Index: net/third_party/nss/ssl/mpi/mpi-priv.h |
diff --git a/net/third_party/nss/ssl/mpi/mpi-priv.h b/net/third_party/nss/ssl/mpi/mpi-priv.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..8efaf3cdbcfcbba8d623199051ef9445d7f81349 |
--- /dev/null |
+++ b/net/third_party/nss/ssl/mpi/mpi-priv.h |
@@ -0,0 +1,320 @@ |
+/* |
+ * mpi-priv.h - Private header file for MPI |
+ * Arbitrary precision integer arithmetic library |
+ * |
+ * NOTE WELL: the content of this header file is NOT part of the "public" |
+ * API for the MPI library, and may change at any time. |
+ * Application programs that use libmpi should NOT include this header file. |
+ * |
+ * ***** BEGIN LICENSE BLOCK ***** |
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
+ * |
+ * The contents of this file are subject to the Mozilla Public License Version |
+ * 1.1 (the "License"); you may not use this file except in compliance with |
+ * the License. You may obtain a copy of the License at |
+ * http://www.mozilla.org/MPL/ |
+ * |
+ * Software distributed under the License is distributed on an "AS IS" basis, |
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
+ * for the specific language governing rights and limitations under the |
+ * License. |
+ * |
+ * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library. |
+ * |
+ * The Initial Developer of the Original Code is |
+ * Michael J. Fromberger. |
+ * Portions created by the Initial Developer are Copyright (C) 1998 |
+ * the Initial Developer. All Rights Reserved. |
+ * |
+ * Contributor(s): |
+ * Netscape Communications Corporation |
+ * |
+ * Alternatively, the contents of this file may be used under the terms of |
+ * either the GNU General Public License Version 2 or later (the "GPL"), or |
+ * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
+ * in which case the provisions of the GPL or the LGPL are applicable instead |
+ * of those above. If you wish to allow use of your version of this file only |
+ * under the terms of either the GPL or the LGPL, and not to allow others to |
+ * use your version of this file under the terms of the MPL, indicate your |
+ * decision by deleting the provisions above and replace them with the notice |
+ * and other provisions required by the GPL or the LGPL. If you do not delete |
+ * the provisions above, a recipient may use your version of this file under |
+ * the terms of any one of the MPL, the GPL or the LGPL. |
+ * |
+ * ***** END LICENSE BLOCK ***** */ |
+/* $Id: mpi-priv.h,v 1.23 2010/05/02 22:36:41 nelson%bolyard.com Exp $ */ |
+#ifndef _MPI_PRIV_H_ |
+#define _MPI_PRIV_H_ 1 |
+ |
+#include "mpi.h" |
+#include <stdlib.h> |
+#include <string.h> |
+#include <ctype.h> |
+ |
+#if MP_DEBUG |
+#include <stdio.h> |
+ |
+#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);} |
+#else |
+#define DIAG(T,V) |
+#endif |
+ |
+/* If we aren't using a wired-in logarithm table, we need to include |
+ the math library to get the log() function |
+ */ |
+ |
+/* {{{ s_logv_2[] - log table for 2 in various bases */ |
+ |
+#if MP_LOGTAB |
+/* |
+ A table of the logs of 2 for various bases (the 0 and 1 entries of |
+ this table are meaningless and should not be referenced). |
+ |
+ This table is used to compute output lengths for the mp_toradix() |
+ function. Since a number n in radix r takes up about log_r(n) |
+ digits, we estimate the output size by taking the least integer |
+ greater than log_r(n), where: |
+ |
+ log_r(n) = log_2(n) * log_r(2) |
+ |
+ This table, therefore, is a table of log_r(2) for 2 <= r <= 36, |
+ which are the output bases supported. |
+ */ |
+ |
+extern const float s_logv_2[]; |
+#define LOG_V_2(R) s_logv_2[(R)] |
+ |
+#else |
+ |
+/* |
+ If MP_LOGTAB is not defined, use the math library to compute the |
+ logarithms on the fly. Otherwise, use the table. |
+ Pick which works best for your system. |
+ */ |
+ |
+#include <math.h> |
+#define LOG_V_2(R) (log(2.0)/log(R)) |
+ |
+#endif /* if MP_LOGTAB */ |
+ |
+/* }}} */ |
+ |
+/* {{{ Digit arithmetic macros */ |
+ |
+/* |
+ When adding and multiplying digits, the results can be larger than |
+ can be contained in an mp_digit. Thus, an mp_word is used. These |
+ macros mask off the upper and lower digits of the mp_word (the |
+ mp_word may be more than 2 mp_digits wide, but we only concern |
+ ourselves with the low-order 2 mp_digits) |
+ */ |
+ |
+#define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT) |
+#define ACCUM(W) (mp_digit)(W) |
+ |
+#define MP_MIN(a,b) (((a) < (b)) ? (a) : (b)) |
+#define MP_MAX(a,b) (((a) > (b)) ? (a) : (b)) |
+#define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b)) |
+#define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b)) |
+ |
+/* }}} */ |
+ |
+/* {{{ Comparison constants */ |
+ |
+#define MP_LT -1 |
+#define MP_EQ 0 |
+#define MP_GT 1 |
+ |
+/* }}} */ |
+ |
+/* {{{ private function declarations */ |
+ |
+/* |
+ If MP_MACRO is false, these will be defined as actual functions; |
+ otherwise, suitable macro definitions will be used. This works |
+ around the fact that ANSI C89 doesn't support an 'inline' keyword |
+ (although I hear C9x will ... about bloody time). At present, the |
+ macro definitions are identical to the function bodies, but they'll |
+ expand in place, instead of generating a function call. |
+ |
+ I chose these particular functions to be made into macros because |
+ some profiling showed they are called a lot on a typical workload, |
+ and yet they are primarily housekeeping. |
+ */ |
+#if MP_MACRO == 0 |
+ void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */ |
+ void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ |
+ void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */ |
+ void s_mp_free(void *ptr); /* general free function */ |
+extern unsigned long mp_allocs; |
+extern unsigned long mp_frees; |
+extern unsigned long mp_copies; |
+#else |
+ |
+ /* Even if these are defined as macros, we need to respect the settings |
+ of the MP_MEMSET and MP_MEMCPY configuration options... |
+ */ |
+ #if MP_MEMSET == 0 |
+ #define s_mp_setz(dp, count) \ |
