by adding +0. | |
| 4721 __ vmov(d2, 0.0); | |
| 4722 __ vadd(d0, d2, d0); | |
| 4723 // Load 1.0 into d2. | |
| 4724 __ vmov(d2, 1.0); | |
| 4725 | |
| 4726 // Calculate the reciprocal of the square root. | |
| 4727 __ vsqrt(d0, d0); | |
| 4728 __ vdiv(d0, d2, d0); | |
| 4729 | |
| 4730 __ b(&allocate_return); | |
| 4731 | |
| 4732 __ bind(¬_minus_half); | |
| 4733 // Compare exponent with 0.5. | |
| 4734 __ cmp(scratch1, Operand(0x3fe00000)); | |
| 4735 runtime.Branch(ne); | |
| 4736 | |
| 4737 // Get the double value from the base into vfp register d0. | |
| 4738 __ ObjectToDoubleVFPRegister(base, d0, | |
| 4739 scratch1, scratch2, heap_number_map, s0, | |
| 4740 runtime.entry_label(), | |
| 4741 AVOID_NANS_AND_INFINITIES); | |
| 4742 // Convert -0 into +0 by adding +0. | |
| 4743 __ vmov(d2, 0.0); | |
| 4744 __ vadd(d0, d2, d0); | |
| 4745 __ vsqrt(d0, d0); | |
| 4746 | |
| 4747 __ bind(&allocate_return); | |
| 4748 Register scratch3 = r5; | |
| 4749 __ AllocateHeapNumberWithValue(scratch3, d0, scratch1, scratch2, | |
| 4750 heap_number_map, runtime.entry_label()); | |
| 4751 __ mov(base, scratch3); | |
| 4752 done.Jump(); | |
| 4753 | |
| 4754 runtime.Bind(); | |
| 4755 | |
| 4756 // Push back the arguments again for the runtime call. | |
| 4757 frame_->EmitPush(base); | |
| 4758 frame_->EmitPush(exponent); | |
| 4759 frame_->CallRuntime(Runtime::kMath_pow, 2); | |
| 4760 __ Move(base, r0); | |
| 4761 | |
| 4762 done.Bind(); | |
| 4763 frame_->EmitPush(base); | |
| 4764 } | |
| 4765 } | |
| 4766 | |
| 4767 | |
| 4768 // Generates the Math.sqrt method. | |
| 4769 void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) { | |
| 4770 ASSERT(args->length() == 1); | |
| 4771 Load(args->at(0)); | |
| 4772 | |
| 4773 if (!CpuFeatures::IsSupported(VFP3)) { | |
| 4774 frame_->CallRuntime(Runtime::kMath_sqrt, 1); | |
| 4775 frame_->EmitPush(r0); | |
| 4776 } else { | |
| 4777 CpuFeatures::Scope scope(VFP3); | |
| 4778 JumpTarget runtime, done; | |
| 4779 | |
| 4780 Register scratch1 = VirtualFrame::scratch0(); | |
| 4781 Register scratch2 = VirtualFrame::scratch1(); | |
| 4782 | |
| 4783 // Get the value from the frame. | |
| 4784 Register tos = frame_->PopToRegister(); | |
| 4785 | |
| 4786 // Set the frame for the runtime jump target. The code below jumps to the | |
| 4787 // jump target label so the frame needs to be established before that. | |
| 4788 ASSERT(runtime.entry_frame() == NULL); | |
| 4789 runtime.set_entry_frame(frame_); | |
| 4790 | |
| 4791 Register heap_number_map = r6; | |
| 4792 Register new_heap_number = r5; | |
| 4793 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); | |
| 4794 | |
| 4795 // Get the double value from the heap number into vfp register d0. | |
| 4796 __ ObjectToDoubleVFPRegister(tos, d0, | |
| 4797 scratch1, scratch2, heap_number_map, s0, | |
| 4798 runtime.entry_label()); | |
| 4799 | |
| 4800 // Calculate the square root of d0 and place result in a heap number object. | |
| 4801 __ vsqrt(d0, d0); | |
| 4802 __ AllocateHeapNumberWithValue(new_heap_number, | |
| 4803 d0, | |
| 4804 scratch1, scratch2, | |
| 4805 heap_number_map, | |
| 4806 runtime.entry_label()); | |
| 4807 __ mov(tos, Operand(new_heap_number)); | |
| 4808 done.Jump(); | |
| 4809 | |
| 4810 runtime.Bind(); | |
| 4811 // Push back the argument again for the runtime call. | |
| 4812 frame_->EmitPush(tos); | |
| 4813 frame_->CallRuntime(Runtime::kMath_sqrt, 1); | |
| 4814 __ Move(tos, r0); | |
| 4815 | |
| 4816 done.Bind(); | |
| 4817 frame_->EmitPush(tos); | |
| 4818 } | |
| 4819 } | |
| 4820 | |
| 4821 | |
| 4822 class DeferredStringCharCodeAt : public DeferredCode { | |
| 4823 public: | |
| 4824 DeferredStringCharCodeAt(Register object, | |
| 4825 Register index, | |
| 4826 Register scratch, | |
| 4827 Register result) | |
| 4828 : result_(result), | |
| 4829 char_code_at_generator_(object, | |
| 4830 index, | |
| 4831 scratch, | |
| 4832 result, | |
| 4833 &need_conversion_, | |
| 4834 &need_conversion_, | |
| 4835 &index_out_of_range_, | |
| 4836 STRING_INDEX_IS_NUMBER) {} | |
| 4837 | |
| 4838 StringCharCodeAtGenerator* fast_case_generator() { | |
| 4839 return &char_code_at_generator_; | |
| 4840 } | |
| 4841 | |
| 4842 virtual void Generate() { | |
| 4843 VirtualFrameRuntimeCallHelper call_helper(frame_state()); | |
| 4844 char_code_at_generator_.GenerateSlow(masm(), call_helper); | |
| 4845 | |
| 4846 __ bind(&need_conversion_); | |
| 4847 // Move the undefined value into the result register, which will | |
| 4848 // trigger conversion. | |
| 4849 __ LoadRoot(result_, Heap::kUndefinedValueRootIndex); | |
| 4850 __ jmp(exit_label()); | |
| 4851 | |
| 4852 __ bind(&index_out_of_range_); | |
| 4853 // When the index is out of range, the spec requires us to return | |
| 4854 // NaN. | |
| 4855 __ LoadRoot(result_, Heap::kNanValueRootIndex); | |
| 4856 __ jmp(exit_label()); | |
| 4857 } | |
| 4858 | |
| 4859 private: | |
| 4860 Register result_; | |
| 4861 | |
| 4862 Label need_conversion_; | |
| 4863 Label index_out_of_range_; | |
| 4864 | |
| 4865 StringCharCodeAtGenerator char_code_at_generator_; | |
| 4866 }; | |
| 4867 | |
| 4868 | |
| 4869 // This generates code that performs a String.prototype.charCodeAt() call | |
| 4870 // or returns a smi in order to trigger conversion. | |
| 4871 void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) { | |
| 4872 Comment(masm_, "[ GenerateStringCharCodeAt"); | |
| 4873 ASSERT(args->length() == 2); | |
| 4874 | |
| 4875 Load(args->at(0)); | |
| 4876 Load(args->at(1)); | |
| 4877 | |
| 4878 Register index = frame_->PopToRegister(); | |
| 4879 Register object = frame_->PopToRegister(index); | |
| 4880 | |
| 4881 // We need two extra registers. | |
| 4882 Register scratch = VirtualFrame::scratch0(); | |
| 4883 Register result = VirtualFrame::scratch1(); | |
| 4884 | |
| 4885 DeferredStringCharCodeAt* deferred = | |
| 4886 new DeferredStringCharCodeAt(object, | |
| 4887 index, | |
| 4888 scratch, | |
| 4889 result); | |
| 4890 deferred->fast_case_generator()->GenerateFast(masm_); | |
| 4891 deferred->BindExit(); | |
| 4892 frame_->EmitPush(result); | |
| 4893 } | |
| 4894 | |
| 4895 | |
| 4896 class DeferredStringCharFromCode : public DeferredCode { | |
| 4897 public: | |
| 4898 DeferredStringCharFromCode(Register code, | |
| 4899 Register result) | |
| 4900 : char_from_code_generator_(code, result) {} | |
| 4901 | |
| 4902 StringCharFromCodeGenerator* fast_case_generator() { | |
| 4903 return &char_from_code_generator_; | |
| 4904 } | |
| 4905 | |
| 4906 virtual void Generate() { | |
| 4907 VirtualFrameRuntimeCallHelper call_helper(frame_state()); | |
| 4908 char_from_code_generator_.GenerateSlow(masm(), call_helper); | |
| 4909 } | |
| 4910 | |
| 4911 private: | |
| 4912 StringCharFromCodeGenerator char_from_code_generator_; | |
| 4913 }; | |
| 4914 | |
| 4915 | |
| 4916 // Generates code for creating a one-char string from a char code. | |
| 4917 void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) { | |
| 4918 Comment(masm_, "[ GenerateStringCharFromCode"); | |
| 4919 ASSERT(args->length() == 1); | |
| 4920 | |
| 4921 Load(args->at(0)); | |
| 4922 | |
| 4923 Register result = frame_->GetTOSRegister(); | |
| 4924 Register code = frame_->PopToRegister(result); | |
| 4925 | |
| 4926 DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode( | |
| 4927 code, result); | |
| 4928 deferred->fast_case_generator()->GenerateFast(masm_); | |
| 4929 deferred->BindExit(); | |
| 4930 frame_->EmitPush(result); | |
| 4931 } | |
| 4932 | |
| 4933 | |
| 4934 class DeferredStringCharAt : public DeferredCode { | |
| 4935 public: | |
| 4936 DeferredStringCharAt(Register object, | |
| 4937 Register index, | |
| 4938 Register scratch1, | |
| 4939 Register scratch2, | |
| 4940 Register result) | |
| 4941 : result_(result), | |
| 4942 char_at_generator_(object, | |
| 4943 index, | |
| 4944 scratch1, | |
| 4945 scratch2, | |
| 4946 result, | |
| 4947 &need_conversion_, | |
| 4948 &need_conversion_, | |
| 4949 &index_out_of_range_, | |
| 4950 STRING_INDEX_IS_NUMBER) {} | |
| 4951 | |
| 4952 StringCharAtGenerator* fast_case_generator() { | |
| 4953 return &char_at_generator_; | |
| 4954 } | |
| 4955 | |
| 4956 virtual void Generate() { | |
| 4957 VirtualFrameRuntimeCallHelper call_helper(frame_state()); | |
| 4958 char_at_generator_.GenerateSlow(masm(), call_helper); | |
| 4959 | |
| 4960 __ bind(&need_conversion_); | |
| 4961 // Move smi zero into the result register, which will trigger | |
| 4962 // conversion. | |
| 4963 __ mov(result_, Operand(Smi::FromInt(0))); | |
| 4964 __ jmp(exit_label()); | |
| 4965 | |
| 4966 __ bind(&index_out_of_range_); | |
| 4967 // When the index is out of range, the spec requires us to return | |
| 4968 // the empty string. | |
| 4969 __ LoadRoot(result_, Heap::kEmptyStringRootIndex); | |
| 4970 __ jmp(exit_label()); | |
| 4971 } | |
| 4972 | |
| 4973 private: | |
| 4974 Register result_; | |
| 4975 | |
| 4976 Label need_conversion_; | |
| 4977 Label index_out_of_range_; | |
| 4978 | |
| 4979 StringCharAtGenerator char_at_generator_; | |
| 4980 }; | |
| 4981 | |
| 4982 | |
| 4983 // This generates code that performs a String.prototype.charAt() call | |
| 4984 // or returns a smi in order to trigger conversion. | |
| 4985 void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) { | |
| 4986 Comment(masm_, "[ GenerateStringCharAt"); | |
| 4987 ASSERT(args->length() == 2); | |
| 4988 | |
| 4989 Load(args->at(0)); | |
| 4990 Load(args->at(1)); | |
| 4991 | |
| 4992 Register index = frame_->PopToRegister(); | |
| 4993 Register object = frame_->PopToRegister(index); | |
| 4994 | |
| 4995 // We need three extra registers. | |
| 4996 Register scratch1 = VirtualFrame::scratch0(); | |
| 4997 Register scratch2 = VirtualFrame::scratch1(); | |
| 4998 // Use r6 without notifying the virtual frame. | |
| 4999 Register result = r6; | |
| 5000 | |
| 5001 DeferredStringCharAt* deferred = | |
| 5002 new DeferredStringCharAt(object, | |
| 5003 index, | |
| 5004 scratch1, | |
| 5005 scratch2, | |
| 5006 result); | |
| 5007 deferred->fast_case_generator()->GenerateFast(masm_); | |
| 5008 deferred->BindExit(); | |
| 5009 frame_->EmitPush(result); | |
| 5010 } | |
| 5011 | |
| 5012 | |
| 5013 void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { | |
| 5014 ASSERT(args->length() == 1); | |
| 5015 Load(args->at(0)); | |
| 5016 JumpTarget answer; | |
| 5017 // We need the CC bits to come out as not_equal in the case where the | |
| 5018 // object is a smi. This can't be done with the usual test opcode so | |
| 5019 // we use XOR to get the right CC bits. | |
| 5020 Register possible_array = frame_->PopToRegister(); | |
| 5021 Register scratch = VirtualFrame::scratch0(); | |
| 5022 __ and_(scratch, possible_array, Operand(kSmiTagMask)); | |
| 5023 __ eor(scratch, scratch, Operand(kSmiTagMask), SetCC); | |
| 5024 answer.Branch(ne); | |
| 5025 // It is a heap object - get the map. Check if the object is a JS array. | |
| 5026 __ CompareObjectType(possible_array, scratch, scratch, JS_ARRAY_TYPE); | |
| 5027 answer.Bind(); | |
| 5028 cc_reg_ = eq; | |
| 5029 } | |
| 5030 | |
| 5031 | |
| 5032 void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { | |
| 5033 ASSERT(args->length() == 1); | |
| 5034 Load(args->at(0)); | |
| 5035 JumpTarget answer; | |
| 5036 // We need the CC bits to come out as not_equal in the case where the | |
| 5037 // object is a smi. This can't be done with the usual test opcode so | |
| 5038 // we use XOR to get the right CC bits. | |
| 5039 Register possible_regexp = frame_->PopToRegister(); | |
| 5040 Register scratch = VirtualFrame::scratch0(); | |
| 5041 __ and_(scratch, possible_regexp, Operand(kSmiTagMask)); | |
| 5042 __ eor(scratch, scratch, Operand(kSmiTagMask), SetCC); | |
| 5043 answer.Branch(ne); | |
| 5044 // It is a heap object - get the map. Check if the object is a regexp. | |
| 5045 __ CompareObjectType(possible_regexp, scratch, scratch, JS_REGEXP_TYPE); | |
| 5046 answer.Bind(); | |
| 5047 cc_reg_ = eq; | |
| 5048 } | |
| 5049 | |
| 5050 | |
| 5051 void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { | |
| 5052 // This generates a fast version of: | |
| 5053 // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') | |
| 5054 ASSERT(args->length() == 1); | |
| 5055 Load(args->at(0)); | |
| 5056 Register possible_object = frame_->PopToRegister(); | |
| 5057 __ tst(possible_object, Operand(kSmiTagMask)); | |
| 5058 false_target()->Branch(eq); | |
| 5059 | |
| 5060 __ LoadRoot(ip, Heap::kNullValueRootIndex); | |
| 5061 __ cmp(possible_object, ip); | |
| 5062 true_target()->Branch(eq); | |
| 5063 | |
| 5064 Register map_reg = VirtualFrame::scratch0(); | |
| 5065 __ ldr(map_reg, FieldMemOperand(possible_object, HeapObject::kMapOffset)); | |
| 5066 // Undetectable objects behave like undefined when tested with typeof. | |
| 5067 __ ldrb(possible_object, FieldMemOperand(map_reg, Map::kBitFieldOffset)); | |
| 5068 __ tst(possible_object, Operand(1 << Map::kIsUndetectable)); | |
| 5069 false_target()->Branch(ne); | |
| 5070 | |
| 5071 __ ldrb(possible_object, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); | |
| 5072 __ cmp(possible_object, Operand(FIRST_JS_OBJECT_TYPE)); | |
| 5073 false_target()->Branch(lt); | |
| 5074 __ cmp(possible_object, Operand(LAST_JS_OBJECT_TYPE)); | |
| 5075 cc_reg_ = le; | |
| 5076 } | |
| 5077 | |
| 5078 | |
| 5079 void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) { | |
| 5080 // This generates a fast version of: | |
| 5081 // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' || | |
| 5082 // typeof(arg) == function). | |
