| Index: net/third_party/nss/ssl/mpi/mpi-priv.h
|
| diff --git a/net/third_party/nss/ssl/mpi/mpi-priv.h b/net/third_party/nss/ssl/mpi/mpi-priv.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..8efaf3cdbcfcbba8d623199051ef9445d7f81349
|
| --- /dev/null
|
| +++ b/net/third_party/nss/ssl/mpi/mpi-priv.h
|
| @@ -0,0 +1,320 @@
|
| +/*
|
| + * mpi-priv.h - Private header file for MPI
|
| + * Arbitrary precision integer arithmetic library
|
| + *
|
| + * NOTE WELL: the content of this header file is NOT part of the "public"
|
| + * API for the MPI library, and may change at any time.
|
| + * Application programs that use libmpi should NOT include this header file.
|
| + *
|
| + * ***** BEGIN LICENSE BLOCK *****
|
| + * Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
| + *
|
| + * The contents of this file are subject to the Mozilla Public License Version
|
| + * 1.1 (the "License"); you may not use this file except in compliance with
|
| + * the License. You may obtain a copy of the License at
|
| + * http://www.mozilla.org/MPL/
|
| + *
|
| + * Software distributed under the License is distributed on an "AS IS" basis,
|
| + * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
| + * for the specific language governing rights and limitations under the
|
| + * License.
|
| + *
|
| + * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
|
| + *
|
| + * The Initial Developer of the Original Code is
|
| + * Michael J. Fromberger.
|
| + * Portions created by the Initial Developer are Copyright (C) 1998
|
| + * the Initial Developer. All Rights Reserved.
|
| + *
|
| + * Contributor(s):
|
| + * Netscape Communications Corporation
|
| + *
|
| + * Alternatively, the contents of this file may be used under the terms of
|
| + * either the GNU General Public License Version 2 or later (the "GPL"), or
|
| + * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
| + * in which case the provisions of the GPL or the LGPL are applicable instead
|
| + * of those above. If you wish to allow use of your version of this file only
|
| + * under the terms of either the GPL or the LGPL, and not to allow others to
|
| + * use your version of this file under the terms of the MPL, indicate your
|
| + * decision by deleting the provisions above and replace them with the notice
|
| + * and other provisions required by the GPL or the LGPL. If you do not delete
|
| + * the provisions above, a recipient may use your version of this file under
|
| + * the terms of any one of the MPL, the GPL or the LGPL.
|
| + *
|
| + * ***** END LICENSE BLOCK ***** */
|
| +/* $Id: mpi-priv.h,v 1.23 2010/05/02 22:36:41 nelson%bolyard.com Exp $ */
|
| +#ifndef _MPI_PRIV_H_
|
| +#define _MPI_PRIV_H_ 1
|
| +
|
| +#include "mpi.h"
|
| +#include <stdlib.h>
|
| +#include <string.h>
|
| +#include <ctype.h>
|
| +
|
| +#if MP_DEBUG
|
| +#include <stdio.h>
|
| +
|
| +#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
|
| +#else
|
| +#define DIAG(T,V)
|
| +#endif
|
| +
|
| +/* If we aren't using a wired-in logarithm table, we need to include
|
| + the math library to get the log() function
|
| + */
|
| +
|
| +/* {{{ s_logv_2[] - log table for 2 in various bases */
|
| +
|
| +#if MP_LOGTAB
|
| +/*
|
| + A table of the logs of 2 for various bases (the 0 and 1 entries of
|
| + this table are meaningless and should not be referenced).
|
| +
|
| + This table is used to compute output lengths for the mp_toradix()
|
| + function. Since a number n in radix r takes up about log_r(n)
|
| + digits, we estimate the output size by taking the least integer
|
| + greater than log_r(n), where:
|
| +
|
| + log_r(n) = log_2(n) * log_r(2)
|
| +
|
| + This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
|
| + which are the output bases supported.
