Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(275)

Side by Side Diff: net/third_party/nss/ssl/mpi/mpi-priv.h

Issue 6804032: Add TLS-SRP (RFC 5054) support Base URL: http://git.chromium.org/git/chromium.git@trunk
Patch Set: Created 9 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 /*
2 * mpi-priv.h - Private header file for MPI
3 * Arbitrary precision integer arithmetic library
4 *
5 * NOTE WELL: the content of this header file is NOT part of the "public"
6 * API for the MPI library, and may change at any time.
7 * Application programs that use libmpi should NOT include this header file.
8 *
9 * ***** BEGIN LICENSE BLOCK *****
10 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
11 *
12 * The contents of this file are subject to the Mozilla Public License Version
13 * 1.1 (the "License"); you may not use this file except in compliance with
14 * the License. You may obtain a copy of the License at
15 * http://www.mozilla.org/MPL/
16 *
17 * Software distributed under the License is distributed on an "AS IS" basis,
18 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
19 * for the specific language governing rights and limitations under the
20 * License.
21 *
22 * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
23 *
24 * The Initial Developer of the Original Code is
25 * Michael J. Fromberger.
26 * Portions created by the Initial Developer are Copyright (C) 1998
27 * the Initial Developer. All Rights Reserved.
28 *
29 * Contributor(s):
30 * Netscape Communications Corporation
31 *
32 * Alternatively, the contents of this file may be used under the terms of
33 * either the GNU General Public License Version 2 or later (the "GPL"), or
34 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
35 * in which case the provisions of the GPL or the LGPL are applicable instead
36 * of those above. If you wish to allow use of your version of this file only
37 * under the terms of either the GPL or the LGPL, and not to allow others to
38 * use your version of this file under the terms of the MPL, indicate your
39 * decision by deleting the provisions above and replace them with the notice
40 * and other provisions required by the GPL or the LGPL. If you do not delete
41 * the provisions above, a recipient may use your version of this file under
42 * the terms of any one of the MPL, the GPL or the LGPL.
43 *
44 * ***** END LICENSE BLOCK ***** */
45 /* $Id: mpi-priv.h,v 1.23 2010/05/02 22:36:41 nelson%bolyard.com Exp $ */
46 #ifndef _MPI_PRIV_H_
47 #define _MPI_PRIV_H_ 1
48
49 #include "mpi.h"
50 #include <stdlib.h>
51 #include <string.h>
52 #include <ctype.h>
53
54 #if MP_DEBUG
55 #include <stdio.h>
56
57 #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
58 #else
59 #define DIAG(T,V)
60 #endif
61
62 /* If we aren't using a wired-in logarithm table, we need to include
63 the math library to get the log() function
64 */
65
66 /* {{{ s_logv_2[] - log table for 2 in various bases */
67
68 #if MP_LOGTAB
69 /*
70 A table of the logs of 2 for various bases (the 0 and 1 entries of
71 this table are meaningless and should not be referenced).
72
73 This table is used to compute output lengths for the mp_toradix()
74 function. Since a number n in radix r takes up about log_r(n)
75 digits, we estimate the output size by taking the least integer
76 greater than log_r(n), where:
77
78 log_r(n) = log_2(n) * log_r(2)
79
80 This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
81 which are the output bases supported.
82 */
83
84 extern const float s_logv_2[];
85 #define LOG_V_2(R) s_logv_2[(R)]
86
87 #else
88
89 /*
90 If MP_LOGTAB is not defined, use the math library to compute the
91 logarithms on the fly. Otherwise, use the table.
92 Pick which works best for your system.
93 */
94
95 #include <math.h>
96 #define LOG_V_2(R) (log(2.0)/log(R))
97
98 #endif /* if MP_LOGTAB */
99
100 /* }}} */
101
102 /* {{{ Digit arithmetic macros */
103
104 /*
105 When adding and multiplying digits, the results can be larger than
106 can be contained in an mp_digit. Thus, an mp_word is used. These
107 macros mask off the upper and lower digits of the mp_word (the
108 mp_word may be more than 2 mp_digits wide, but we only concern
109 ourselves with the low-order 2 mp_digits)
110 */
111
112 #define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT)
113 #define ACCUM(W) (mp_digit)(W)
114
115 #define MP_MIN(a,b) (((a) < (b)) ? (a) : (b))
116 #define MP_MAX(a,b) (((a) > (b)) ? (a) : (b))
117 #define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))
118 #define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))
119
120 /* }}} */
121
122 /* {{{ Comparison constants */
123
124 #define MP_LT -1
125 #define MP_EQ 0
126 #define MP_GT 1
127
128 /* }}} */
129
130 /* {{{ private function declarations */
131
132 /*
133 If MP_MACRO is false, these will be defined as actual functions;
134 otherwise, suitable macro definitions will be used. This works
135 around the fact that ANSI C89 doesn't support an 'inline' keyword
136 (although I hear C9x will ... about bloody time). At present, the
137 macro definitions are identical to the function bodies, but they'll
138 expand in place, instead of generating a function call.