| 5083 // It includes undetectable objects (as opposed to IsObject). | |
| 5084 ASSERT(args->length() == 1); | |
| 5085 Load(args->at(0)); | |
| 5086 Register value = frame_->PopToRegister(); | |
| 5087 __ tst(value, Operand(kSmiTagMask)); | |
| 5088 false_target()->Branch(eq); | |
| 5089 // Check that this is an object. | |
| 5090 __ ldr(value, FieldMemOperand(value, HeapObject::kMapOffset)); | |
| 5091 __ ldrb(value, FieldMemOperand(value, Map::kInstanceTypeOffset)); | |
| 5092 __ cmp(value, Operand(FIRST_JS_OBJECT_TYPE)); | |
| 5093 cc_reg_ = ge; | |
| 5094 } | |
| 5095 | |
| 5096 | |
| 5097 // Deferred code to check whether the String JavaScript object is safe for using | |
| 5098 // default value of. This code is called after the bit caching this information | |
| 5099 // in the map has been checked with the map for the object in the map_result_ | |
| 5100 // register. On return the register map_result_ contains 1 for true and 0 for | |
| 5101 // false. | |
| 5102 class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode { | |
| 5103 public: | |
| 5104 DeferredIsStringWrapperSafeForDefaultValueOf(Register object, | |
| 5105 Register map_result, | |
| 5106 Register scratch1, | |
| 5107 Register scratch2) | |
| 5108 : object_(object), | |
| 5109 map_result_(map_result), | |
| 5110 scratch1_(scratch1), | |
| 5111 scratch2_(scratch2) { } | |
| 5112 | |
| 5113 virtual void Generate() { | |
| 5114 Label false_result; | |
| 5115 | |
| 5116 // Check that map is loaded as expected. | |
| 5117 if (FLAG_debug_code) { | |
| 5118 __ ldr(ip, FieldMemOperand(object_, HeapObject::kMapOffset)); | |
| 5119 __ cmp(map_result_, ip); | |
| 5120 __ Assert(eq, "Map not in expected register"); | |
| 5121 } | |
| 5122 | |
| 5123 // Check for fast case object. Generate false result for slow case object. | |
| 5124 __ ldr(scratch1_, FieldMemOperand(object_, JSObject::kPropertiesOffset)); | |
| 5125 __ ldr(scratch1_, FieldMemOperand(scratch1_, HeapObject::kMapOffset)); | |
| 5126 __ LoadRoot(ip, Heap::kHashTableMapRootIndex); | |
| 5127 __ cmp(scratch1_, ip); | |
| 5128 __ b(eq, &false_result); | |
| 5129 | |
| 5130 // Look for valueOf symbol in the descriptor array, and indicate false if | |
| 5131 // found. The type is not checked, so if it is a transition it is a false | |
| 5132 // negative. | |
| 5133 __ ldr(map_result_, | |
| 5134 FieldMemOperand(map_result_, Map::kInstanceDescriptorsOffset)); | |
| 5135 __ ldr(scratch2_, FieldMemOperand(map_result_, FixedArray::kLengthOffset)); | |
| 5136 // map_result_: descriptor array | |
| 5137 // scratch2_: length of descriptor array | |
| 5138 // Calculate the end of the descriptor array. | |
| 5139 STATIC_ASSERT(kSmiTag == 0); | |
| 5140 STATIC_ASSERT(kSmiTagSize == 1); | |
| 5141 STATIC_ASSERT(kPointerSize == 4); | |
| 5142 __ add(scratch1_, | |
| 5143 map_result_, | |
| 5144 Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | |
| 5145 __ add(scratch1_, | |
| 5146 scratch1_, | |
| 5147 Operand(scratch2_, LSL, kPointerSizeLog2 - kSmiTagSize)); | |
| 5148 | |
| 5149 // Calculate location of the first key name. | |
| 5150 __ add(map_result_, | |
| 5151 map_result_, | |
| 5152 Operand(FixedArray::kHeaderSize - kHeapObjectTag + | |
| 5153 DescriptorArray::kFirstIndex * kPointerSize)); | |
| 5154 // Loop through all the keys in the descriptor array. If one of these is the | |
| 5155 // symbol valueOf the result is false. | |
| 5156 Label entry, loop; | |
| 5157 // The use of ip to store the valueOf symbol asumes that it is not otherwise | |
| 5158 // used in the loop below. | |
| 5159 __ mov(ip, Operand(FACTORY->value_of_symbol())); | |
| 5160 __ jmp(&entry); | |
| 5161 __ bind(&loop); | |
| 5162 __ ldr(scratch2_, MemOperand(map_result_, 0)); | |
| 5163 __ cmp(scratch2_, ip); | |
| 5164 __ b(eq, &false_result); | |
| 5165 __ add(map_result_, map_result_, Operand(kPointerSize)); | |
| 5166 __ bind(&entry); | |
| 5167 __ cmp(map_result_, Operand(scratch1_)); | |
| 5168 __ b(ne, &loop); | |
| 5169 | |
| 5170 // Reload map as register map_result_ was used as temporary above. | |
| 5171 __ ldr(map_result_, FieldMemOperand(object_, HeapObject::kMapOffset)); | |
| 5172 | |
| 5173 // If a valueOf property is not found on the object check that it's | |
| 5174 // prototype is the un-modified String prototype. If not result is false. | |
| 5175 __ ldr(scratch1_, FieldMemOperand(map_result_, Map::kPrototypeOffset)); | |
| 5176 __ tst(scratch1_, Operand(kSmiTagMask)); | |
| 5177 __ b(eq, &false_result); | |
| 5178 __ ldr(scratch1_, FieldMemOperand(scratch1_, HeapObject::kMapOffset)); | |
| 5179 __ ldr(scratch2_, | |
| 5180 ContextOperand(cp, Context::GLOBAL_INDEX)); | |
| 5181 __ ldr(scratch2_, | |
| 5182 FieldMemOperand(scratch2_, GlobalObject::kGlobalContextOffset)); | |
| 5183 __ ldr(scratch2_, | |
| 5184 ContextOperand( | |
| 5185 scratch2_, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); | |
| 5186 __ cmp(scratch1_, scratch2_); | |
| 5187 __ b(ne, &false_result); | |
| 5188 | |
| 5189 // Set the bit in the map to indicate that it has been checked safe for | |
| 5190 // default valueOf and set true result. | |
| 5191 __ ldrb(scratch1_, FieldMemOperand(map_result_, Map::kBitField2Offset)); | |
| 5192 __ orr(scratch1_, | |
| 5193 scratch1_, | |
| 5194 Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); | |
| 5195 __ strb(scratch1_, FieldMemOperand(map_result_, Map::kBitField2Offset)); | |
| 5196 __ mov(map_result_, Operand(1)); | |
| 5197 __ jmp(exit_label()); | |
| 5198 __ bind(&false_result); | |
| 5199 // Set false result. | |
| 5200 __ mov(map_result_, Operand(0, RelocInfo::NONE)); | |
| 5201 } | |
| 5202 | |
| 5203 private: | |
| 5204 Register object_; | |
| 5205 Register map_result_; | |
| 5206 Register scratch1_; | |
| 5207 Register scratch2_; | |
| 5208 }; | |
| 5209 | |
| 5210 | |
| 5211 void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf( | |
| 5212 ZoneList<Expression*>* args) { | |
| 5213 ASSERT(args->length() == 1); | |
| 5214 Load(args->at(0)); | |
| 5215 Register obj = frame_->PopToRegister(); // Pop the string wrapper. | |
| 5216 if (FLAG_debug_code) { | |
| 5217 __ AbortIfSmi(obj); | |
| 5218 } | |
| 5219 | |
| 5220 // Check whether this map has already been checked to be safe for default | |
| 5221 // valueOf. | |
| 5222 Register map_result = VirtualFrame::scratch0(); | |
| 5223 __ ldr(map_result, FieldMemOperand(obj, HeapObject::kMapOffset)); | |
| 5224 __ ldrb(ip, FieldMemOperand(map_result, Map::kBitField2Offset)); | |
| 5225 __ tst(ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); | |
| 5226 true_target()->Branch(ne); | |
| 5227 | |
| 5228 // We need an additional two scratch registers for the deferred code. | |
| 5229 Register scratch1 = VirtualFrame::scratch1(); | |
| 5230 // Use r6 without notifying the virtual frame. | |
| 5231 Register scratch2 = r6; | |
| 5232 | |
| 5233 DeferredIsStringWrapperSafeForDefaultValueOf* deferred = | |
| 5234 new DeferredIsStringWrapperSafeForDefaultValueOf( | |
| 5235 obj, map_result, scratch1, scratch2); | |
| 5236 deferred->Branch(eq); | |
| 5237 deferred->BindExit(); | |
| 5238 __ tst(map_result, Operand(map_result)); | |
| 5239 cc_reg_ = ne; | |
| 5240 } | |
| 5241 | |
| 5242 | |
| 5243 void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { | |
| 5244 // This generates a fast version of: | |
| 5245 // (%_ClassOf(arg) === 'Function') | |
| 5246 ASSERT(args->length() == 1); | |
| 5247 Load(args->at(0)); | |
| 5248 Register possible_function = frame_->PopToRegister(); | |
| 5249 __ tst(possible_function, Operand(kSmiTagMask)); | |
| 5250 false_target()->Branch(eq); | |
| 5251 Register map_reg = VirtualFrame::scratch0(); | |
| 5252 Register scratch = VirtualFrame::scratch1(); | |
| 5253 __ CompareObjectType(possible_function, map_reg, scratch, JS_FUNCTION_TYPE); | |
| 5254 cc_reg_ = eq; | |
| 5255 } | |
| 5256 | |
| 5257 | |
| 5258 void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { | |
| 5259 ASSERT(args->length() == 1); | |
| 5260 Load(args->at(0)); | |
| 5261 Register possible_undetectable = frame_->PopToRegister(); | |
| 5262 __ tst(possible_undetectable, Operand(kSmiTagMask)); | |
| 5263 false_target()->Branch(eq); | |
| 5264 Register scratch = VirtualFrame::scratch0(); | |
| 5265 __ ldr(scratch, | |
| 5266 FieldMemOperand(possible_undetectable, HeapObject::kMapOffset)); | |
| 5267 __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); | |
| 5268 __ tst(scratch, Operand(1 << Map::kIsUndetectable)); | |
| 5269 cc_reg_ = ne; | |
| 5270 } | |
| 5271 | |
| 5272 | |
| 5273 void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { | |
| 5274 ASSERT(args->length() == 0); | |
| 5275 | |
| 5276 Register scratch0 = VirtualFrame::scratch0(); | |
| 5277 Register scratch1 = VirtualFrame::scratch1(); | |
| 5278 // Get the frame pointer for the calling frame. | |
| 5279 __ ldr(scratch0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | |
| 5280 | |
| 5281 // Skip the arguments adaptor frame if it exists. | |
| 5282 __ ldr(scratch1, | |
| 5283 MemOperand(scratch0, StandardFrameConstants::kContextOffset)); | |
| 5284 __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
| 5285 __ ldr(scratch0, | |
| 5286 MemOperand(scratch0, StandardFrameConstants::kCallerFPOffset), eq); | |
| 5287 | |
| 5288 // Check the marker in the calling frame. | |
| 5289 __ ldr(scratch1, | |
| 5290 MemOperand(scratch0, StandardFrameConstants::kMarkerOffset)); | |
| 5291 __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); | |
| 5292 cc_reg_ = eq; | |
| 5293 } | |
| 5294 | |
| 5295 | |
| 5296 void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { | |
| 5297 ASSERT(args->length() == 0); | |
| 5298 | |
| 5299 Register tos = frame_->GetTOSRegister(); | |
| 5300 Register scratch0 = VirtualFrame::scratch0(); | |
| 5301 Register scratch1 = VirtualFrame::scratch1(); | |
| 5302 | |
| 5303 // Check if the calling frame is an arguments adaptor frame. | |
| 5304 __ ldr(scratch0, | |
| 5305 MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | |
| 5306 __ ldr(scratch1, | |
| 5307 MemOperand(scratch0, StandardFrameConstants::kContextOffset)); | |
| 5308 __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
| 5309 | |
| 5310 // Get the number of formal parameters. | |
| 5311 __ mov(tos, Operand(Smi::FromInt(scope()->num_parameters())), LeaveCC, ne); | |
| 5312 | |
| 5313 // Arguments adaptor case: Read the arguments length from the | |
| 5314 // adaptor frame. | |
| 5315 __ ldr(tos, | |
| 5316 MemOperand(scratch0, ArgumentsAdaptorFrameConstants::kLengthOffset), | |
| 5317 eq); | |
| 5318 | |
| 5319 frame_->EmitPush(tos); | |
| 5320 } | |
| 5321 | |
| 5322 | |
| 5323 void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) { | |
| 5324 ASSERT(args->length() == 1); | |
| 5325 | |
| 5326 // Satisfy contract with ArgumentsAccessStub: | |
| 5327 // Load the key into r1 and the formal parameters count into r0. | |
| 5328 Load(args->at(0)); | |
| 5329 frame_->PopToR1(); | |
| 5330 frame_->SpillAll(); | |
| 5331 __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); | |
| 5332 | |
| 5333 // Call the shared stub to get to arguments[key]. | |
| 5334 ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); | |
| 5335 frame_->CallStub(&stub, 0); | |
| 5336 frame_->EmitPush(r0); | |
| 5337 } | |
| 5338 | |
| 5339 | |
| 5340 void CodeGenerator::GenerateRandomHeapNumber( | |
| 5341 ZoneList<Expression*>* args) { | |
| 5342 VirtualFrame::SpilledScope spilled_scope(frame_); | |
| 5343 ASSERT(args->length() == 0); | |
| 5344 | |
| 5345 Label slow_allocate_heapnumber; | |
| 5346 Label heapnumber_allocated; | |
| 5347 | |
| 5348 __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); | |
| 5349 __ AllocateHeapNumber(r4, r1, r2, r6, &slow_allocate_heapnumber); | |
| 5350 __ jmp(&heapnumber_allocated); | |
| 5351 | |
| 5352 __ bind(&slow_allocate_heapnumber); | |
| 5353 // Allocate a heap number. | |
| 5354 __ CallRuntime(Runtime::kNumberAlloc, 0); | |
| 5355 __ mov(r4, Operand(r0)); | |
| 5356 | |
| 5357 __ bind(&heapnumber_allocated); | |
| 5358 | |
| 5359 // Convert 32 random bits in r0 to 0.(32 random bits) in a double | |
| 5360 // by computing: | |
| 5361 // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). | |
| 5362 if (CpuFeatures::IsSupported(VFP3)) { | |
| 5363 __ PrepareCallCFunction(1, r0); | |
| 5364 __ mov(r0, Operand(ExternalReference::isolate_address())); | |
| 5365 __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1); | |
| 5366 | |
| 5367 CpuFeatures::Scope scope(VFP3); | |
| 5368 // 0x41300000 is the top half of 1.0 x 2^20 as a double. | |
| 5369 // Create this constant using mov/orr to avoid PC relative load. | |
| 5370 __ mov(r1, Operand(0x41000000)); | |
| 5371 __ orr(r1, r1, Operand(0x300000)); | |
| 5372 // Move 0x41300000xxxxxxxx (x = random bits) to VFP. | |
| 5373 __ vmov(d7, r0, r1); | |
| 5374 // Move 0x4130000000000000 to VFP. | |
| 5375 __ mov(r0, Operand(0, RelocInfo::NONE)); | |
| 5376 __ vmov(d8, r0, r1); | |
| 5377 // Subtract and store the result in the heap number. | |
| 5378 __ vsub(d7, d7, d8); | |
| 5379 __ sub(r0, r4, Operand(kHeapObjectTag)); | |
| 5380 __ vstr(d7, r0, HeapNumber::kValueOffset); | |
| 5381 frame_->EmitPush(r4); | |
| 5382 } else { | |
| 5383 __ PrepareCallCFunction(2, r0); | |
| 5384 __ mov(r0, Operand(r4)); | |
| 5385 __ mov(r1, Operand(ExternalReference::isolate_address())); | |
| 5386 __ CallCFunction( | |
| 5387 ExternalReference::fill_heap_number_with_random_function(isolate()), 2); | |
| 5388 frame_->EmitPush(r0); | |
| 5389 } | |
| 5390 } | |
| 5391 | |
| 5392 | |
| 5393 void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { | |
| 5394 ASSERT_EQ(2, args->length()); | |