|
| + */
|
| +
|
| +extern const float s_logv_2[];
|
| +#define LOG_V_2(R) s_logv_2[(R)]
|
| +
|
| +#else
|
| +
|
| +/*
|
| + If MP_LOGTAB is not defined, use the math library to compute the
|
| + logarithms on the fly. Otherwise, use the table.
|
| + Pick which works best for your system.
|
| + */
|
| +
|
| +#include <math.h>
|
| +#define LOG_V_2(R) (log(2.0)/log(R))
|
| +
|
| +#endif /* if MP_LOGTAB */
|
| +
|
| +/* }}} */
|
| +
|
| +/* {{{ Digit arithmetic macros */
|
| +
|
| +/*
|
| + When adding and multiplying digits, the results can be larger than
|
| + can be contained in an mp_digit. Thus, an mp_word is used. These
|
| + macros mask off the upper and lower digits of the mp_word (the
|
| + mp_word may be more than 2 mp_digits wide, but we only concern
|
| + ourselves with the low-order 2 mp_digits)
|
| + */
|
| +
|
| +#define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT)
|
| +#define ACCUM(W) (mp_digit)(W)
|
| +
|
| +#define MP_MIN(a,b) (((a) < (b)) ? (a) : (b))
|
| +#define MP_MAX(a,b) (((a) > (b)) ? (a) : (b))
|
| +#define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))
|
| +#define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))
|
| +
|
| +/* }}} */
|
| +
|
| +/* {{{ Comparison constants */
|
| +
|
| +#define MP_LT -1
|
| +#define MP_EQ 0
|
| +#define MP_GT 1
|
| +
|
| +/* }}} */
|
| +
|
| +/* {{{ private function declarations */
|
| +
|
| +/*
|
| + If MP_MACRO is false, these will be defined as actual functions;
|
| + otherwise, suitable macro definitions will be used. This works
|
| + around the fact that ANSI C89 doesn't support an 'inline' keyword
|
| + (although I hear C9x will ... about bloody time). At present, the
|
| + macro definitions are identical to the function bodies, but they'll
|
| + expand in place, instead of generating a function call.
|
| +
|
| + I chose these particular functions to be made into macros because
|
| + some profiling showed they are called a lot on a typical workload,
|
| + and yet they are primarily housekeeping.
|
| + */
|
| +#if MP_MACRO == 0
|
| + void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */
|
| + void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
|
| + void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */
|
| + void s_mp_free(void *ptr); /* general free function */
|
| +extern unsigned long mp_allocs;
|
| +extern unsigned long mp_frees;
|
| +extern unsigned long mp_copies;
|
| +#else
|
| +
|
| + /* Even if these are defined as macros, we need to respect the settings
|
| + of the MP_MEMSET and MP_MEMCPY configuration options...
