OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * mpi-priv.h - Private header file for MPI |
| 3 * Arbitrary precision integer arithmetic library |
| 4 * |
| 5 * NOTE WELL: the content of this header file is NOT part of the "public" |
| 6 * API for the MPI library, and may change at any time. |
| 7 * Application programs that use libmpi should NOT include this header file. |
| 8 * |
| 9 * ***** BEGIN LICENSE BLOCK ***** |
| 10 * Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
| 11 * |
| 12 * The contents of this file are subject to the Mozilla Public License Version |
| 13 * 1.1 (the "License"); you may not use this file except in compliance with |
| 14 * the License. You may obtain a copy of the License at |
| 15 * http://www.mozilla.org/MPL/ |
| 16 * |
| 17 * Software distributed under the License is distributed on an "AS IS" basis, |
| 18 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
| 19 * for the specific language governing rights and limitations under the |
| 20 * License. |
| 21 * |
| 22 * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library. |
| 23 * |
| 24 * The Initial Developer of the Original Code is |
| 25 * Michael J. Fromberger. |
| 26 * Portions created by the Initial Developer are Copyright (C) 1998 |
| 27 * the Initial Developer. All Rights Reserved. |
| 28 * |
| 29 * Contributor(s): |
| 30 * Netscape Communications Corporation |
| 31 * |
| 32 * Alternatively, the contents of this file may be used under the terms of |
| 33 * either the GNU General Public License Version 2 or later (the "GPL"), or |
| 34 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
| 35 * in which case the provisions of the GPL or the LGPL are applicable instead |
| 36 * of those above. If you wish to allow use of your version of this file only |
| 37 * under the terms of either the GPL or the LGPL, and not to allow others to |
| 38 * use your version of this file under the terms of the MPL, indicate your |
| 39 * decision by deleting the provisions above and replace them with the notice |
| 40 * and other provisions required by the GPL or the LGPL. If you do not delete |
| 41 * the provisions above, a recipient may use your version of this file under |
| 42 * the terms of any one of the MPL, the GPL or the LGPL. |
| 43 * |
| 44 * ***** END LICENSE BLOCK ***** */ |
| 45 /* $Id: mpi-priv.h,v 1.23 2010/05/02 22:36:41 nelson%bolyard.com Exp $ */ |
| 46 #ifndef _MPI_PRIV_H_ |
| 47 #define _MPI_PRIV_H_ 1 |
| 48 |
| 49 #include "mpi.h" |
| 50 #include <stdlib.h> |
| 51 #include <string.h> |
| 52 #include <ctype.h> |
| 53 |
| 54 #if MP_DEBUG |
| 55 #include <stdio.h> |
| 56 |
| 57 #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);} |
| 58 #else |
| 59 #define DIAG(T,V) |
| 60 #endif |
| 61 |
| 62 /* If we aren't using a wired-in logarithm table, we need to include |
| 63 the math library to get the log() function |
| 64 */ |
| 65 |
| 66 /* {{{ s_logv_2[] - log table for 2 in various bases */ |
| 67 |
| 68 #if MP_LOGTAB |
| 69 /* |
| 70 A table of the logs of 2 for various bases (the 0 and 1 entries of |
| 71 this table are meaningless and should not be referenced). |
| 72 |
| 73 This table is used to compute output lengths for the mp_toradix() |
| 74 function. Since a number n in radix r takes up about log_r(n) |
| 75 digits, we estimate the output size by taking the least integer |
| 76 greater than log_r(n), where: |
| 77 |
| 78 log_r(n) = log_2(n) * log_r(2) |
| 79 |
| 80 This table, therefore, is a table of log_r(2) for 2 <= r <= 36, |
| 81 which are the output bases supported. |
| 82 */ |
| 83 |
| 84 extern const float s_logv_2[]; |
| 85 #define LOG_V_2(R) s_logv_2[(R)] |
| 86 |
| 87 #else |
| 88 |
| 89 /* |
| 90 If MP_LOGTAB is not defined, use the math library to compute the |
| 91 logarithms on the fly. Otherwise, use the table. |
| 92 Pick which works best for your system. |
| 93 */ |
| 94 |
| 95 #include <math.h> |
| 96 #define LOG_V_2(R) (log(2.0)/log(R)) |
| 97 |
| 98 #endif /* if MP_LOGTAB */ |
| 99 |
| 100 /* }}} */ |
| 101 |
| 102 /* {{{ Digit arithmetic macros */ |
| 103 |
| 104 /* |
| 105 When adding and multiplying digits, the results can be larger than |
| 106 can be contained in an mp_digit. Thus, an mp_word is used. These |
| 107 macros mask off the upper and lower digits of the mp_word (the |
| 108 mp_word may be more than 2 mp_digits wide, but we only concern |
| 109 ourselves with the low-order 2 mp_digits) |