| 5395 | |
| 5396 Load(args->at(0)); | |
| 5397 Load(args->at(1)); | |
| 5398 | |
| 5399 StringAddStub stub(NO_STRING_ADD_FLAGS); | |
| 5400 frame_->SpillAll(); | |
| 5401 frame_->CallStub(&stub, 2); | |
| 5402 frame_->EmitPush(r0); | |
| 5403 } | |
| 5404 | |
| 5405 | |
| 5406 void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { | |
| 5407 ASSERT_EQ(3, args->length()); | |
| 5408 | |
| 5409 Load(args->at(0)); | |
| 5410 Load(args->at(1)); | |
| 5411 Load(args->at(2)); | |
| 5412 | |
| 5413 SubStringStub stub; | |
| 5414 frame_->SpillAll(); | |
| 5415 frame_->CallStub(&stub, 3); | |
| 5416 frame_->EmitPush(r0); | |
| 5417 } | |
| 5418 | |
| 5419 | |
| 5420 void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { | |
| 5421 ASSERT_EQ(2, args->length()); | |
| 5422 | |
| 5423 Load(args->at(0)); | |
| 5424 Load(args->at(1)); | |
| 5425 | |
| 5426 StringCompareStub stub; | |
| 5427 frame_->SpillAll(); | |
| 5428 frame_->CallStub(&stub, 2); | |
| 5429 frame_->EmitPush(r0); | |
| 5430 } | |
| 5431 | |
| 5432 | |
| 5433 void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { | |
| 5434 ASSERT_EQ(4, args->length()); | |
| 5435 | |
| 5436 Load(args->at(0)); | |
| 5437 Load(args->at(1)); | |
| 5438 Load(args->at(2)); | |
| 5439 Load(args->at(3)); | |
| 5440 RegExpExecStub stub; | |
| 5441 frame_->SpillAll(); | |
| 5442 frame_->CallStub(&stub, 4); | |
| 5443 frame_->EmitPush(r0); | |
| 5444 } | |
| 5445 | |
| 5446 | |
| 5447 void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) { | |
| 5448 ASSERT_EQ(3, args->length()); | |
| 5449 | |
| 5450 Load(args->at(0)); // Size of array, smi. | |
| 5451 Load(args->at(1)); // "index" property value. | |
| 5452 Load(args->at(2)); // "input" property value. | |
| 5453 RegExpConstructResultStub stub; | |
| 5454 frame_->SpillAll(); | |
| 5455 frame_->CallStub(&stub, 3); | |
| 5456 frame_->EmitPush(r0); | |
| 5457 } | |
| 5458 | |
| 5459 | |
| 5460 class DeferredSearchCache: public DeferredCode { | |
| 5461 public: | |
| 5462 DeferredSearchCache(Register dst, Register cache, Register key) | |
| 5463 : dst_(dst), cache_(cache), key_(key) { | |
| 5464 set_comment("[ DeferredSearchCache"); | |
| 5465 } | |
| 5466 | |
| 5467 virtual void Generate(); | |
| 5468 | |
| 5469 private: | |
| 5470 Register dst_, cache_, key_; | |
| 5471 }; | |
| 5472 | |
| 5473 | |
| 5474 void DeferredSearchCache::Generate() { | |
| 5475 __ Push(cache_, key_); | |
| 5476 __ CallRuntime(Runtime::kGetFromCache, 2); | |
| 5477 __ Move(dst_, r0); | |
| 5478 } | |
| 5479 | |
| 5480 | |
| 5481 void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) { | |
| 5482 ASSERT_EQ(2, args->length()); | |
| 5483 | |
| 5484 ASSERT_NE(NULL, args->at(0)->AsLiteral()); | |
| 5485 int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); | |
| 5486 | |
| 5487 Handle<FixedArray> jsfunction_result_caches( | |
| 5488 Isolate::Current()->global_context()->jsfunction_result_caches()); | |
| 5489 if (jsfunction_result_caches->length() <= cache_id) { | |
| 5490 __ Abort("Attempt to use undefined cache."); | |
| 5491 frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); | |
| 5492 return; | |
| 5493 } | |
| 5494 | |
| 5495 Load(args->at(1)); | |
| 5496 | |
| 5497 frame_->PopToR1(); | |
| 5498 frame_->SpillAll(); | |
| 5499 Register key = r1; // Just poped to r1 | |
| 5500 Register result = r0; // Free, as frame has just been spilled. | |
| 5501 Register scratch1 = VirtualFrame::scratch0(); | |
| 5502 Register scratch2 = VirtualFrame::scratch1(); | |
| 5503 | |
| 5504 __ ldr(scratch1, ContextOperand(cp, Context::GLOBAL_INDEX)); | |
| 5505 __ ldr(scratch1, | |
| 5506 FieldMemOperand(scratch1, GlobalObject::kGlobalContextOffset)); | |
| 5507 __ ldr(scratch1, | |
| 5508 ContextOperand(scratch1, Context::JSFUNCTION_RESULT_CACHES_INDEX)); | |
| 5509 __ ldr(scratch1, | |
| 5510 FieldMemOperand(scratch1, FixedArray::OffsetOfElementAt(cache_id))); | |
| 5511 | |
| 5512 DeferredSearchCache* deferred = | |
| 5513 new DeferredSearchCache(result, scratch1, key); | |
| 5514 | |
| 5515 const int kFingerOffset = | |
| 5516 FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex); | |
| 5517 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); | |
| 5518 __ ldr(result, FieldMemOperand(scratch1, kFingerOffset)); | |
| 5519 // result now holds finger offset as a smi. | |
| 5520 __ add(scratch2, scratch1, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | |
| 5521 // scratch2 now points to the start of fixed array elements. | |
| 5522 __ ldr(result, | |
| 5523 MemOperand( | |
| 5524 scratch2, result, LSL, kPointerSizeLog2 - kSmiTagSize, PreIndex)); | |
| 5525 // Note side effect of PreIndex: scratch2 now points to the key of the pair. | |
| 5526 __ cmp(key, result); | |
| 5527 deferred->Branch(ne); | |
| 5528 | |
| 5529 __ ldr(result, MemOperand(scratch2, kPointerSize)); | |
| 5530 | |
| 5531 deferred->BindExit(); | |
| 5532 frame_->EmitPush(result); | |
| 5533 } | |
| 5534 | |
| 5535 | |
| 5536 void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) { | |
| 5537 ASSERT_EQ(args->length(), 1); | |
| 5538 | |
| 5539 // Load the argument on the stack and jump to the runtime. | |
| 5540 Load(args->at(0)); | |
| 5541 | |
| 5542 NumberToStringStub stub; | |
| 5543 frame_->SpillAll(); | |
| 5544 frame_->CallStub(&stub, 1); | |
| 5545 frame_->EmitPush(r0); | |
| 5546 } | |
| 5547 | |
| 5548 | |
| 5549 class DeferredSwapElements: public DeferredCode { | |
| 5550 public: | |
| 5551 DeferredSwapElements(Register object, Register index1, Register index2) | |
| 5552 : object_(object), index1_(index1), index2_(index2) { | |
| 5553 set_comment("[ DeferredSwapElements"); | |
| 5554 } | |
| 5555 | |
| 5556 virtual void Generate(); | |
| 5557 | |
| 5558 private: | |
| 5559 Register object_, index1_, index2_; | |
| 5560 }; | |
| 5561 | |
| 5562 | |
| 5563 void DeferredSwapElements::Generate() { | |
| 5564 __ push(object_); | |
| 5565 __ push(index1_); | |
| 5566 __ push(index2_); | |
| 5567 __ CallRuntime(Runtime::kSwapElements, 3); | |
| 5568 } | |
| 5569 | |
| 5570 | |
| 5571 void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) { | |
| 5572 Comment cmnt(masm_, "[ GenerateSwapElements"); | |
| 5573 | |
| 5574 ASSERT_EQ(3, args->length()); | |
| 5575 | |
| 5576 Load(args->at(0)); | |
| 5577 Load(args->at(1)); | |
| 5578 Load(args->at(2)); | |
| 5579 | |
| 5580 VirtualFrame::SpilledScope spilled_scope(frame_); | |
| 5581 | |
| 5582 Register index2 = r2; | |
| 5583 Register index1 = r1; | |
| 5584 Register object = r0; | |
| 5585 Register tmp1 = r3; | |
| 5586 Register tmp2 = r4; | |
| 5587 | |
| 5588 frame_->EmitPop(index2); | |
| 5589 frame_->EmitPop(index1); | |
| 5590 frame_->EmitPop(object); | |
| 5591 | |
| 5592 DeferredSwapElements* deferred = | |
| 5593 new DeferredSwapElements(object, index1, index2); | |
| 5594 | |
| 5595 // Fetch the map and check if array is in fast case. | |
| 5596 // Check that object doesn't require security checks and | |
| 5597 // has no indexed interceptor. | |
| 5598 __ CompareObjectType(object, tmp1, tmp2, JS_ARRAY_TYPE); | |
| 5599 deferred->Branch(ne); | |
| 5600 __ ldrb(tmp2, FieldMemOperand(tmp1, Map::kBitFieldOffset)); | |
| 5601 __ tst(tmp2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask)); | |
| 5602 deferred->Branch(ne); | |
| 5603 | |
| 5604 // Check the object's elements are in fast case and writable. | |
| 5605 __ ldr(tmp1, FieldMemOperand(object, JSObject::kElementsOffset)); | |
| 5606 __ ldr(tmp2, FieldMemOperand(tmp1, HeapObject::kMapOffset)); | |
| 5607 __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); | |
| 5608 __ cmp(tmp2, ip); | |
| 5609 deferred->Branch(ne); | |
| 5610 | |
| 5611 // Smi-tagging is equivalent to multiplying by 2. | |
| 5612 STATIC_ASSERT(kSmiTag == 0); | |
| 5613 STATIC_ASSERT(kSmiTagSize == 1); | |
| 5614 | |
| 5615 // Check that both indices are smis. | |
| 5616 __ mov(tmp2, index1); | |
| 5617 __ orr(tmp2, tmp2, index2); | |
| 5618 __ tst(tmp2, Operand(kSmiTagMask)); | |
| 5619 deferred->Branch(ne); | |
| 5620 | |
| 5621 // Check that both indices are valid. | |
| 5622 __ ldr(tmp2, FieldMemOperand(object, JSArray::kLengthOffset)); | |
| 5623 __ cmp(tmp2, index1); | |
| 5624 __ cmp(tmp2, index2, hi); | |
| 5625 deferred->Branch(ls); | |
| 5626 | |
| 5627 // Bring the offsets into the fixed array in tmp1 into index1 and | |
| 5628 // index2. | |
| 5629 __ mov(tmp2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | |
| 5630 __ add(index1, tmp2, Operand(index1, LSL, kPointerSizeLog2 - kSmiTagSize)); | |
| 5631 __ add(index2, tmp2, Operand(index2, LSL, kPointerSizeLog2 - kSmiTagSize)); | |
| 5632 | |
| 5633 // Swap elements. | |
| 5634 Register tmp3 = object; | |
| 5635 object = no_reg; | |
| 5636 __ ldr(tmp3, MemOperand(tmp1, index1)); | |
| 5637 __ ldr(tmp2, MemOperand(tmp1, index2)); | |
| 5638 __ str(tmp3, MemOperand(tmp1, index2)); | |
| 5639 __ str(tmp2, MemOperand(tmp1, index1)); | |
| 5640 | |
| 5641 Label done; | |
| 5642 __ InNewSpace(tmp1, tmp2, eq, &done); | |
| 5643 // Possible optimization: do a check that both values are Smis | |
| 5644 // (or them and test against Smi mask.) | |
| 5645 | |
| 5646 __ mov(tmp2, tmp1); | |
| 5647 __ add(index1, index1, tmp1); | |
| 5648 __ add(index2, index2, tmp1); | |
| 5649 __ RecordWriteHelper(tmp1, index1, tmp3); | |
| 5650 __ RecordWriteHelper(tmp2, index2, tmp3); | |
| 5651 __ bind(&done); | |
| 5652 | |
| 5653 deferred->BindExit(); | |
| 5654 __ LoadRoot(tmp1, Heap::kUndefinedValueRootIndex); | |
| 5655 frame_->EmitPush(tmp1); | |
| 5656 } | |
| 5657 | |
| 5658 | |
| 5659 void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) { | |
| 5660 Comment cmnt(masm_, "[ GenerateCallFunction"); | |
| 5661 | |
| 5662 ASSERT(args->length() >= 2); | |
| 5663 | |
| 5664 int n_args = args->length() - 2; // for receiver and function. | |
| 5665 Load(args->at(0)); // receiver | |
| 5666 for (int i = 0; i < n_args; i++) { | |
| 5667 Load(args->at(i + 1)); | |
| 5668 } | |
| 5669 Load(args->at(n_args + 1)); // function | |
| 5670 frame_->CallJSFunction(n_args); | |
| 5671 frame_->EmitPush(r0); | |
| 5672 } | |
| 5673 | |
| 5674 | |
| 5675 void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { | |
| 5676 ASSERT_EQ(args->length(), 1); | |
| 5677 Load(args->at(0)); | |
| 5678 if (CpuFeatures::IsSupported(VFP3)) { | |
| 5679 TranscendentalCacheStub stub(TranscendentalCache::SIN, | |
| 5680 TranscendentalCacheStub::TAGGED); | |
| 5681 frame_->SpillAllButCopyTOSToR0(); | |
| 5682 frame_->CallStub(&stub, 1); | |
| 5683 } else { | |
| 5684 frame_->CallRuntime(Runtime::kMath_sin, 1); | |
| 5685 } | |
| 5686 frame_->EmitPush(r0); | |
| 5687 } | |
| 5688 | |
| 5689 | |
| 5690 void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { | |
| 5691 ASSERT_EQ(args->length(), 1); | |
| 5692 Load(args->at(0)); | |
| 5693 if (CpuFeatures::IsSupported(VFP3)) { | |
| 5694 TranscendentalCacheStub stub(TranscendentalCache::COS, | |
| 5695 TranscendentalCacheStub::TAGGED); | |
| 5696 frame_->SpillAllButCopyTOSToR0(); | |
| 5697 frame_->CallStub(&stub, 1); | |
| 5698 } else { | |
| 5699 frame_->CallRuntime(Runtime::kMath_cos, 1); | |
| 5700 } | |
| 5701 frame_->EmitPush(r0); | |
| 5702 } | |
| 5703 | |
| 5704 | |
| 5705 void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) { | |
| 5706 ASSERT_EQ(args->length(), 1); | |
| 5707 Load(args->at(0)); | |
| 5708 if (CpuFeatures::IsSupported(VFP3)) { | |
| 5709 TranscendentalCacheStub stub(TranscendentalCache::LOG, | |
| 5710 TranscendentalCacheStub::TAGGED); | |
| 5711 frame_->SpillAllButCopyTOSToR0(); | |
| 5712 frame_->CallStub(&stub, 1); | |
| 5713 } else { | |
| 5714 frame_->CallRuntime(Runtime::kMath_log, 1); | |
| 5715 } | |
| 5716 frame_->EmitPush(r0); | |
| 5717 } | |
| 5718 | |
| 5719 | |
| 5720 void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { | |
| 5721 ASSERT(args->length() == 2); | |
| 5722 | |
| 5723 // Load the two objects into registers and perform the comparison. | |
| 5724 Load(args->at(0)); | |
| 5725 Load(args->at(1)); | |
| 5726 Register lhs = frame_->PopToRegister(); | |
| 5727 Register rhs = frame_->PopToRegister(lhs); | |
| 5728 __ cmp(lhs, rhs); | |
| 5729 cc_reg_ = eq; | |
| 5730 } | |
| 5731 | |
| 5732 | |
| 5733 void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) { | |
| 5734 ASSERT(args->length() == 2); | |
| 5735 | |
| 5736 // Load the two objects into registers and perform the comparison. | |
| 5737 Load(args->at(0)); | |
| 5738 Load(args->at(1)); | |
| 5739 Register right = frame_->PopToRegister(); | |
| 5740 Register left = frame_->PopToRegister(right); | |
| 5741 Register tmp = frame_->scratch0(); | |
| 5742 Register tmp2 = frame_->scratch1(); | |
| 5743 | |
| 5744 // Jumps to done must have the eq flag set if the test is successful | |
| 5745 // and clear if the test has failed. | |
| 5746 Label done; | |
| 5747 | |
| 5748 // Fail if either is a non-HeapObject. | |
| 5749 __ cmp(left, Operand(right)); | |
| 5750 __ b(eq, &done); | |
| 5751 __ and_(tmp, left, Operand(right)); | |
| 5752 __ eor(tmp, tmp, Operand(kSmiTagMask)); | |
| 5753 __ tst(tmp, Operand(kSmiTagMask)); | |
| 5754 __ b(ne, &done); | |
| 5755 __ ldr(tmp, FieldMemOperand(left, HeapObject::kMapOffset)); | |
| 5756 __ ldrb(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset)); | |
| 5757 __ cmp(tmp2, Operand(JS_REGEXP_TYPE)); | |
| 5758 __ b(ne, &done); | |
| 5759 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); | |
| 5760 __ cmp(tmp, Operand(tmp2)); | |
| 5761 __ b(ne, &done); | |
| 5762 __ ldr(tmp, FieldMemOperand(left, JSRegExp::kDataOffset)); | |
| 5763 __ ldr(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset)); | |