139
140 I chose these particular functions to be made into macros because
141 some profiling showed they are called a lot on a typical workload,
142 and yet they are primarily housekeeping.
143 */
144 #if MP_MACRO == 0
145 void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */
146 void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
147 void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */
148 void s_mp_free(void *ptr); /* general free function */
149 extern unsigned long mp_allocs;
150 extern unsigned long mp_frees;
151 extern unsigned long mp_copies;
152 #else
153
154 /* Even if these are defined as macros, we need to respect the settings
155 of the MP_MEMSET and MP_MEMCPY configuration options...
156 */
157 #if MP_MEMSET == 0
158 #define s_mp_setz(dp, count) \
159 {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
160 #else
161 #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
162 #endif /* MP_MEMSET */
163
164 #if MP_MEMCPY == 0
165 #define s_mp_copy(sp, dp, count) \
166 {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
167 #else
168 #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
169 #endif /* MP_MEMCPY */
170
171 #define s_mp_alloc(nb, ni) calloc(nb, ni)
172 #define s_mp_free(ptr) {if(ptr) free(ptr);}
173 #endif /* MP_MACRO */
174
175 mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */
176 mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */
177
178 #if MP_MACRO == 0
179 void s_mp_clamp(mp_int *mp); /* clip leading zeroes */
180 #else
181 #define s_mp_clamp(mp)\
182 { mp_size used = MP_USED(mp); \
183 while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \
184 MP_USED(mp) = used; \
185 }
186 #endif /* MP_MACRO */
187
188 void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */
189
190 mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */
191 void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */
192 mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */
193 void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */
194 void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */
195 void s_mp_div_2(mp_int *mp); /* divide by 2 in place */
196 mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */
197 mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
198 /* normalize for division */
199 mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */
200 mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */
201 mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */
202 mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
203 /* unsigned digit divide */
204 mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
205 /* Barrett reduction */
206 mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */
207 mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
208 mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */
209 mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
210 mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
211 /* a += b * RADIX^offset */
212 mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */
213 #if MP_SQUARE
214 mp_err s_mp_sqr(mp_int *a); /* magnitude square */
215 #else
216 #define s_mp_sqr(a) s_mp_mul(a, a)
217 #endif
218 mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
219 mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
220 mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */
221 int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
222 int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */
223 int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */
224 int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */
225
226 int s_mp_tovalue(char ch, int r); /* convert ch to value */
227 char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
228 int s_mp_outlen(int bits, int r); /* output length in bytes */
229 mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */
230 mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);
231 mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c);
232 mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);
233
234 #ifdef NSS_USE_COMBA
235
236 #define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))
237
238 void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
239 void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
240 void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
241 void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);
242
243 void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
244 void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
245 void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
246 void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);
247
248 #endif /* end NSS_USE_COMBA */
249
250 /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
251 #if defined (__OS2__) && defined (__IBMC__)
252 #define MPI_ASM_DECL __cdecl
253 #else
254 #define MPI_ASM_DECL
255 #endif
256
257 #ifdef MPI_AMD64
258
259 mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_dig it);
260 mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, m p_digit);
261
262 /* c = a * b */
263 #define s_mpv_mul_d(a, a_len, b, c) \
264 ((mp_digit *)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)
265
266 /* c += a * b */
267 #define s_mpv_mul_d_add(a, a_len, b, c) \
268 ((mp_digit *)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)
269
270
271 #else
272
273 void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
274 mp_digit b, mp_digit *c);
275 void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
276 mp_digit b, mp_digit *c);
277
278 #endif
279
280 void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
281 mp_size a_len, mp_digit b,
282 mp_digit *c);
283 void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
284 mp_size a_len,
285 mp_digit *sqrs);
286
287 mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
288 mp_digit divisor, mp_digit *quot, mp_digit *rem);
289
290 /* c += a * b * (MP_RADIX ** offset); */
291 #define s_mp_mul_d_add_offset(a, b, c, off) \
292 (s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)
293
294 typedef struct {
295 mp_int N; /* modulus N */
296 mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
297 mp_size b; /* R == 2 ** b, also b = # significant bits in N */
298 } mp_mont_modulus;
299
300 mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
301 mp_mont_modulus *mmm);
302 mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
303
304 /*
305 * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
306 * if a cache exists, or zero if there is no cache. If more than one
307 * cache line exists, it should return the smallest line size (which is
308 * usually the L1 cache).
309 *
310 * mp_modexp uses this information to make sure that private key information
311 * isn't being leaked through the cache.
312 *
313 * see mpcpucache.c for the implementation.
314 */
315 unsigned long s_mpi_getProcessorLineSize();
316
317 /* }}} */
318 #endif
319
320
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698