|
| + */
|
| + #if MP_MEMSET == 0
|
| + #define s_mp_setz(dp, count) \
|
| + {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
|
| + #else
|
| + #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
|
| + #endif /* MP_MEMSET */
|
| +
|
| + #if MP_MEMCPY == 0
|
| + #define s_mp_copy(sp, dp, count) \
|
| + {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
|
| + #else
|
| + #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
|
| + #endif /* MP_MEMCPY */
|
| +
|
| + #define s_mp_alloc(nb, ni) calloc(nb, ni)
|
| + #define s_mp_free(ptr) {if(ptr) free(ptr);}
|
| +#endif /* MP_MACRO */
|
| +
|
| +mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */
|
| +mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */
|
| +
|
| +#if MP_MACRO == 0
|
| + void s_mp_clamp(mp_int *mp); /* clip leading zeroes */
|
| +#else
|
| + #define s_mp_clamp(mp)\
|
| + { mp_size used = MP_USED(mp); \
|
| + while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \
|
| + MP_USED(mp) = used; \
|
| + }
|
| +#endif /* MP_MACRO */
|
| +
|
| +void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */
|
| +
|
| +mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */
|
| +void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */
|
| +mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */
|
| +void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */
|
| +void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */
|
| +void s_mp_div_2(mp_int *mp); /* divide by 2 in place */
|
| +mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */
|
| +mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
|
| + /* normalize for division */
|
| +mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */
|
| +mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */
|
| +mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */
|
| +mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
|
| + /* unsigned digit divide */
|
| +mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
|
| + /* Barrett reduction */
|
| +mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */
|
| +mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
|
| +mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */
|
| +mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
|
| +mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
|
| + /* a += b * RADIX^offset */
|
| +mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */
|
| +#if MP_SQUARE
|
| +mp_err s_mp_sqr(mp_int *a); /* magnitude square */
|
| +#else
|
| +#define s_mp_sqr(a) s_mp_mul(a, a)
|
| +#endif
|
| +mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
|
| +mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
|
| +mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */
|
| +int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
|
| +int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */
|
| +int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */
|
| +int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */
|
| +
|
| +int s_mp_tovalue(char ch, int r); /* convert ch to value */
|
| +char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
|
| +int s_mp_outlen(int bits, int r); /* output length in bytes */
|
| +mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */
|
| +mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);
|
| +mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c);
|
| +mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);
|
| +
|
| +#ifdef NSS_USE_COMBA
|
| +
|
| +#define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))
|
| +
|
| +void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
|
| +void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
|
| +void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
|
| +void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);
|
| +
|
| +void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
|
| +void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
|
| +void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
|
| +void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);
|
| +
|
| +#endif /* end NSS_USE_COMBA */
|
| +
|
| +/* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
|
| +#if defined (__OS2__) && defined (__IBMC__)
|
| +#define MPI_ASM_DECL __cdecl
|
| +#else
|
| +#define MPI_ASM_DECL
|
| +#endif
|
| +
|
| +#ifdef MPI_AMD64
|
| +
|
| +mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit);
|
| +mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit);
|
| +
|
| +/* c = a * b */
|
| +#define s_mpv_mul_d(a, a_len, b, c) \
|
| + ((mp_digit *)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)
|
| +
|
| +/* c += a * b */
|
| +#define s_mpv_mul_d_add(a, a_len, b, c) \
|
| + ((mp_digit *)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)
|
| +
|
| +
|
| +#else
|
| +
|
| +void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
|
| + mp_digit b, mp_digit *c);
|
| +void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
|
| + mp_digit b, mp_digit *c);
|
| +
|
| +#endif
|
| +
|
| +void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
|
| + mp_size a_len, mp_digit b,
|
| + mp_digit *c);
|
| +void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
|
| + mp_size a_len,
|
| + mp_digit *sqrs);
|
| +
|
| +mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
|
| + mp_digit divisor, mp_digit *quot, mp_digit *rem);
|
| +
|
| +/* c += a * b * (MP_RADIX ** offset); */
|
| +#define s_mp_mul_d_add_offset(a, b, c, off) \
|
| +(s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)
|
| +
|
| +typedef struct {
|
| + mp_int N; /* modulus N */
|
| + mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
|
| + mp_size b; /* R == 2 ** b, also b = # significant bits in N */
|
| +} mp_mont_modulus;
|
| +
|
| +mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
|
| + mp_mont_modulus *mmm);
|
| +mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
|
| +
|
| +/*
|
| + * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
|
| + * if a cache exists, or zero if there is no cache. If more than one
|
| + * cache line exists, it should return the smallest line size (which is
|
| + * usually the L1 cache).
|
| + *
|
| + * mp_modexp uses this information to make sure that private key information
|
| + * isn't being leaked through the cache.
|
| + *
|
| + * see mpcpucache.c for the implementation.
|
| + */
|
| +unsigned long s_mpi_getProcessorLineSize();
|
| +
|
| +/* }}} */
|
| +#endif
|
| +
|
| +
|
|
|