| 5764 __ cmp(tmp, tmp2); | |
| 5765 __ bind(&done); | |
| 5766 cc_reg_ = eq; | |
| 5767 } | |
| 5768 | |
| 5769 | |
| 5770 void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) { | |
| 5771 ASSERT(args->length() == 1); | |
| 5772 Load(args->at(0)); | |
| 5773 Register value = frame_->PopToRegister(); | |
| 5774 Register tmp = frame_->scratch0(); | |
| 5775 __ ldr(tmp, FieldMemOperand(value, String::kHashFieldOffset)); | |
| 5776 __ tst(tmp, Operand(String::kContainsCachedArrayIndexMask)); | |
| 5777 cc_reg_ = eq; | |
| 5778 } | |
| 5779 | |
| 5780 | |
| 5781 void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) { | |
| 5782 ASSERT(args->length() == 1); | |
| 5783 Load(args->at(0)); | |
| 5784 Register value = frame_->PopToRegister(); | |
| 5785 | |
| 5786 __ ldr(value, FieldMemOperand(value, String::kHashFieldOffset)); | |
| 5787 __ IndexFromHash(value, value); | |
| 5788 frame_->EmitPush(value); | |
| 5789 } | |
| 5790 | |
| 5791 | |
| 5792 void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args) { | |
| 5793 ASSERT(args->length() == 2); | |
| 5794 Load(args->at(0)); | |
| 5795 Register value = frame_->PopToRegister(); | |
| 5796 __ LoadRoot(value, Heap::kUndefinedValueRootIndex); | |
| 5797 frame_->EmitPush(value); | |
| 5798 } | |
| 5799 | |
| 5800 | |
| 5801 void CodeGenerator::VisitCallRuntime(CallRuntime* node) { | |
| 5802 #ifdef DEBUG | |
| 5803 int original_height = frame_->height(); | |
| 5804 #endif | |
| 5805 if (CheckForInlineRuntimeCall(node)) { | |
| 5806 ASSERT((has_cc() && frame_->height() == original_height) || | |
| 5807 (!has_cc() && frame_->height() == original_height + 1)); | |
| 5808 return; | |
| 5809 } | |
| 5810 | |
| 5811 ZoneList<Expression*>* args = node->arguments(); | |
| 5812 Comment cmnt(masm_, "[ CallRuntime"); | |
| 5813 const Runtime::Function* function = node->function(); | |
| 5814 | |
| 5815 if (function == NULL) { | |
| 5816 // Prepare stack for calling JS runtime function. | |
| 5817 // Push the builtins object found in the current global object. | |
| 5818 Register scratch = VirtualFrame::scratch0(); | |
| 5819 __ ldr(scratch, GlobalObjectOperand()); | |
| 5820 Register builtins = frame_->GetTOSRegister(); | |
| 5821 __ ldr(builtins, FieldMemOperand(scratch, GlobalObject::kBuiltinsOffset)); | |
| 5822 frame_->EmitPush(builtins); | |
| 5823 } | |
| 5824 | |
| 5825 // Push the arguments ("left-to-right"). | |
| 5826 int arg_count = args->length(); | |
| 5827 for (int i = 0; i < arg_count; i++) { | |
| 5828 Load(args->at(i)); | |
| 5829 } | |
| 5830 | |
| 5831 VirtualFrame::SpilledScope spilled_scope(frame_); | |
| 5832 | |
| 5833 if (function == NULL) { | |
| 5834 // Call the JS runtime function. | |
| 5835 __ mov(r2, Operand(node->name())); | |
| 5836 InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; | |
| 5837 Handle<Code> stub = | |
| 5838 ISOLATE->stub_cache()->ComputeCallInitialize(arg_count, in_loop); | |
| 5839 frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); | |
| 5840 __ ldr(cp, frame_->Context()); | |
| 5841 frame_->EmitPush(r0); | |
| 5842 } else { | |
| 5843 // Call the C runtime function. | |
| 5844 frame_->CallRuntime(function, arg_count); | |
| 5845 frame_->EmitPush(r0); | |
| 5846 } | |
| 5847 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 5848 } | |
| 5849 | |
| 5850 | |
| 5851 void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { | |
| 5852 #ifdef DEBUG | |
| 5853 int original_height = frame_->height(); | |
| 5854 #endif | |
| 5855 Comment cmnt(masm_, "[ UnaryOperation"); | |
| 5856 | |
| 5857 Token::Value op = node->op(); | |
| 5858 | |
| 5859 if (op == Token::NOT) { | |
| 5860 LoadCondition(node->expression(), false_target(), true_target(), true); | |
| 5861 // LoadCondition may (and usually does) leave a test and branch to | |
| 5862 // be emitted by the caller. In that case, negate the condition. | |
| 5863 if (has_cc()) cc_reg_ = NegateCondition(cc_reg_); | |
| 5864 | |
| 5865 } else if (op == Token::DELETE) { | |
| 5866 Property* property = node->expression()->AsProperty(); | |
| 5867 Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); | |
| 5868 if (property != NULL) { | |
| 5869 Load(property->obj()); | |
| 5870 Load(property->key()); | |
| 5871 frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); | |
| 5872 frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 3); | |
| 5873 frame_->EmitPush(r0); | |
| 5874 | |
| 5875 } else if (variable != NULL) { | |
| 5876 // Delete of an unqualified identifier is disallowed in strict mode | |
| 5877 // but "delete this" is. | |
| 5878 ASSERT(strict_mode_flag() == kNonStrictMode || variable->is_this()); | |
| 5879 Slot* slot = variable->AsSlot(); | |
| 5880 if (variable->is_global()) { | |
| 5881 LoadGlobal(); | |
| 5882 frame_->EmitPush(Operand(variable->name())); | |
| 5883 frame_->EmitPush(Operand(Smi::FromInt(kNonStrictMode))); | |
| 5884 frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 3); | |
| 5885 frame_->EmitPush(r0); | |
| 5886 | |
| 5887 } else if (slot != NULL && slot->type() == Slot::LOOKUP) { | |
| 5888 // Delete from the context holding the named variable. | |
| 5889 frame_->EmitPush(cp); | |
| 5890 frame_->EmitPush(Operand(variable->name())); | |
| 5891 frame_->CallRuntime(Runtime::kDeleteContextSlot, 2); | |
| 5892 frame_->EmitPush(r0); | |
| 5893 | |
| 5894 } else { | |
| 5895 // Default: Result of deleting non-global, not dynamically | |
| 5896 // introduced variables is false. | |
| 5897 frame_->EmitPushRoot(Heap::kFalseValueRootIndex); | |
| 5898 } | |
| 5899 | |
| 5900 } else { | |
| 5901 // Default: Result of deleting expressions is true. | |
| 5902 Load(node->expression()); // may have side-effects | |
| 5903 frame_->Drop(); | |
| 5904 frame_->EmitPushRoot(Heap::kTrueValueRootIndex); | |
| 5905 } | |
| 5906 | |
| 5907 } else if (op == Token::TYPEOF) { | |
| 5908 // Special case for loading the typeof expression; see comment on | |
| 5909 // LoadTypeofExpression(). | |
| 5910 LoadTypeofExpression(node->expression()); | |
| 5911 frame_->CallRuntime(Runtime::kTypeof, 1); | |
| 5912 frame_->EmitPush(r0); // r0 has result | |
| 5913 | |
| 5914 } else { | |
| 5915 bool can_overwrite = node->expression()->ResultOverwriteAllowed(); | |
| 5916 UnaryOverwriteMode overwrite = | |
| 5917 can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; | |
| 5918 | |
| 5919 bool no_negative_zero = node->expression()->no_negative_zero(); | |
| 5920 Load(node->expression()); | |
| 5921 switch (op) { | |
| 5922 case Token::NOT: | |
| 5923 case Token::DELETE: | |
| 5924 case Token::TYPEOF: | |
| 5925 UNREACHABLE(); // handled above | |
| 5926 break; | |
| 5927 | |
| 5928 case Token::SUB: { | |
| 5929 frame_->PopToR0(); | |
| 5930 GenericUnaryOpStub stub( | |
| 5931 Token::SUB, | |
| 5932 overwrite, | |
| 5933 NO_UNARY_FLAGS, | |
| 5934 no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero); | |
| 5935 frame_->CallStub(&stub, 0); | |
| 5936 frame_->EmitPush(r0); // r0 has result | |
| 5937 break; | |
| 5938 } | |
| 5939 | |
| 5940 case Token::BIT_NOT: { | |
| 5941 Register tos = frame_->PopToRegister(); | |
| 5942 JumpTarget not_smi_label; | |
| 5943 JumpTarget continue_label; | |
| 5944 // Smi check. | |
| 5945 __ tst(tos, Operand(kSmiTagMask)); | |
| 5946 not_smi_label.Branch(ne); | |
| 5947 | |
| 5948 __ mvn(tos, Operand(tos)); | |
| 5949 __ bic(tos, tos, Operand(kSmiTagMask)); // Bit-clear inverted smi-tag. | |
| 5950 frame_->EmitPush(tos); | |
| 5951 // The fast case is the first to jump to the continue label, so it gets | |
| 5952 // to decide the virtual frame layout. | |
| 5953 continue_label.Jump(); | |
| 5954 | |
| 5955 not_smi_label.Bind(); | |
| 5956 frame_->SpillAll(); | |
| 5957 __ Move(r0, tos); | |
| 5958 GenericUnaryOpStub stub(Token::BIT_NOT, | |
| 5959 overwrite, | |
| 5960 NO_UNARY_SMI_CODE_IN_STUB); | |
| 5961 frame_->CallStub(&stub, 0); | |
| 5962 frame_->EmitPush(r0); | |
| 5963 | |
| 5964 continue_label.Bind(); | |
| 5965 break; | |
| 5966 } | |
| 5967 | |
| 5968 case Token::VOID: | |
| 5969 frame_->Drop(); | |
| 5970 frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); | |
| 5971 break; | |
| 5972 | |
| 5973 case Token::ADD: { | |
| 5974 Register tos = frame_->Peek(); | |
| 5975 // Smi check. | |
| 5976 JumpTarget continue_label; | |
| 5977 __ tst(tos, Operand(kSmiTagMask)); | |
| 5978 continue_label.Branch(eq); | |
| 5979 | |
| 5980 frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); | |
| 5981 frame_->EmitPush(r0); | |
| 5982 | |
| 5983 continue_label.Bind(); | |
| 5984 break; | |
| 5985 } | |
| 5986 default: | |
| 5987 UNREACHABLE(); | |
| 5988 } | |
| 5989 } | |
| 5990 ASSERT(!has_valid_frame() || | |
| 5991 (has_cc() && frame_->height() == original_height) || | |
| 5992 (!has_cc() && frame_->height() == original_height + 1)); | |
| 5993 } | |
| 5994 | |
| 5995 | |
| 5996 class DeferredCountOperation: public DeferredCode { | |
| 5997 public: | |
| 5998 DeferredCountOperation(Register value, | |
| 5999 bool is_increment, | |
| 6000 bool is_postfix, | |
| 6001 int target_size) | |
| 6002 : value_(value), | |
| 6003 is_increment_(is_increment), | |
| 6004 is_postfix_(is_postfix), | |
| 6005 target_size_(target_size) {} | |
| 6006 | |
| 6007 virtual void Generate() { | |
| 6008 VirtualFrame copied_frame(*frame_state()->frame()); | |
| 6009 | |
| 6010 Label slow; | |
| 6011 // Check for smi operand. | |
| 6012 __ tst(value_, Operand(kSmiTagMask)); | |
| 6013 __ b(ne, &slow); | |
| 6014 | |
| 6015 // Revert optimistic increment/decrement. | |
| 6016 if (is_increment_) { | |
| 6017 __ sub(value_, value_, Operand(Smi::FromInt(1))); | |
| 6018 } else { | |
| 6019 __ add(value_, value_, Operand(Smi::FromInt(1))); | |
| 6020 } | |
| 6021 | |
| 6022 // Slow case: Convert to number. At this point the | |
| 6023 // value to be incremented is in the value register.. | |
| 6024 __ bind(&slow); | |
| 6025 | |
| 6026 // Convert the operand to a number. | |
| 6027 copied_frame.EmitPush(value_); | |
| 6028 | |
| 6029 copied_frame.InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); | |
| 6030 | |
| 6031 if (is_postfix_) { | |
| 6032 // Postfix: store to result (on the stack). | |
| 6033 __ str(r0, MemOperand(sp, target_size_ * kPointerSize)); | |
| 6034 } | |
| 6035 | |
| 6036 copied_frame.EmitPush(r0); | |
| 6037 copied_frame.EmitPush(Operand(Smi::FromInt(1))); | |
| 6038 | |
| 6039 if (is_increment_) { | |
| 6040 copied_frame.CallRuntime(Runtime::kNumberAdd, 2); | |
| 6041 } else { | |
| 6042 copied_frame.CallRuntime(Runtime::kNumberSub, 2); | |
| 6043 } | |
| 6044 | |
| 6045 __ Move(value_, r0); | |
| 6046 | |
| 6047 copied_frame.MergeTo(frame_state()->frame()); | |
| 6048 } | |
| 6049 | |
| 6050 private: | |
| 6051 Register value_; | |
| 6052 bool is_increment_; | |
| 6053 bool is_postfix_; | |
| 6054 int target_size_; | |
| 6055 }; | |
| 6056 | |
| 6057 | |
| 6058 void CodeGenerator::VisitCountOperation(CountOperation* node) { | |
| 6059 #ifdef DEBUG | |
| 6060 int original_height = frame_->height(); | |
| 6061 #endif | |
| 6062 Comment cmnt(masm_, "[ CountOperation"); | |
| 6063 VirtualFrame::RegisterAllocationScope scope(this); | |
| 6064 | |
| 6065 bool is_postfix = node->is_postfix(); | |
| 6066 bool is_increment = node->op() == Token::INC; | |
| 6067 | |
| 6068 Variable* var = node->expression()->AsVariableProxy()->AsVariable(); | |
| 6069 bool is_const = (var != NULL && var->mode() == Variable::CONST); | |
| 6070 bool is_slot = (var != NULL && var->mode() == Variable::VAR); | |
| 6071 | |
| 6072 if (!is_const && is_slot && type_info(var->AsSlot()).IsSmi()) { | |
| 6073 // The type info declares that this variable is always a Smi. That | |
| 6074 // means it is a Smi both before and after the increment/decrement. | |
| 6075 // Lets make use of that to make a very minimal count. | |
| 6076 Reference target(this, node->expression(), !is_const); | |
| 6077 ASSERT(!target.is_illegal()); | |
| 6078 target.GetValue(); // Pushes the value. | |
| 6079 Register value = frame_->PopToRegister(); | |
| 6080 if (is_postfix) frame_->EmitPush(value); | |
| 6081 if (is_increment) { | |
| 6082 __ add(value, value, Operand(Smi::FromInt(1))); | |
| 6083 } else { | |
| 6084 __ sub(value, value, Operand(Smi::FromInt(1))); | |
| 6085 } | |
| 6086 frame_->EmitPush(value); | |
| 6087 target.SetValue(NOT_CONST_INIT, LIKELY_SMI); | |
| 6088 if (is_postfix) frame_->Pop(); | |
| 6089 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 6090 return; | |
| 6091 } | |
| 6092 | |
| 6093 // If it's a postfix expression and its result is not ignored and the | |
| 6094 // reference is non-trivial, then push a placeholder on the stack now | |
| 6095 // to hold the result of the expression. | |
| 6096 bool placeholder_pushed = false; | |
| 6097 if (!is_slot && is_postfix) { | |
| 6098 frame_->EmitPush(Operand(Smi::FromInt(0))); | |
| 6099 placeholder_pushed = true; | |
| 6100 } | |
| 6101 | |
| 6102 // A constant reference is not saved to, so a constant reference is not a | |
| 6103 // compound assignment reference. | |
| 6104 { Reference target(this, node->expression(), !is_const); | |
| 6105 if (target.is_illegal()) { | |
| 6106 // Spoof the virtual frame to have the expected height (one higher | |
| 6107 // than on entry). | |
| 6108 if (!placeholder_pushed) frame_->EmitPush(Operand(Smi::FromInt(0))); | |
| 6109 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 6110 return; | |
| 6111 } | |
| 6112 | |
| 6113 // This pushes 0, 1 or 2 words on the object to be used later when updating | |
| 6114 // the target. It also pushes the current value of the target. | |
| 6115 target.GetValue(); | |
| 6116 | |