| 110 */ |
| 111 |
| 112 #define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT) |
| 113 #define ACCUM(W) (mp_digit)(W) |
| 114 |
| 115 #define MP_MIN(a,b) (((a) < (b)) ? (a) : (b)) |
| 116 #define MP_MAX(a,b) (((a) > (b)) ? (a) : (b)) |
| 117 #define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b)) |
| 118 #define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b)) |
| 119 |
| 120 /* }}} */ |
| 121 |
| 122 /* {{{ Comparison constants */ |
| 123 |
| 124 #define MP_LT -1 |
| 125 #define MP_EQ 0 |
| 126 #define MP_GT 1 |
| 127 |
| 128 /* }}} */ |
| 129 |
| 130 /* {{{ private function declarations */ |
| 131 |
| 132 /* |
| 133 If MP_MACRO is false, these will be defined as actual functions; |
| 134 otherwise, suitable macro definitions will be used. This works |
| 135 around the fact that ANSI C89 doesn't support an 'inline' keyword |
| 136 (although I hear C9x will ... about bloody time). At present, the |
| 137 macro definitions are identical to the function bodies, but they'll |
| 138 expand in place, instead of generating a function call. |
| 139 |
| 140 I chose these particular functions to be made into macros because |
| 141 some profiling showed they are called a lot on a typical workload, |
| 142 and yet they are primarily housekeeping. |
| 143 */ |
| 144 #if MP_MACRO == 0 |
| 145 void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */ |
| 146 void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ |
| 147 void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */ |
| 148 void s_mp_free(void *ptr); /* general free function */ |
| 149 extern unsigned long mp_allocs; |
| 150 extern unsigned long mp_frees; |
| 151 extern unsigned long mp_copies; |
| 152 #else |
| 153 |
| 154 /* Even if these are defined as macros, we need to respect the settings |
| 155 of the MP_MEMSET and MP_MEMCPY configuration options... |
| 156 */ |
| 157 #if MP_MEMSET == 0 |
| 158 #define s_mp_setz(dp, count) \ |
| 159 {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;} |
| 160 #else |
| 161 #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit)) |
| 162 #endif /* MP_MEMSET */ |
| 163 |
| 164 #if MP_MEMCPY == 0 |
| 165 #define s_mp_copy(sp, dp, count) \ |
| 166 {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];} |
| 167 #else |
| 168 #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit)) |
| 169 #endif /* MP_MEMCPY */ |
| 170 |
| 171 #define s_mp_alloc(nb, ni) calloc(nb, ni) |
| 172 #define s_mp_free(ptr) {if(ptr) free(ptr);} |
| 173 #endif /* MP_MACRO */ |
| 174 |
| 175 mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */ |
| 176 mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */ |
| 177 |
| 178 #if MP_MACRO == 0 |
| 179 void s_mp_clamp(mp_int *mp); /* clip leading zeroes */ |
| 180 #else |
| 181 #define s_mp_clamp(mp)\ |
| 182 { mp_size used = MP_USED(mp); \ |
| 183 while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \ |
| 184 MP_USED(mp) = used; \ |
| 185 } |
| 186 #endif /* MP_MACRO */ |
| 187 |
| 188 void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */ |
| 189 |
| 190 mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */ |
| 191 void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */ |
| 192 mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */ |
| 193 void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */ |
| 194 void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */ |
| 195 void s_mp_div_2(mp_int *mp); /* divide by 2 in place */ |
| 196 mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */ |
| 197 mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd); |
| 198 /* normalize for division */ |
| 199 mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */ |
| 200 mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */ |
| 201 mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */ |
| 202 mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r); |
| 203 /* unsigned digit divide */ |
| 204 mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); |
| 205 /* Barrett reduction */ |
| 206 mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */ |
| 207 mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c); |
| 208 mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */ |
| 209 mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c); |
| 210 mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset); |
| 211 /* a += b * RADIX^offset */ |