+ {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;} |
+ #else |
+ #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit)) |
+ #endif /* MP_MEMSET */ |
+ |
+ #if MP_MEMCPY == 0 |
+ #define s_mp_copy(sp, dp, count) \ |
+ {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];} |
+ #else |
+ #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit)) |
+ #endif /* MP_MEMCPY */ |
+ |
+ #define s_mp_alloc(nb, ni) calloc(nb, ni) |
+ #define s_mp_free(ptr) {if(ptr) free(ptr);} |
+#endif /* MP_MACRO */ |
+ |
+mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */ |
+mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */ |
+ |
+#if MP_MACRO == 0 |
+ void s_mp_clamp(mp_int *mp); /* clip leading zeroes */ |
+#else |
+ #define s_mp_clamp(mp)\ |
+ { mp_size used = MP_USED(mp); \ |
+ while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \ |
+ MP_USED(mp) = used; \ |
+ } |
+#endif /* MP_MACRO */ |
+ |
+void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */ |
+ |
+mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */ |
+void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */ |
+mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */ |
+void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */ |
+void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */ |
+void s_mp_div_2(mp_int *mp); /* divide by 2 in place */ |
+mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */ |
+mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd); |
+ /* normalize for division */ |
+mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */ |
+mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */ |
+mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */ |
+mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r); |
+ /* unsigned digit divide */ |
+mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); |
+ /* Barrett reduction */ |
+mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */ |
+mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c); |
+mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */ |
+mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c); |
+mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset); |
+ /* a += b * RADIX^offset */ |
+mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */ |
+#if MP_SQUARE |
+mp_err s_mp_sqr(mp_int *a); /* magnitude square */ |
+#else |
+#define s_mp_sqr(a) s_mp_mul(a, a) |
+#endif |
+mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */ |
+mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c); |
+mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */ |
+int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */ |
+int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */ |
+int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */ |
+int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */ |
+ |
+int s_mp_tovalue(char ch, int r); /* convert ch to value */ |
+char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */ |
+int s_mp_outlen(int bits, int r); /* output length in bytes */ |
+mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */ |
+mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c); |
+mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c); |
+mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c); |
+ |
+#ifdef NSS_USE_COMBA |
+ |
+#define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1))) |
+ |
+void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C); |
+void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C); |
+void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C); |
+void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C); |
+ |
+void s_mp_sqr_comba_4(const mp_int *A, mp_int *B); |
+void s_mp_sqr_comba_8(const mp_int *A, mp_int *B); |
+void s_mp_sqr_comba_16(const mp_int *A, mp_int *B); |
+void s_mp_sqr_comba_32(const mp_int *A, mp_int *B); |
+ |
+#endif /* end NSS_USE_COMBA */ |
+ |
+/* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */ |
+#if defined (__OS2__) && defined (__IBMC__) |
+#define MPI_ASM_DECL __cdecl |
+#else |
+#define MPI_ASM_DECL |
+#endif |
+ |
+#ifdef MPI_AMD64 |
+ |
+mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit); |
+mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit); |
+ |
+/* c = a * b */ |
+#define s_mpv_mul_d(a, a_len, b, c) \ |
+ ((mp_digit *)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b) |
+ |
+/* c += a * b */ |
+#define s_mpv_mul_d_add(a, a_len, b, c) \ |
+ ((mp_digit *)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b) |
+ |
+ |
+#else |
+ |
+void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len, |
+ mp_digit b, mp_digit *c); |
+void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, |
+ mp_digit b, mp_digit *c); |
+ |
+#endif |
+ |
+void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a, |
+ mp_size a_len, mp_digit b, |
+ mp_digit *c); |
+void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a, |
+ mp_size a_len, |
+ mp_digit *sqrs); |
+ |
+mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, |
+ mp_digit divisor, mp_digit *quot, mp_digit *rem); |
+ |
+/* c += a * b * (MP_RADIX ** offset); */ |
+#define s_mp_mul_d_add_offset(a, b, c, off) \ |
+(s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY) |
+ |
+typedef struct { |
+ mp_int N; /* modulus N */ |
+ mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */ |
+ mp_size b; /* R == 2 ** b, also b = # significant bits in N */ |
+} mp_mont_modulus; |
+ |
+mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, |
+ mp_mont_modulus *mmm); |
+mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm); |
+ |
+/* |
+ * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line |
+ * if a cache exists, or zero if there is no cache. If more than one |
+ * cache line exists, it should return the smallest line size (which is |
+ * usually the L1 cache). |
+ * |
+ * mp_modexp uses this information to make sure that private key information |
+ * isn't being leaked through the cache. |
+ * |
+ * see mpcpucache.c for the implementation. |
+ */ |
+unsigned long s_mpi_getProcessorLineSize(); |
+ |
+/* }}} */ |
+#endif |
+ |
+ |