| 6117 bool value_is_known_smi = frame_->KnownSmiAt(0); | |
| 6118 Register value = frame_->PopToRegister(); | |
| 6119 | |
| 6120 // Postfix: Store the old value as the result. | |
| 6121 if (placeholder_pushed) { | |
| 6122 frame_->SetElementAt(value, target.size()); | |
| 6123 } else if (is_postfix) { | |
| 6124 frame_->EmitPush(value); | |
| 6125 __ mov(VirtualFrame::scratch0(), value); | |
| 6126 value = VirtualFrame::scratch0(); | |
| 6127 } | |
| 6128 | |
| 6129 // We can't use any type information here since the virtual frame from the | |
| 6130 // deferred code may have lost information and we can't merge a virtual | |
| 6131 // frame with less specific type knowledge to a virtual frame with more | |
| 6132 // specific knowledge that has already used that specific knowledge to | |
| 6133 // generate code. | |
| 6134 frame_->ForgetTypeInfo(); | |
| 6135 | |
| 6136 // The constructor here will capture the current virtual frame and use it to | |
| 6137 // merge to after the deferred code has run. No virtual frame changes are | |
| 6138 // allowed from here until the 'BindExit' below. | |
| 6139 DeferredCode* deferred = | |
| 6140 new DeferredCountOperation(value, | |
| 6141 is_increment, | |
| 6142 is_postfix, | |
| 6143 target.size()); | |
| 6144 if (!value_is_known_smi) { | |
| 6145 // Check for smi operand. | |
| 6146 __ tst(value, Operand(kSmiTagMask)); | |
| 6147 | |
| 6148 deferred->Branch(ne); | |
| 6149 } | |
| 6150 | |
| 6151 // Perform optimistic increment/decrement. | |
| 6152 if (is_increment) { | |
| 6153 __ add(value, value, Operand(Smi::FromInt(1)), SetCC); | |
| 6154 } else { | |
| 6155 __ sub(value, value, Operand(Smi::FromInt(1)), SetCC); | |
| 6156 } | |
| 6157 | |
| 6158 // If increment/decrement overflows, go to deferred code. | |
| 6159 deferred->Branch(vs); | |
| 6160 | |
| 6161 deferred->BindExit(); | |
| 6162 | |
| 6163 // Store the new value in the target if not const. | |
| 6164 // At this point the answer is in the value register. | |
| 6165 frame_->EmitPush(value); | |
| 6166 // Set the target with the result, leaving the result on | |
| 6167 // top of the stack. Removes the target from the stack if | |
| 6168 // it has a non-zero size. | |
| 6169 if (!is_const) target.SetValue(NOT_CONST_INIT, LIKELY_SMI); | |
| 6170 } | |
| 6171 | |
| 6172 // Postfix: Discard the new value and use the old. | |
| 6173 if (is_postfix) frame_->Pop(); | |
| 6174 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 6175 } | |
| 6176 | |
| 6177 | |
| 6178 void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) { | |
| 6179 // According to ECMA-262 section 11.11, page 58, the binary logical | |
| 6180 // operators must yield the result of one of the two expressions | |
| 6181 // before any ToBoolean() conversions. This means that the value | |
| 6182 // produced by a && or || operator is not necessarily a boolean. | |
| 6183 | |
| 6184 // NOTE: If the left hand side produces a materialized value (not in | |
| 6185 // the CC register), we force the right hand side to do the | |
| 6186 // same. This is necessary because we may have to branch to the exit | |
| 6187 // after evaluating the left hand side (due to the shortcut | |
| 6188 // semantics), but the compiler must (statically) know if the result | |
| 6189 // of compiling the binary operation is materialized or not. | |
| 6190 if (node->op() == Token::AND) { | |
| 6191 JumpTarget is_true; | |
| 6192 LoadCondition(node->left(), &is_true, false_target(), false); | |
| 6193 if (has_valid_frame() && !has_cc()) { | |
| 6194 // The left-hand side result is on top of the virtual frame. | |
| 6195 JumpTarget pop_and_continue; | |
| 6196 JumpTarget exit; | |
| 6197 | |
| 6198 frame_->Dup(); | |
| 6199 // Avoid popping the result if it converts to 'false' using the | |
| 6200 // standard ToBoolean() conversion as described in ECMA-262, | |
| 6201 // section 9.2, page 30. | |
| 6202 ToBoolean(&pop_and_continue, &exit); | |
| 6203 Branch(false, &exit); | |
| 6204 | |
| 6205 // Pop the result of evaluating the first part. | |
| 6206 pop_and_continue.Bind(); | |
| 6207 frame_->Pop(); | |
| 6208 | |
| 6209 // Evaluate right side expression. | |
| 6210 is_true.Bind(); | |
| 6211 Load(node->right()); | |
| 6212 | |
| 6213 // Exit (always with a materialized value). | |
| 6214 exit.Bind(); | |
| 6215 } else if (has_cc() || is_true.is_linked()) { | |
| 6216 // The left-hand side is either (a) partially compiled to | |
| 6217 // control flow with a final branch left to emit or (b) fully | |
| 6218 // compiled to control flow and possibly true. | |
| 6219 if (has_cc()) { | |
| 6220 Branch(false, false_target()); | |
| 6221 } | |
| 6222 is_true.Bind(); | |
| 6223 LoadCondition(node->right(), true_target(), false_target(), false); | |
| 6224 } else { | |
| 6225 // Nothing to do. | |
| 6226 ASSERT(!has_valid_frame() && !has_cc() && !is_true.is_linked()); | |
| 6227 } | |
| 6228 | |
| 6229 } else { | |
| 6230 ASSERT(node->op() == Token::OR); | |
| 6231 JumpTarget is_false; | |
| 6232 LoadCondition(node->left(), true_target(), &is_false, false); | |
| 6233 if (has_valid_frame() && !has_cc()) { | |
| 6234 // The left-hand side result is on top of the virtual frame. | |
| 6235 JumpTarget pop_and_continue; | |
| 6236 JumpTarget exit; | |
| 6237 | |
| 6238 frame_->Dup(); | |
| 6239 // Avoid popping the result if it converts to 'true' using the | |
| 6240 // standard ToBoolean() conversion as described in ECMA-262, | |
| 6241 // section 9.2, page 30. | |
| 6242 ToBoolean(&exit, &pop_and_continue); | |
| 6243 Branch(true, &exit); | |
| 6244 | |
| 6245 // Pop the result of evaluating the first part. | |
| 6246 pop_and_continue.Bind(); | |
| 6247 frame_->Pop(); | |
| 6248 | |
| 6249 // Evaluate right side expression. | |
| 6250 is_false.Bind(); | |
| 6251 Load(node->right()); | |
| 6252 | |
| 6253 // Exit (always with a materialized value). | |
| 6254 exit.Bind(); | |
| 6255 } else if (has_cc() || is_false.is_linked()) { | |
| 6256 // The left-hand side is either (a) partially compiled to | |
| 6257 // control flow with a final branch left to emit or (b) fully | |
| 6258 // compiled to control flow and possibly false. | |
| 6259 if (has_cc()) { | |
| 6260 Branch(true, true_target()); | |
| 6261 } | |
| 6262 is_false.Bind(); | |
| 6263 LoadCondition(node->right(), true_target(), false_target(), false); | |
| 6264 } else { | |
| 6265 // Nothing to do. | |
| 6266 ASSERT(!has_valid_frame() && !has_cc() && !is_false.is_linked()); | |
| 6267 } | |
| 6268 } | |
| 6269 } | |
| 6270 | |
| 6271 | |
| 6272 void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { | |
| 6273 #ifdef DEBUG | |
| 6274 int original_height = frame_->height(); | |
| 6275 #endif | |
| 6276 Comment cmnt(masm_, "[ BinaryOperation"); | |
| 6277 | |
| 6278 if (node->op() == Token::AND || node->op() == Token::OR) { | |
| 6279 GenerateLogicalBooleanOperation(node); | |
| 6280 } else { | |
| 6281 // Optimize for the case where (at least) one of the expressions | |
| 6282 // is a literal small integer. | |
| 6283 Literal* lliteral = node->left()->AsLiteral(); | |
| 6284 Literal* rliteral = node->right()->AsLiteral(); | |
| 6285 // NOTE: The code below assumes that the slow cases (calls to runtime) | |
| 6286 // never return a constant/immutable object. | |
| 6287 bool overwrite_left = node->left()->ResultOverwriteAllowed(); | |
| 6288 bool overwrite_right = node->right()->ResultOverwriteAllowed(); | |
| 6289 | |
| 6290 if (rliteral != NULL && rliteral->handle()->IsSmi()) { | |
| 6291 VirtualFrame::RegisterAllocationScope scope(this); | |
| 6292 Load(node->left()); | |
| 6293 if (frame_->KnownSmiAt(0)) overwrite_left = false; | |
| 6294 SmiOperation(node->op(), | |
| 6295 rliteral->handle(), | |
| 6296 false, | |
| 6297 overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE); | |
| 6298 } else if (lliteral != NULL && lliteral->handle()->IsSmi()) { | |
| 6299 VirtualFrame::RegisterAllocationScope scope(this); | |
| 6300 Load(node->right()); | |
| 6301 if (frame_->KnownSmiAt(0)) overwrite_right = false; | |
| 6302 SmiOperation(node->op(), | |
| 6303 lliteral->handle(), | |
| 6304 true, | |
| 6305 overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE); | |
| 6306 } else { | |
| 6307 GenerateInlineSmi inline_smi = | |
| 6308 loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; | |
| 6309 if (lliteral != NULL) { | |
| 6310 ASSERT(!lliteral->handle()->IsSmi()); | |
| 6311 inline_smi = DONT_GENERATE_INLINE_SMI; | |
| 6312 } | |
| 6313 if (rliteral != NULL) { | |
| 6314 ASSERT(!rliteral->handle()->IsSmi()); | |
| 6315 inline_smi = DONT_GENERATE_INLINE_SMI; | |
| 6316 } | |
| 6317 VirtualFrame::RegisterAllocationScope scope(this); | |
| 6318 OverwriteMode overwrite_mode = NO_OVERWRITE; | |
| 6319 if (overwrite_left) { | |
| 6320 overwrite_mode = OVERWRITE_LEFT; | |
| 6321 } else if (overwrite_right) { | |
| 6322 overwrite_mode = OVERWRITE_RIGHT; | |
| 6323 } | |
| 6324 Load(node->left()); | |
| 6325 Load(node->right()); | |
| 6326 GenericBinaryOperation(node->op(), overwrite_mode, inline_smi); | |
| 6327 } | |
| 6328 } | |
| 6329 ASSERT(!has_valid_frame() || | |
| 6330 (has_cc() && frame_->height() == original_height) || | |
| 6331 (!has_cc() && frame_->height() == original_height + 1)); | |
| 6332 } | |
| 6333 | |
| 6334 | |
| 6335 void CodeGenerator::VisitThisFunction(ThisFunction* node) { | |
| 6336 #ifdef DEBUG | |
| 6337 int original_height = frame_->height(); | |
| 6338 #endif | |
| 6339 frame_->EmitPush(MemOperand(frame_->Function())); | |
| 6340 ASSERT_EQ(original_height + 1, frame_->height()); | |
| 6341 } | |
| 6342 | |
| 6343 | |
| 6344 void CodeGenerator::VisitCompareOperation(CompareOperation* node) { | |
| 6345 #ifdef DEBUG | |
| 6346 int original_height = frame_->height(); | |
| 6347 #endif | |
| 6348 Comment cmnt(masm_, "[ CompareOperation"); | |
| 6349 | |
| 6350 VirtualFrame::RegisterAllocationScope nonspilled_scope(this); | |
| 6351 | |
| 6352 // Get the expressions from the node. | |
| 6353 Expression* left = node->left(); | |
| 6354 Expression* right = node->right(); | |
| 6355 Token::Value op = node->op(); | |
| 6356 | |
| 6357 // To make typeof testing for natives implemented in JavaScript really | |
| 6358 // efficient, we generate special code for expressions of the form: | |
| 6359 // 'typeof <expression> == <string>'. | |
| 6360 UnaryOperation* operation = left->AsUnaryOperation(); | |
| 6361 if ((op == Token::EQ || op == Token::EQ_STRICT) && | |
| 6362 (operation != NULL && operation->op() == Token::TYPEOF) && | |
| 6363 (right->AsLiteral() != NULL && | |
| 6364 right->AsLiteral()->handle()->IsString())) { | |
| 6365 Handle<String> check(String::cast(*right->AsLiteral()->handle())); | |
| 6366 | |
| 6367 // Load the operand, move it to a register. | |
| 6368 LoadTypeofExpression(operation->expression()); | |
| 6369 Register tos = frame_->PopToRegister(); | |
| 6370 | |
| 6371 Register scratch = VirtualFrame::scratch0(); | |
| 6372 | |
| 6373 if (check->Equals(HEAP->number_symbol())) { | |
| 6374 __ tst(tos, Operand(kSmiTagMask)); | |
| 6375 true_target()->Branch(eq); | |
| 6376 __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); | |
| 6377 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); | |
| 6378 __ cmp(tos, ip); | |
| 6379 cc_reg_ = eq; | |
| 6380 | |
| 6381 } else if (check->Equals(HEAP->string_symbol())) { | |
| 6382 __ tst(tos, Operand(kSmiTagMask)); | |
| 6383 false_target()->Branch(eq); | |
| 6384 | |
| 6385 __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); | |
| 6386 | |
| 6387 // It can be an undetectable string object. | |
| 6388 __ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset)); | |
| 6389 __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); | |
| 6390 __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); | |
| 6391 false_target()->Branch(eq); | |
| 6392 | |
| 6393 __ ldrb(scratch, FieldMemOperand(tos, Map::kInstanceTypeOffset)); | |
| 6394 __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE)); | |
| 6395 cc_reg_ = lt; | |
| 6396 | |
| 6397 } else if (check->Equals(HEAP->boolean_symbol())) { | |
| 6398 __ LoadRoot(ip, Heap::kTrueValueRootIndex); | |
| 6399 __ cmp(tos, ip); | |
| 6400 true_target()->Branch(eq); | |
| 6401 __ LoadRoot(ip, Heap::kFalseValueRootIndex); | |
| 6402 __ cmp(tos, ip); | |
| 6403 cc_reg_ = eq; | |
| 6404 | |
| 6405 } else if (check->Equals(HEAP->undefined_symbol())) { | |
| 6406 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | |
| 6407 __ cmp(tos, ip); | |
| 6408 true_target()->Branch(eq); | |
| 6409 | |
| 6410 __ tst(tos, Operand(kSmiTagMask)); | |
| 6411 false_target()->Branch(eq); | |
| 6412 | |
| 6413 // It can be an undetectable object. | |
| 6414 __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); | |
| 6415 __ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset)); | |
| 6416 __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); | |
| 6417 __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); | |
| 6418 | |
| 6419 cc_reg_ = eq; | |
| 6420 | |
| 6421 } else if (check->Equals(HEAP->function_symbol())) { | |
| 6422 __ tst(tos, Operand(kSmiTagMask)); | |
| 6423 false_target()->Branch(eq); | |
| 6424 Register map_reg = scratch; | |
| 6425 __ CompareObjectType(tos, map_reg, tos, JS_FUNCTION_TYPE); | |
| 6426 true_target()->Branch(eq); | |
| 6427 // Regular expressions are callable so typeof == 'function'. | |
| 6428 __ CompareInstanceType(map_reg, tos, JS_REGEXP_TYPE); | |
| 6429 cc_reg_ = eq; | |
| 6430 | |
| 6431 } else if (check->Equals(HEAP->object_symbol())) { | |
| 6432 __ tst(tos, Operand(kSmiTagMask)); | |
| 6433 false_target()->Branch(eq); | |