| 212 mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */ |
| 213 #if MP_SQUARE |
| 214 mp_err s_mp_sqr(mp_int *a); /* magnitude square */ |
| 215 #else |
| 216 #define s_mp_sqr(a) s_mp_mul(a, a) |
| 217 #endif |
| 218 mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */ |
| 219 mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int
*c); |
| 220 mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */ |
| 221 int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */ |
| 222 int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */ |
| 223 int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */ |
| 224 int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */ |
| 225 |
| 226 int s_mp_tovalue(char ch, int r); /* convert ch to value */ |
| 227 char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */ |
| 228 int s_mp_outlen(int bits, int r); /* output length in bytes */ |
| 229 mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */ |
| 230 mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c); |
| 231 mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c); |
| 232 mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c); |
| 233 |
| 234 #ifdef NSS_USE_COMBA |
| 235 |
| 236 #define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1))) |
| 237 |
| 238 void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C); |
| 239 void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C); |
| 240 void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C); |
| 241 void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C); |
| 242 |
| 243 void s_mp_sqr_comba_4(const mp_int *A, mp_int *B); |
| 244 void s_mp_sqr_comba_8(const mp_int *A, mp_int *B); |
| 245 void s_mp_sqr_comba_16(const mp_int *A, mp_int *B); |
| 246 void s_mp_sqr_comba_32(const mp_int *A, mp_int *B); |
| 247 |
| 248 #endif /* end NSS_USE_COMBA */ |
| 249 |
| 250 /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */ |
| 251 #if defined (__OS2__) && defined (__IBMC__) |
| 252 #define MPI_ASM_DECL __cdecl |
| 253 #else |
| 254 #define MPI_ASM_DECL |
| 255 #endif |
| 256 |
| 257 #ifdef MPI_AMD64 |
| 258 |
| 259 mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_dig
it); |
| 260 mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, m
p_digit); |
| 261 |
| 262 /* c = a * b */ |
| 263 #define s_mpv_mul_d(a, a_len, b, c) \ |
| 264 ((mp_digit *)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b) |
| 265 |
| 266 /* c += a * b */ |
| 267 #define s_mpv_mul_d_add(a, a_len, b, c) \ |
| 268 ((mp_digit *)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b) |
| 269 |
| 270 |
| 271 #else |
| 272 |
| 273 void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len, |
| 274 mp_digit b, mp_digit *c); |
| 275 void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, |
| 276 mp_digit b, mp_digit *c); |
| 277 |
| 278 #endif |
| 279 |
| 280 void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a, |
| 281 mp_size a_len, mp_digit b, |
| 282 mp_digit *c); |
| 283 void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a, |
| 284 mp_size a_len, |
| 285 mp_digit *sqrs); |
| 286 |
| 287 mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, |
| 288 mp_digit divisor, mp_digit *quot, mp_digit *rem); |
| 289 |
| 290 /* c += a * b * (MP_RADIX ** offset); */ |
| 291 #define s_mp_mul_d_add_offset(a, b, c, off) \ |
| 292 (s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY) |
| 293 |
| 294 typedef struct { |
| 295 mp_int N; /* modulus N */ |
| 296 mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */ |
| 297 mp_size b; /* R == 2 ** b, also b = # significant bits in N */ |
| 298 } mp_mont_modulus; |
| 299 |
| 300 mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, |
| 301 mp_mont_modulus *mmm); |
| 302 mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm); |
| 303 |
| 304 /* |
| 305 * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line |
| 306 * if a cache exists, or zero if there is no cache. If more than one |
| 307 * cache line exists, it should return the smallest line size (which is |
| 308 * usually the L1 cache). |
| 309 * |
| 310 * mp_modexp uses this information to make sure that private key information |
| 311 * isn't being leaked through the cache. |
| 312 * |
| 313 * see mpcpucache.c for the implementation. |
| 314 */ |
| 315 unsigned long s_mpi_getProcessorLineSize(); |
| 316 |
| 317 /* }}} */ |
| 318 #endif |
| 319 |
| 320 |
OLD | NEW |