| 6434 | |
| 6435 __ LoadRoot(ip, Heap::kNullValueRootIndex); | |
| 6436 __ cmp(tos, ip); | |
| 6437 true_target()->Branch(eq); | |
| 6438 | |
| 6439 Register map_reg = scratch; | |
| 6440 __ CompareObjectType(tos, map_reg, tos, JS_REGEXP_TYPE); | |
| 6441 false_target()->Branch(eq); | |
| 6442 | |
| 6443 // It can be an undetectable object. | |
| 6444 __ ldrb(tos, FieldMemOperand(map_reg, Map::kBitFieldOffset)); | |
| 6445 __ and_(tos, tos, Operand(1 << Map::kIsUndetectable)); | |
| 6446 __ cmp(tos, Operand(1 << Map::kIsUndetectable)); | |
| 6447 false_target()->Branch(eq); | |
| 6448 | |
| 6449 __ ldrb(tos, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); | |
| 6450 __ cmp(tos, Operand(FIRST_JS_OBJECT_TYPE)); | |
| 6451 false_target()->Branch(lt); | |
| 6452 __ cmp(tos, Operand(LAST_JS_OBJECT_TYPE)); | |
| 6453 cc_reg_ = le; | |
| 6454 | |
| 6455 } else { | |
| 6456 // Uncommon case: typeof testing against a string literal that is | |
| 6457 // never returned from the typeof operator. | |
| 6458 false_target()->Jump(); | |
| 6459 } | |
| 6460 ASSERT(!has_valid_frame() || | |
| 6461 (has_cc() && frame_->height() == original_height)); | |
| 6462 return; | |
| 6463 } | |
| 6464 | |
| 6465 switch (op) { | |
| 6466 case Token::EQ: | |
| 6467 Comparison(eq, left, right, false); | |
| 6468 break; | |
| 6469 | |
| 6470 case Token::LT: | |
| 6471 Comparison(lt, left, right); | |
| 6472 break; | |
| 6473 | |
| 6474 case Token::GT: | |
| 6475 Comparison(gt, left, right); | |
| 6476 break; | |
| 6477 | |
| 6478 case Token::LTE: | |
| 6479 Comparison(le, left, right); | |
| 6480 break; | |
| 6481 | |
| 6482 case Token::GTE: | |
| 6483 Comparison(ge, left, right); | |
| 6484 break; | |
| 6485 | |
| 6486 case Token::EQ_STRICT: | |
| 6487 Comparison(eq, left, right, true); | |
| 6488 break; | |
| 6489 | |
| 6490 case Token::IN: { | |
| 6491 Load(left); | |
| 6492 Load(right); | |
| 6493 frame_->InvokeBuiltin(Builtins::IN, CALL_JS, 2); | |
| 6494 frame_->EmitPush(r0); | |
| 6495 break; | |
| 6496 } | |
| 6497 | |
| 6498 case Token::INSTANCEOF: { | |
| 6499 Load(left); | |
| 6500 Load(right); | |
| 6501 InstanceofStub stub(InstanceofStub::kNoFlags); | |
| 6502 frame_->CallStub(&stub, 2); | |
| 6503 // At this point if instanceof succeeded then r0 == 0. | |
| 6504 __ tst(r0, Operand(r0)); | |
| 6505 cc_reg_ = eq; | |
| 6506 break; | |
| 6507 } | |
| 6508 | |
| 6509 default: | |
| 6510 UNREACHABLE(); | |
| 6511 } | |
| 6512 ASSERT((has_cc() && frame_->height() == original_height) || | |
| 6513 (!has_cc() && frame_->height() == original_height + 1)); | |
| 6514 } | |
| 6515 | |
| 6516 | |
| 6517 void CodeGenerator::VisitCompareToNull(CompareToNull* node) { | |
| 6518 #ifdef DEBUG | |
| 6519 int original_height = frame_->height(); | |
| 6520 #endif | |
| 6521 Comment cmnt(masm_, "[ CompareToNull"); | |
| 6522 | |
| 6523 Load(node->expression()); | |
| 6524 Register tos = frame_->PopToRegister(); | |
| 6525 __ LoadRoot(ip, Heap::kNullValueRootIndex); | |
| 6526 __ cmp(tos, ip); | |
| 6527 | |
| 6528 // The 'null' value is only equal to 'undefined' if using non-strict | |
| 6529 // comparisons. | |
| 6530 if (!node->is_strict()) { | |
| 6531 true_target()->Branch(eq); | |
| 6532 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | |
| 6533 __ cmp(tos, Operand(ip)); | |
| 6534 true_target()->Branch(eq); | |
| 6535 | |
| 6536 __ tst(tos, Operand(kSmiTagMask)); | |
| 6537 false_target()->Branch(eq); | |
| 6538 | |
| 6539 // It can be an undetectable object. | |
| 6540 __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); | |
| 6541 __ ldrb(tos, FieldMemOperand(tos, Map::kBitFieldOffset)); | |
| 6542 __ and_(tos, tos, Operand(1 << Map::kIsUndetectable)); | |
| 6543 __ cmp(tos, Operand(1 << Map::kIsUndetectable)); | |
| 6544 } | |
| 6545 | |
| 6546 cc_reg_ = eq; | |
| 6547 ASSERT(has_cc() && frame_->height() == original_height); | |
| 6548 } | |
| 6549 | |
| 6550 | |
| 6551 class DeferredReferenceGetNamedValue: public DeferredCode { | |
| 6552 public: | |
| 6553 explicit DeferredReferenceGetNamedValue(Register receiver, | |
| 6554 Handle<String> name, | |
| 6555 bool is_contextual) | |
| 6556 : receiver_(receiver), | |
| 6557 name_(name), | |
| 6558 is_contextual_(is_contextual), | |
| 6559 is_dont_delete_(false) { | |
| 6560 set_comment(is_contextual | |
| 6561 ? "[ DeferredReferenceGetNamedValue (contextual)" | |
| 6562 : "[ DeferredReferenceGetNamedValue"); | |
| 6563 } | |
| 6564 | |
| 6565 virtual void Generate(); | |
| 6566 | |
| 6567 void set_is_dont_delete(bool value) { | |
| 6568 ASSERT(is_contextual_); | |
| 6569 is_dont_delete_ = value; | |
| 6570 } | |
| 6571 | |
| 6572 private: | |
| 6573 Register receiver_; | |
| 6574 Handle<String> name_; | |
| 6575 bool is_contextual_; | |
| 6576 bool is_dont_delete_; | |
| 6577 }; | |
| 6578 | |
| 6579 | |
| 6580 // Convention for this is that on entry the receiver is in a register that | |
| 6581 // is not used by the stack. On exit the answer is found in that same | |
| 6582 // register and the stack has the same height. | |
| 6583 void DeferredReferenceGetNamedValue::Generate() { | |
| 6584 #ifdef DEBUG | |
| 6585 int expected_height = frame_state()->frame()->height(); | |
| 6586 #endif | |
| 6587 VirtualFrame copied_frame(*frame_state()->frame()); | |
| 6588 copied_frame.SpillAll(); | |
| 6589 | |
| 6590 Register scratch1 = VirtualFrame::scratch0(); | |
| 6591 Register scratch2 = VirtualFrame::scratch1(); | |
| 6592 ASSERT(!receiver_.is(scratch1) && !receiver_.is(scratch2)); | |
| 6593 __ DecrementCounter(masm_->isolate()->counters()->named_load_inline(), | |
| 6594 1, scratch1, scratch2); | |
| 6595 __ IncrementCounter(masm_->isolate()->counters()->named_load_inline_miss(), | |
| 6596 1, scratch1, scratch2); | |
| 6597 | |
| 6598 // Ensure receiver in r0 and name in r2 to match load ic calling convention. | |
| 6599 __ Move(r0, receiver_); | |
| 6600 __ mov(r2, Operand(name_)); | |
| 6601 | |
| 6602 // The rest of the instructions in the deferred code must be together. | |
| 6603 { Assembler::BlockConstPoolScope block_const_pool(masm_); | |
| 6604 Handle<Code> ic(Isolate::Current()->builtins()->builtin( | |
| 6605 Builtins::kLoadIC_Initialize)); | |
| 6606 RelocInfo::Mode mode = is_contextual_ | |
| 6607 ? RelocInfo::CODE_TARGET_CONTEXT | |
| 6608 : RelocInfo::CODE_TARGET; | |
| 6609 __ Call(ic, mode); | |
| 6610 // We must mark the code just after the call with the correct marker. | |
| 6611 MacroAssembler::NopMarkerTypes code_marker; | |
| 6612 if (is_contextual_) { | |
| 6613 code_marker = is_dont_delete_ | |
| 6614 ? MacroAssembler::PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE | |
| 6615 : MacroAssembler::PROPERTY_ACCESS_INLINED_CONTEXT; | |
| 6616 } else { | |
| 6617 code_marker = MacroAssembler::PROPERTY_ACCESS_INLINED; | |
| 6618 } | |
| 6619 __ MarkCode(code_marker); | |
| 6620 | |
| 6621 // At this point the answer is in r0. We move it to the expected register | |
| 6622 // if necessary. | |
| 6623 __ Move(receiver_, r0); | |
| 6624 | |
| 6625 // Now go back to the frame that we entered with. This will not overwrite | |
| 6626 // the receiver register since that register was not in use when we came | |
| 6627 // in. The instructions emitted by this merge are skipped over by the | |
| 6628 // inline load patching mechanism when looking for the branch instruction | |
| 6629 // that tells it where the code to patch is. | |
| 6630 copied_frame.MergeTo(frame_state()->frame()); | |
| 6631 | |
| 6632 // Block the constant pool for one more instruction after leaving this | |
| 6633 // constant pool block scope to include the branch instruction ending the | |
| 6634 // deferred code. | |
| 6635 __ BlockConstPoolFor(1); | |
| 6636 } | |
| 6637 ASSERT_EQ(expected_height, frame_state()->frame()->height()); | |
| 6638 } | |
| 6639 | |
| 6640 | |
| 6641 class DeferredReferenceGetKeyedValue: public DeferredCode { | |
| 6642 public: | |
| 6643 DeferredReferenceGetKeyedValue(Register key, Register receiver) | |
| 6644 : key_(key), receiver_(receiver) { | |
| 6645 set_comment("[ DeferredReferenceGetKeyedValue"); | |
| 6646 } | |
| 6647 | |
| 6648 virtual void Generate(); | |
| 6649 | |
| 6650 private: | |
| 6651 Register key_; | |
| 6652 Register receiver_; | |
| 6653 }; | |
| 6654 | |
| 6655 | |
| 6656 // Takes key and register in r0 and r1 or vice versa. Returns result | |
| 6657 // in r0. | |
| 6658 void DeferredReferenceGetKeyedValue::Generate() { | |
| 6659 ASSERT((key_.is(r0) && receiver_.is(r1)) || | |
| 6660 (key_.is(r1) && receiver_.is(r0))); | |
| 6661 | |
| 6662 VirtualFrame copied_frame(*frame_state()->frame()); | |
| 6663 copied_frame.SpillAll(); | |
| 6664 | |
| 6665 Register scratch1 = VirtualFrame::scratch0(); | |
| 6666 Register scratch2 = VirtualFrame::scratch1(); | |
| 6667 __ DecrementCounter(masm_->isolate()->counters()->keyed_load_inline(), | |
| 6668 1, scratch1, scratch2); | |
| 6669 __ IncrementCounter(masm_->isolate()->counters()->keyed_load_inline_miss(), | |
| 6670 1, scratch1, scratch2); | |
| 6671 | |
| 6672 // Ensure key in r0 and receiver in r1 to match keyed load ic calling | |
| 6673 // convention. | |
| 6674 if (key_.is(r1)) { | |
| 6675 __ Swap(r0, r1, ip); | |
| 6676 } | |
| 6677 | |
| 6678 // The rest of the instructions in the deferred code must be together. | |
| 6679 { Assembler::BlockConstPoolScope block_const_pool(masm_); | |
| 6680 // Call keyed load IC. It has the arguments key and receiver in r0 and r1. | |
| 6681 Handle<Code> ic(Isolate::Current()->builtins()->builtin( | |
| 6682 Builtins::kKeyedLoadIC_Initialize)); | |
| 6683 __ Call(ic, RelocInfo::CODE_TARGET); | |
| 6684 // The call must be followed by a nop instruction to indicate that the | |
| 6685 // keyed load has been inlined. | |
| 6686 __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); | |
| 6687 | |
| 6688 // Now go back to the frame that we entered with. This will not overwrite | |
| 6689 // the receiver or key registers since they were not in use when we came | |
| 6690 // in. The instructions emitted by this merge are skipped over by the | |
| 6691 // inline load patching mechanism when looking for the branch instruction | |
| 6692 // that tells it where the code to patch is. | |
| 6693 copied_frame.MergeTo(frame_state()->frame()); | |
| 6694 | |
| 6695 // Block the constant pool for one more instruction after leaving this | |
| 6696 // constant pool block scope to include the branch instruction ending the | |
| 6697 // deferred code. | |
| 6698 __ BlockConstPoolFor(1); | |
| 6699 } | |
| 6700 } | |
| 6701 | |
| 6702 | |
| 6703 class DeferredReferenceSetKeyedValue: public DeferredCode { | |
| 6704 public: | |
| 6705 DeferredReferenceSetKeyedValue(Register value, | |
| 6706 Register key, | |
| 6707 Register receiver, | |
| 6708 StrictModeFlag strict_mode) | |
| 6709 : value_(value), | |
| 6710 key_(key), | |
| 6711 receiver_(receiver), | |
| 6712 strict_mode_(strict_mode) { | |
| 6713 set_comment("[ DeferredReferenceSetKeyedValue"); | |
| 6714 } | |
| 6715 | |
| 6716 virtual void Generate(); | |
| 6717 | |
| 6718 private: | |
| 6719 Register value_; | |
| 6720 Register key_; | |
| 6721 Register receiver_; | |
| 6722 StrictModeFlag strict_mode_; | |
| 6723 }; | |
| 6724 | |
| 6725 | |
| 6726 void DeferredReferenceSetKeyedValue::Generate() { | |
| 6727 Register scratch1 = VirtualFrame::scratch0(); | |
| 6728 Register scratch2 = VirtualFrame::scratch1(); | |
| 6729 __ DecrementCounter(masm_->isolate()->counters()->keyed_store_inline(), | |
| 6730 1, scratch1, scratch2); | |
| 6731 __ IncrementCounter(masm_->isolate()->counters()->keyed_store_inline_miss(), | |
| 6732 1, scratch1, scratch2); | |
| 6733 | |
| 6734 // Ensure value in r0, key in r1 and receiver in r2 to match keyed store ic | |
| 6735 // calling convention. | |
| 6736 if (value_.is(r1)) { | |
| 6737 __ Swap(r0, r1, ip); | |
| 6738 } | |
| 6739 ASSERT(receiver_.is(r2)); | |
| 6740 | |
| 6741 // The rest of the instructions in the deferred code must be together. | |
| 6742 { Assembler::BlockConstPoolScope block_const_pool(masm_); | |
| 6743 // Call keyed store IC. It has the arguments value, key and receiver in r0, | |
| 6744 // r1 and r2. | |
| 6745 Handle<Code> ic(Isolate::Current()->builtins()->builtin( | |
| 6746 (strict_mode_ == kStrictMode) | |
| 6747 ? Builtins::kKeyedStoreIC_Initialize_Strict | |
| 6748 : Builtins::kKeyedStoreIC_Initialize)); | |
| 6749 __ Call(ic, RelocInfo::CODE_TARGET); | |
| 6750 // The call must be followed by a nop instruction to indicate that the | |
| 6751 // keyed store has been inlined. | |
| 6752 __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); | |
| 6753 | |
| 6754 // Block the constant pool for one more instruction after leaving this | |
| 6755 // constant pool block scope to include the branch instruction ending the | |
| 6756 // deferred code. | |
| 6757 __ BlockConstPoolFor(1); | |
| 6758 } | |
| 6759 } | |
| 6760 | |
| 6761 | |
| 6762 class DeferredReferenceSetNamedValue: public DeferredCode { | |
| 6763 public: | |
| 6764 DeferredReferenceSetNamedValue(Register value, | |
| 6765 Register receiver, | |
| 6766 Handle<String> name, | |
| 6767 StrictModeFlag strict_mode) | |
| 6768 : value_(value), | |
| 6769 receiver_(receiver), | |
| 6770 name_(name), | |
| 6771 strict_mode_(strict_mode) { | |
| 6772 set_comment("[ DeferredReferenceSetNamedValue"); | |
| 6773 } | |
| 6774 | |
| 6775 virtual void Generate(); | |
| 6776 | |
| 6777 private: | |
| 6778 Register value_; | |
| 6779 Register receiver_; | |
| 6780 Handle<String> name_; | |
| 6781 StrictModeFlag strict_mode_; | |
| 6782 }; | |
| 6783 | |
| 6784 | |
| 6785 // Takes value in r0, receiver in r1 and returns the result (the | |
| 6786 // value) in r0. | |
| 6787 void DeferredReferenceSetNamedValue::Generate() { | |
| 6788 // Record the entry frame and spill. | |
| 6789 VirtualFrame copied_frame(*frame_state()->frame()); | |
| 6790 copied_frame.SpillAll(); | |
| 6791 | |
| 6792 // Ensure value in r0, receiver in r1 to match store ic calling | |
| 6793 // convention. | |
| 6794 ASSERT(value_.is(r0) && receiver_.is(r1)); | |
| 6795 __ mov(r2, Operand(name_)); | |
| 6796 | |
| 6797 // The rest of the instructions in the deferred code must be together. | |
| 6798 { Assembler::BlockConstPoolScope block_const_pool(masm_); | |
| 6799 // Call keyed store IC. It has the arguments value, key and receiver in r0, | |
| 6800 // r1 and r2. | |
| 6801 Handle<Code> ic(Isolate::Current()->builtins()->builtin( | |
| 6802 (strict_mode_ == kStrictMode) ? Builtins::kStoreIC_Initialize_Strict | |
| 6803 : Builtins::kStoreIC_Initialize)); | |
| 6804 __ Call(ic, RelocInfo::CODE_TARGET); | |
| 6805 // The call must be followed by a nop instruction to indicate that the | |
| 6806 // named store has been inlined. | |
| 6807 __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); | |
| 6808 | |
| 6809 // Go back to the frame we entered with. The instructions | |
| 6810 // generated by this merge are skipped over by the inline store | |
| 6811 // patching mechanism when looking for the branch instruction that | |
| 6812 // tells it where the code to patch is. | |
| 6813 copied_frame.MergeTo(frame_state()->frame()); | |
| 6814 | |
| 6815 // Block the constant pool for one more instruction after leaving this | |
| 6816 // constant pool block scope to include the branch instruction ending the | |
| 6817 // deferred code. | |
| 6818 __ BlockConstPoolFor(1); | |
| 6819 } | |
| 6820 } | |
| 6821 | |
| 6822 | |
| 6823 // Consumes the top of stack (the receiver) and pushes the result instead. | |
| 6824 void CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) { | |
| 6825 bool contextual_load_in_builtin = | |
| 6826 is_contextual && | |
| 6827 (ISOLATE->bootstrapper()->IsActive() || | |
| 6828 (!info_->closure().is_null() && info_->closure()->IsBuiltin())); | |
| 6829 | |
| 6830 if (scope()->is_global_scope() || | |
| 6831 loop_nesting() == 0 || | |
| 6832 contextual_load_in_builtin) { | |
| 6833 Comment cmnt(masm(), "[ Load from named Property"); | |
| 6834 // Setup the name register and call load IC. | |
| 6835 frame_->CallLoadIC(name, | |
| 6836 is_contextual | |
| 6837 ? RelocInfo::CODE_TARGET_CONTEXT | |
| 6838 : RelocInfo::CODE_TARGET); | |
| 6839 frame_->EmitPush(r0); // Push answer. | |
| 6840 } else { | |
| 6841 // Inline the in-object property case. | |
| 6842 Comment cmnt(masm(), is_contextual | |
| 6843 ? "[ Inlined contextual property load" | |
| 6844 : "[ Inlined named property load"); | |
| 6845 | |
| 6846 // Counter will be decremented in the deferred code. Placed here to avoid | |
| 6847 // having it in the instruction stream below where patching will occur. | |
| 6848 if (is_contextual) { | |
| 6849 __ IncrementCounter( | |
| 6850 masm_->isolate()->counters()->named_load_global_inline(), | |
| 6851 1, frame_->scratch0(), frame_->scratch1()); | |
| 6852 } else { | |
| 6853 __ IncrementCounter(masm_->isolate()->counters()->named_load_inline(), | |
| 6854 1, frame_->scratch0(), frame_->scratch1()); | |
| 6855 } | |
| 6856 | |
| 6857 // The following instructions are the inlined load of an in-object property. | |
| 6858 // Parts of this code is patched, so the exact instructions generated needs | |
| 6859 // to be fixed. Therefore the instruction pool is blocked when generating | |
| 6860 // this code | |
| 6861 | |
| 6862 // Load the receiver from the stack. | |
| 6863 Register receiver = frame_->PopToRegister(); | |
| 6864 | |
| 6865 DeferredReferenceGetNamedValue* deferred = | |
| 6866 new DeferredReferenceGetNamedValue(receiver, name, is_contextual); | |
| 6867 | |
| 6868 bool is_dont_delete = false; | |
| 6869 if (is_contextual) { | |
| 6870 if (!info_->closure().is_null()) { | |
| 6871 // When doing lazy compilation we can check if the global cell | |
| 6872 // already exists and use its "don't delete" status as a hint. | |
| 6873 AssertNoAllocation no_gc; | |
| 6874 v8::internal::GlobalObject* global_object = | |
| 6875 info_->closure()->context()->global(); | |
| 6876 LookupResult lookup; | |
| 6877 global_object->LocalLookupRealNamedProperty(*name, &lookup); | |
| 6878 if (lookup.IsProperty() && lookup.type() == NORMAL) { | |
| 6879 ASSERT(lookup.holder() == global_object); | |
| 6880 ASSERT(global_object->property_dictionary()->ValueAt( | |
| 6881 lookup.GetDictionaryEntry())->IsJSGlobalPropertyCell()); | |
| 6882 is_dont_delete = lookup.IsDontDelete(); | |
| 6883 } | |
| 6884 } | |
| 6885 if (is_dont_delete) { | |
| 6886 __ IncrementCounter( | |
| 6887 masm_->isolate()->counters()->dont_delete_hint_hit(), | |
| 6888 1, frame_->scratch0(), frame_->scratch1()); | |
| 6889 } | |
| 6890 } | |
| 6891 | |
| 6892 { Assembler::BlockConstPoolScope block_const_pool(masm_); | |
| 6893 if (!is_contextual) { | |
| 6894 // Check that the receiver is a heap object. | |
| 6895 __ tst(receiver, Operand(kSmiTagMask)); | |
| 6896 deferred->Branch(eq); | |
| 6897 } | |
| 6898 | |
| 6899 // Check for the_hole_value if necessary. | |
| 6900 // Below we rely on the number of instructions generated, and we can't | |
| 6901 // cope with the Check macro which does not generate a fixed number of | |
| 6902 // instructions. | |
| 6903 Label skip, check_the_hole, cont; | |
| 6904 if (FLAG_debug_code && is_contextual && is_dont_delete) { | |
| 6905 __ b(&skip); | |
| 6906 __ bind(&check_the_hole); | |
| 6907 __ Check(ne, "DontDelete cells can't contain the hole"); | |
| 6908 __ b(&cont); | |
| 6909 __ bind(&skip); | |
| 6910 } | |
| 6911 | |
| 6912 #ifdef DEBUG | |
| 6913 int InlinedNamedLoadInstructions = 5; | |
| 6914 Label check_inlined_codesize; | |
| 6915 masm_->bind(&check_inlined_codesize); | |
| 6916 #endif | |
| 6917 | |
| 6918 Register scratch = VirtualFrame::scratch0(); | |
| 6919 Register scratch2 = VirtualFrame::scratch1(); | |
| 6920 | |
| 6921 // Check the map. The null map used below is patched by the inline cache | |
| 6922 // code. Therefore we can't use a LoadRoot call. | |
| 6923 __ ldr(scratch, FieldMemOperand(receiver, HeapObject::kMapOffset)); | |
| 6924 __ mov(scratch2, Operand(FACTORY->null_value())); | |
| 6925 __ cmp(scratch, scratch2); | |
| 6926 deferred->Branch(ne); | |
| 6927 | |
| 6928 if (is_contextual) { | |
| 6929 #ifdef DEBUG | |
| 6930 InlinedNamedLoadInstructions += 1; | |
| 6931 #endif | |
| 6932 // Load the (initially invalid) cell and get its value. | |
| 6933 masm()->mov(receiver, Operand(FACTORY->null_value())); | |
| 6934 __ ldr(receiver, | |
| 6935 FieldMemOperand(receiver, JSGlobalPropertyCell::kValueOffset)); | |
| 6936 | |
| 6937 deferred->set_is_dont_delete(is_dont_delete); | |
| 6938 | |
| 6939 if (!is_dont_delete) { | |
| 6940 #ifdef DEBUG | |
| 6941 InlinedNamedLoadInstructions += 3; | |
| 6942 #endif | |
| 6943 __ cmp(receiver, Operand(FACTORY->the_hole_value())); | |
| 6944 deferred->Branch(eq); | |
| 6945 } else if (FLAG_debug_code) { | |
| 6946 #ifdef DEBUG | |
| 6947 InlinedNamedLoadInstructions += 3; | |
| 6948 #endif | |
| 6949 __ cmp(receiver, Operand(FACTORY->the_hole_value())); | |
| 6950 __ b(&check_the_hole, eq); | |
| 6951 __ bind(&cont); | |
| 6952 } | |
| 6953 } else { | |
| 6954 // Initially use an invalid index. The index will be patched by the | |
| 6955 // inline cache code. | |
| 6956 __ ldr(receiver, MemOperand(receiver, 0)); | |
| 6957 } | |
| 6958 | |
| 6959 // Make sure that the expected number of instructions are generated. | |
| 6960 // If the code before is updated, the offsets in ic-arm.cc | |
| 6961 // LoadIC::PatchInlinedContextualLoad and PatchInlinedLoad need | |
| 6962 // to be updated. | |
| 6963 ASSERT_EQ(InlinedNamedLoadInstructions, | |
| 6964 masm_->InstructionsGeneratedSince(&check_inlined_codesize)); | |
| 6965 } | |
| 6966 | |
| 6967 deferred->BindExit(); | |
| 6968 // At this point the receiver register has the result, either from the | |
| 6969 // deferred code or from the inlined code. | |
| 6970 frame_->EmitPush(receiver); | |
| 6971 } | |
| 6972 } | |
| 6973 | |
| 6974 | |
| 6975 void CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) { | |
| 6976 #ifdef DEBUG | |
| 6977 int expected_height = frame()->height() - (is_contextual ? 1 : 2); | |
| 6978 #endif | |
| 6979 | |
| 6980 Result result; | |
| 6981 if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { | |
| 6982 frame()->CallStoreIC(name, is_contextual, strict_mode_flag()); | |
| 6983 } else { | |
| 6984 // Inline the in-object property case. | |
| 6985 JumpTarget slow, done; | |
| 6986 | |
| 6987 // Get the value and receiver from the stack. | |
| 6988 frame()->PopToR0(); | |
| 6989 Register value = r0; | |
| 6990 frame()->PopToR1(); | |
| 6991 Register receiver = r1; | |
| 6992 | |
| 6993 DeferredReferenceSetNamedValue* deferred = | |
| 6994 new DeferredReferenceSetNamedValue( | |
| 6995 value, receiver, name, strict_mode_flag()); | |
| 6996 | |
| 6997 // Check that the receiver is a heap object. | |
| 6998 __ tst(receiver, Operand(kSmiTagMask)); | |
| 6999 deferred->Branch(eq); | |
| 7000 | |
| 7001 // The following instructions are the part of the inlined | |
| 7002 // in-object property store code which can be patched. Therefore | |
| 7003 // the exact number of instructions generated must be fixed, so | |
| 7004 // the constant pool is blocked while generating this code. | |
| 7005 { Assembler::BlockConstPoolScope block_const_pool(masm_); | |
| 7006 Register scratch0 = VirtualFrame::scratch0(); | |
| 7007 Register scratch1 = VirtualFrame::scratch1(); | |
| 7008 | |
| 7009 // Check the map. Initially use an invalid map to force a | |
| 7010 // failure. The map check will be patched in the runtime system. | |
| 7011 __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); | |
| 7012 | |
| 7013 #ifdef DEBUG | |
| 7014 Label check_inlined_codesize; | |
| 7015 masm_->bind(&check_inlined_codesize); | |
| 7016 #endif | |
| 7017 __ mov(scratch0, Operand(FACTORY->null_value())); | |
| 7018 __ cmp(scratch0, scratch1); | |
| 7019 deferred->Branch(ne); | |
| 7020 | |
| 7021 int offset = 0; | |
| 7022 __ str(value, MemOperand(receiver, offset)); | |
| 7023 | |
| 7024 // Update the write barrier and record its size. We do not use | |
| 7025 // the RecordWrite macro here because we want the offset | |
| 7026 // addition instruction first to make it easy to patch. | |
| 7027 Label record_write_start, record_write_done; | |
| 7028 __ bind(&record_write_start); | |
| 7029 // Add offset into the object. | |
| 7030 __ add(scratch0, receiver, Operand(offset)); | |
| 7031 // Test that the object is not in the new space. We cannot set | |
| 7032 // region marks for new space pages. | |
| 7033 __ InNewSpace(receiver, scratch1, eq, &record_write_done); | |
| 7034 // Record the actual write. | |
| 7035 __ RecordWriteHelper(receiver, scratch0, scratch1); | |
| 7036 __ bind(&record_write_done); | |
| 7037 // Clobber all input registers when running with the debug-code flag | |
| 7038 // turned on to provoke errors. | |
| 7039 if (FLAG_debug_code) { | |
| 7040 __ mov(receiver, Operand(BitCast<int32_t>(kZapValue))); | |
| 7041 __ mov(scratch0, Operand(BitCast<int32_t>(kZapValue))); | |
| 7042 __ mov(scratch1, Operand(BitCast<int32_t>(kZapValue))); | |
| 7043 } | |
| 7044 // Check that this is the first inlined write barrier or that | |
| 7045 // this inlined write barrier has the same size as all the other | |
| 7046 // inlined write barriers. | |
| 7047 ASSERT((Isolate::Current()->inlined_write_barrier_size() == -1) || | |
| 7048 (Isolate::Current()->inlined_write_barrier_size() == | |
| 7049 masm()->InstructionsGeneratedSince(&record_write_start))); | |
| 7050 Isolate::Current()->set_inlined_write_barrier_size( | |
| 7051 masm()->InstructionsGeneratedSince(&record_write_start)); | |
| 7052 | |
| 7053 // Make sure that the expected number of instructions are generated. | |
| 7054 ASSERT_EQ(GetInlinedNamedStoreInstructionsAfterPatch(), | |
| 7055 masm()->InstructionsGeneratedSince(&check_inlined_codesize)); | |
| 7056 } | |
| 7057 deferred->BindExit(); | |
| 7058 } | |
| 7059 ASSERT_EQ(expected_height, frame()->height()); | |
| 7060 } | |
| 7061 | |
| 7062 | |
| 7063 void CodeGenerator::EmitKeyedLoad() { | |
| 7064 if (loop_nesting() == 0) { | |
| 7065 Comment cmnt(masm_, "[ Load from keyed property"); | |
| 7066 frame_->CallKeyedLoadIC(); | |
| 7067 } else { | |
| 7068 // Inline the keyed load. | |
| 7069 Comment cmnt(masm_, "[ Inlined load from keyed property"); | |
| 7070 | |
| 7071 // Counter will be decremented in the deferred code. Placed here to avoid | |
| 7072 // having it in the instruction stream below where patching will occur. | |
| 7073 __ IncrementCounter(masm_->isolate()->counters()->keyed_load_inline(), | |
| 7074 1, frame_->scratch0(), frame_->scratch1()); | |
| 7075 | |
| 7076 // Load the key and receiver from the stack. | |
| 7077 bool key_is_known_smi = frame_->KnownSmiAt(0); | |
| 7078 Register key = frame_->PopToRegister(); | |
| 7079 Register receiver = frame_->PopToRegister(key); | |
| 7080 | |
| 7081 // The deferred code expects key and receiver in registers. | |
| 7082 DeferredReferenceGetKeyedValue* deferred = | |
| 7083 new DeferredReferenceGetKeyedValue(key, receiver); | |
| 7084 | |
| 7085 // Check that the receiver is a heap object. | |
| 7086 __ tst(receiver, Operand(kSmiTagMask)); | |
| 7087 deferred->Branch(eq); | |
| 7088 | |
| 7089 // The following instructions are the part of the inlined load keyed | |
| 7090 // property code which can be patched. Therefore the exact number of | |
| 7091 // instructions generated need to be fixed, so the constant pool is blocked | |
| 7092 // while generating this code. | |
| 7093 { Assembler::BlockConstPoolScope block_const_pool(masm_); | |
| 7094 Register scratch1 = VirtualFrame::scratch0(); | |
| 7095 Register scratch2 = VirtualFrame::scratch1(); | |
| 7096 // Check the map. The null map used below is patched by the inline cache | |
| 7097 // code. | |
| 7098 __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); | |
| 7099 | |
| 7100 // Check that the key is a smi. | |
| 7101 if (!key_is_known_smi) { | |
| 7102 __ tst(key, Operand(kSmiTagMask)); | |
| 7103 deferred->Branch(ne); | |
| 7104 } | |
| 7105 | |
| 7106 #ifdef DEBUG | |
| 7107 Label check_inlined_codesize; | |
| 7108 masm_->bind(&check_inlined_codesize); | |
| 7109 #endif | |
| 7110 __ mov(scratch2, Operand(FACTORY->null_value())); | |
| 7111 __ cmp(scratch1, scratch2); | |
| 7112 deferred->Branch(ne); | |
| 7113 | |
| 7114 // Get the elements array from the receiver. | |
| 7115 __ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); | |
| 7116 __ AssertFastElements(scratch1); | |
| 7117 | |
| 7118 // Check that key is within bounds. Use unsigned comparison to handle | |
| 7119 // negative keys. | |
| 7120 __ ldr(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset)); | |
| 7121 __ cmp(scratch2, key); | |
| 7122 deferred->Branch(ls); // Unsigned less equal. | |
| 7123 | |
| 7124 // Load and check that the result is not the hole (key is a smi). | |
| 7125 __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex); | |
| 7126 __ add(scratch1, | |
| 7127 scratch1, | |
| 7128 Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | |
| 7129 __ ldr(scratch1, | |
| 7130 MemOperand(scratch1, key, LSL, | |
| 7131 kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize))); | |
| 7132 __ cmp(scratch1, scratch2); | |
| 7133 deferred->Branch(eq); | |
| 7134 | |
| 7135 __ mov(r0, scratch1); | |
| 7136 // Make sure that the expected number of instructions are generated. | |
| 7137 ASSERT_EQ(GetInlinedKeyedLoadInstructionsAfterPatch(), | |
| 7138 masm_->InstructionsGeneratedSince(&check_inlined_codesize)); | |
| 7139 } | |
| 7140 | |
| 7141 deferred->BindExit(); | |
| 7142 } | |
| 7143 } | |
| 7144 | |
| 7145 | |
| 7146 void CodeGenerator::EmitKeyedStore(StaticType* key_type, | |
| 7147 WriteBarrierCharacter wb_info) { | |
| 7148 // Generate inlined version of the keyed store if the code is in a loop | |
| 7149 // and the key is likely to be a smi. | |
| 7150 if (loop_nesting() > 0 && key_type->IsLikelySmi()) { | |
| 7151 // Inline the keyed store. | |
| 7152 Comment cmnt(masm_, "[ Inlined store to keyed property"); | |
| 7153 | |
| 7154 Register scratch1 = VirtualFrame::scratch0(); | |
| 7155 Register scratch2 = VirtualFrame::scratch1(); | |
| 7156 Register scratch3 = r3; | |
| 7157 | |
| 7158 // Counter will be decremented in the deferred code. Placed here to avoid | |
| 7159 // having it in the instruction stream below where patching will occur. | |
| 7160 __ IncrementCounter(masm_->isolate()->counters()->keyed_store_inline(), | |
| 7161 1, scratch1, scratch2); | |
| 7162 | |
| 7163 | |
| 7164 // Load the value, key and receiver from the stack. | |
| 7165 bool value_is_harmless = frame_->KnownSmiAt(0); | |
| 7166 if (wb_info == NEVER_NEWSPACE) value_is_harmless = true; | |
| 7167 bool key_is_smi = frame_->KnownSmiAt(1); | |
| 7168 Register value = frame_->PopToRegister(); | |
| 7169 Register key = frame_->PopToRegister(value); | |
| 7170 VirtualFrame::SpilledScope spilled(frame_); | |
| 7171 Register receiver = r2; | |
| 7172 frame_->EmitPop(receiver); | |
| 7173 | |
| 7174 #ifdef DEBUG | |
| 7175 bool we_remembered_the_write_barrier = value_is_harmless; | |
| 7176 #endif | |
| 7177 | |
| 7178 // The deferred code expects value, key and receiver in registers. | |
| 7179 DeferredReferenceSetKeyedValue* deferred = | |
| 7180 new DeferredReferenceSetKeyedValue( | |
| 7181 value, key, receiver, strict_mode_flag()); | |
| 7182 | |
| 7183 // Check that the value is a smi. As this inlined code does not set the | |
| 7184 // write barrier it is only possible to store smi values. | |
| 7185 if (!value_is_harmless) { | |
| 7186 // If the value is not likely to be a Smi then let's test the fixed array | |
| 7187 // for new space instead. See below. | |
| 7188 if (wb_info == LIKELY_SMI) { | |
| 7189 __ tst(value, Operand(kSmiTagMask)); | |
| 7190 deferred->Branch(ne); | |
| 7191 #ifdef DEBUG | |
| 7192 we_remembered_the_write_barrier = true; | |
| 7193 #endif | |
| 7194 } | |
| 7195 } | |
| 7196 | |
| 7197 if (!key_is_smi) { | |
| 7198 // Check that the key is a smi. | |
| 7199 __ tst(key, Operand(kSmiTagMask)); | |
| 7200 deferred->Branch(ne); | |
| 7201 } | |
| 7202 | |
| 7203 // Check that the receiver is a heap object. | |
| 7204 __ tst(receiver, Operand(kSmiTagMask)); | |
| 7205 deferred->Branch(eq); | |
| 7206 | |
| 7207 // Check that the receiver is a JSArray. | |
| 7208 __ CompareObjectType(receiver, scratch1, scratch1, JS_ARRAY_TYPE); | |
| 7209 deferred->Branch(ne); | |
| 7210 | |
| 7211 // Get the elements array from the receiver. | |
| 7212 __ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); | |
| 7213 if (!value_is_harmless && wb_info != LIKELY_SMI) { | |
| 7214 Label ok; | |
| 7215 __ and_(scratch2, | |
| 7216 scratch1, | |
| 7217 Operand(ExternalReference::new_space_mask(isolate()))); | |
| 7218 __ cmp(scratch2, Operand(ExternalReference::new_space_start(isolate()))); | |
| 7219 __ tst(value, Operand(kSmiTagMask), ne); | |
| 7220 deferred->Branch(ne); | |
| 7221 #ifdef DEBUG | |
| 7222 we_remembered_the_write_barrier = true; | |
| 7223 #endif | |
| 7224 } | |
| 7225 // Check that the elements array is not a dictionary. | |
| 7226 __ ldr(scratch2, FieldMemOperand(scratch1, JSObject::kMapOffset)); | |
| 7227 | |
| 7228 // The following instructions are the part of the inlined store keyed | |
| 7229 // property code which can be patched. Therefore the exact number of | |
| 7230 // instructions generated need to be fixed, so the constant pool is blocked | |
| 7231 // while generating this code. | |
| 7232 { Assembler::BlockConstPoolScope block_const_pool(masm_); | |
| 7233 #ifdef DEBUG | |
| 7234 Label check_inlined_codesize; | |
| 7235 masm_->bind(&check_inlined_codesize); | |
| 7236 #endif | |
| 7237 | |
| 7238 // Read the fixed array map from the constant pool (not from the root | |
| 7239 // array) so that the value can be patched. When debugging, we patch this | |
| 7240 // comparison to always fail so that we will hit the IC call in the | |
| 7241 // deferred code which will allow the debugger to break for fast case | |
| 7242 // stores. | |
| 7243 __ mov(scratch3, Operand(FACTORY->fixed_array_map())); | |
| 7244 __ cmp(scratch2, scratch3); | |
| 7245 deferred->Branch(ne); | |
| 7246 | |
| 7247 // Check that the key is within bounds. Both the key and the length of | |
| 7248 // the JSArray are smis (because the fixed array check above ensures the | |
| 7249 // elements are in fast case). Use unsigned comparison to handle negative | |
| 7250 // keys. | |
| 7251 __ ldr(scratch3, FieldMemOperand(receiver, JSArray::kLengthOffset)); | |
| 7252 __ cmp(scratch3, key); | |
| 7253 deferred->Branch(ls); // Unsigned less equal. | |
| 7254 | |
| 7255 // Store the value. | |
| 7256 __ add(scratch1, scratch1, | |
| 7257 Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | |
| 7258 __ str(value, | |
| 7259 MemOperand(scratch1, key, LSL, | |
| 7260 kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize))); | |
| 7261 | |
| 7262 // Make sure that the expected number of instructions are generated. | |
| 7263 ASSERT_EQ(kInlinedKeyedStoreInstructionsAfterPatch, | |
| 7264 masm_->InstructionsGeneratedSince(&check_inlined_codesize)); | |
| 7265 } | |
| 7266 | |
| 7267 ASSERT(we_remembered_the_write_barrier); | |
| 7268 | |
| 7269 deferred->BindExit(); | |
| 7270 } else { | |
| 7271 frame()->CallKeyedStoreIC(strict_mode_flag()); | |
| 7272 } | |
| 7273 } | |
| 7274 | |
| 7275 | |
| 7276 #ifdef DEBUG | |
| 7277 bool CodeGenerator::HasValidEntryRegisters() { return true; } | |
| 7278 #endif | |
| 7279 | |
| 7280 | |
| 7281 #undef __ | |
| 7282 #define __ ACCESS_MASM(masm) | |
| 7283 | |
| 7284 Handle<String> Reference::GetName() { | |
| 7285 ASSERT(type_ == NAMED); | |
| 7286 Property* property = expression_->AsProperty(); | |
| 7287 if (property == NULL) { | |
| 7288 // Global variable reference treated as a named property reference. | |
| 7289 VariableProxy* proxy = expression_->AsVariableProxy(); | |
| 7290 ASSERT(proxy->AsVariable() != NULL); | |
| 7291 ASSERT(proxy->AsVariable()->is_global()); | |
| 7292 return proxy->name(); | |
| 7293 } else { | |
| 7294 Literal* raw_name = property->key()->AsLiteral(); | |
| 7295 ASSERT(raw_name != NULL); | |
| 7296 return Handle<String>(String::cast(*raw_name->handle())); | |
| 7297 } | |
| 7298 } | |
| 7299 | |
| 7300 | |
| 7301 void Reference::DupIfPersist() { | |
| 7302 if (persist_after_get_) { | |
| 7303 switch (type_) { | |
| 7304 case KEYED: | |
| 7305 cgen_->frame()->Dup2(); | |
| 7306 break; | |
| 7307 case NAMED: | |
| 7308 cgen_->frame()->Dup(); | |
| 7309 // Fall through. | |
| 7310 case UNLOADED: | |
| 7311 case ILLEGAL: | |
| 7312 case SLOT: | |
| 7313 // Do nothing. | |
| 7314 ; | |
| 7315 } | |
| 7316 } else { | |
| 7317 set_unloaded(); | |
| 7318 } | |
| 7319 } | |
| 7320 | |
| 7321 | |
| 7322 void Reference::GetValue() { | |
| 7323 ASSERT(cgen_->HasValidEntryRegisters()); | |
| 7324 ASSERT(!is_illegal()); | |
| 7325 ASSERT(!cgen_->has_cc()); | |
| 7326 MacroAssembler* masm = cgen_->masm(); | |
| 7327 Property* property = expression_->AsProperty(); | |
| 7328 if (property != NULL) { | |
| 7329 cgen_->CodeForSourcePosition(property->position()); | |
| 7330 } | |
| 7331 | |
| 7332 switch (type_) { | |
| 7333 case SLOT: { | |
| 7334 Comment cmnt(masm, "[ Load from Slot"); | |
| 7335 Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); | |
| 7336 ASSERT(slot != NULL); | |
| 7337 DupIfPersist(); | |
| 7338 cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); | |
| 7339 break; | |
| 7340 } | |
| 7341 | |
| 7342 case NAMED: { | |
| 7343 Variable* var = expression_->AsVariableProxy()->AsVariable(); | |
| 7344 bool is_global = var != NULL; | |
| 7345 ASSERT(!is_global || var->is_global()); | |
| 7346 Handle<String> name = GetName(); | |
| 7347 DupIfPersist(); | |
| 7348 cgen_->EmitNamedLoad(name, is_global); | |
| 7349 break; | |
| 7350 } | |
| 7351 | |
| 7352 case KEYED: { | |
| 7353 ASSERT(property != NULL); | |
| 7354 DupIfPersist(); | |
| 7355 cgen_->EmitKeyedLoad(); | |
| 7356 cgen_->frame()->EmitPush(r0); | |
| 7357 break; | |
| 7358 } | |
| 7359 | |
| 7360 default: | |
| 7361 UNREACHABLE(); | |
| 7362 } | |
| 7363 } | |
| 7364 | |
| 7365 | |
| 7366 void Reference::SetValue(InitState init_state, WriteBarrierCharacter wb_info) { | |
| 7367 ASSERT(!is_illegal()); | |
| 7368 ASSERT(!cgen_->has_cc()); | |
| 7369 MacroAssembler* masm = cgen_->masm(); | |
| 7370 VirtualFrame* frame = cgen_->frame(); | |
| 7371 Property* property = expression_->AsProperty(); | |
| 7372 if (property != NULL) { | |
| 7373 cgen_->CodeForSourcePosition(property->position()); | |
| 7374 } | |
| 7375 | |
| 7376 switch (type_) { | |
| 7377 case SLOT: { | |
| 7378 Comment cmnt(masm, "[ Store to Slot"); | |
| 7379 Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); | |
| 7380 cgen_->StoreToSlot(slot, init_state); | |
| 7381 set_unloaded(); | |
| 7382 break; | |
| 7383 } | |
| 7384 | |
| 7385 case NAMED: { | |
| 7386 Comment cmnt(masm, "[ Store to named Property"); | |
| 7387 cgen_->EmitNamedStore(GetName(), false); | |
| 7388 frame->EmitPush(r0); | |
| 7389 set_unloaded(); | |
| 7390 break; | |
| 7391 } | |
| 7392 | |
| 7393 case KEYED: { | |
| 7394 Comment cmnt(masm, "[ Store to keyed Property"); | |
| 7395 Property* property = expression_->AsProperty(); | |
| 7396 ASSERT(property != NULL); | |
| 7397 cgen_->CodeForSourcePosition(property->position()); | |
| 7398 cgen_->EmitKeyedStore(property->key()->type(), wb_info); | |
| 7399 frame->EmitPush(r0); | |
| 7400 set_unloaded(); | |
| 7401 break; | |
| 7402 } | |
| 7403 | |
| 7404 default: | |
| 7405 UNREACHABLE(); | |
| 7406 } | |
| 7407 } | |
| 7408 | |
| 7409 | |
| 7410 const char* GenericBinaryOpStub::GetName() { | |
| 7411 if (name_ != NULL) return name_; | |
| 7412 const int len = 100; | |
| 7413 name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(len); | |
| 7414 if (name_ == NULL) return "OOM"; | |
| 7415 const char* op_name = Token::Name(op_); | |
| 7416 const char* overwrite_name; | |
| 7417 switch (mode_) { | |
| 7418 case NO_OVERWRITE: overwrite_name = "Alloc"; break; | |
| 7419 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; | |
| 7420 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; | |
| 7421 default: overwrite_name = "UnknownOverwrite"; break; | |
| 7422 } | |
| 7423 | |
| 7424 OS::SNPrintF(Vector<char>(name_, len), | |
| 7425 "GenericBinaryOpStub_%s_%s%s_%s", | |
| 7426 op_name, | |
| 7427 overwrite_name, | |
| 7428 specialized_on_rhs_ ? "_ConstantRhs" : "", | |
| 7429 BinaryOpIC::GetName(runtime_operands_type_)); | |
| 7430 return name_; | |
| 7431 } | |
| 7432 | |
| 7433 #undef __ | |
| 7434 | |
| 7435 } } // namespace v8::internal | 50 } } // namespace v8::internal |
| 7436 | 51 |
| 7437 #endif // V8_TARGET_ARCH_ARM | 52 #endif // V8_TARGET_ARCH_ARM |
| OLD | NEW |