Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(38)

Unified Diff: third_party/libphonenumber/cpp/src/base/singleton.h

Issue 6803005: Autofill phone number enhancements and integration of Phone Number Util Library: part 1 (Closed) Base URL: svn://chrome-svn/chrome/trunk/src/
Patch Set: '' Created 9 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: third_party/libphonenumber/cpp/src/base/singleton.h
===================================================================
--- third_party/libphonenumber/cpp/src/base/singleton.h (revision 0)
+++ third_party/libphonenumber/cpp/src/base/singleton.h (revision 0)
@@ -0,0 +1,271 @@
+// Copyright (c) 2010 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_SINGLETON_H_
+#define BASE_SINGLETON_H_
+#pragma once
+
+#include "base/at_exit.h"
+#include "base/atomicops.h"
+#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
+#include "base/threading/platform_thread.h"
+#include "base/threading/thread_restrictions.h"
+
+// Default traits for Singleton<Type>. Calls operator new and operator delete on
+// the object. Registers automatic deletion at process exit.
+// Overload if you need arguments or another memory allocation function.
+template<typename Type>
+struct DefaultSingletonTraits {
+ // Allocates the object.
+ static Type* New() {
+ // The parenthesis is very important here; it forces POD type
+ // initialization.
+ return new Type();
+ }
+
+ // Destroys the object.
+ static void Delete(Type* x) {
+ delete x;
+ }
+
+ // Set to true to automatically register deletion of the object on process
+ // exit. See below for the required call that makes this happen.
+ static const bool kRegisterAtExit = true;
+
+ // Set to false to disallow access on a non-joinable thread. This is
+ // different from kRegisterAtExit because StaticMemorySingletonTraits allows
+ // access on non-joinable threads, and gracefully handles this.
+ static const bool kAllowedToAccessOnNonjoinableThread = false;
+};
+
+
+// Alternate traits for use with the Singleton<Type>. Identical to
+// DefaultSingletonTraits except that the Singleton will not be cleaned up
+// at exit.
+template<typename Type>
+struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
+ static const bool kRegisterAtExit = false;
+ static const bool kAllowedToAccessOnNonjoinableThread = true;
+};
+
+
+// Alternate traits for use with the Singleton<Type>. Allocates memory
+// for the singleton instance from a static buffer. The singleton will
+// be cleaned up at exit, but can't be revived after destruction unless
+// the Resurrect() method is called.
+//
+// This is useful for a certain category of things, notably logging and
+// tracing, where the singleton instance is of a type carefully constructed to
+// be safe to access post-destruction.
+// In logging and tracing you'll typically get stray calls at odd times, like
+// during static destruction, thread teardown and the like, and there's a
+// termination race on the heap-based singleton - e.g. if one thread calls
+// get(), but then another thread initiates AtExit processing, the first thread
+// may call into an object residing in unallocated memory. If the instance is
+// allocated from the data segment, then this is survivable.
+//
+// The destructor is to deallocate system resources, in this case to unregister
+// a callback the system will invoke when logging levels change. Note that
+// this is also used in e.g. Chrome Frame, where you have to allow for the
+// possibility of loading briefly into someone else's process space, and
+// so leaking is not an option, as that would sabotage the state of your host
+// process once you've unloaded.
+template <typename Type>
+struct StaticMemorySingletonTraits {
+ // WARNING: User has to deal with get() in the singleton class
+ // this is traits for returning NULL.
+ static Type* New() {
+ if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1))
+ return NULL;
+ Type* ptr = reinterpret_cast<Type*>(buffer_);
+
+ // We are protected by a memory barrier.
+ new(ptr) Type();
+ return ptr;
+ }
+
+ static void Delete(Type* p) {
+ base::subtle::NoBarrier_Store(&dead_, 1);
+ base::subtle::MemoryBarrier();
+ if (p != NULL)
+ p->Type::~Type();
+ }
+
+ static const bool kRegisterAtExit = true;
+ static const bool kAllowedToAccessOnNonjoinableThread = true;
+
+ // Exposed for unittesting.
+ static void Resurrect() {
+ base::subtle::NoBarrier_Store(&dead_, 0);
+ }
+
+ private:
+ static const size_t kBufferSize = (sizeof(Type) +
+ sizeof(intptr_t) - 1) / sizeof(intptr_t);
+ static intptr_t buffer_[kBufferSize];
+
+ // Signal the object was already deleted, so it is not revived.
+ static base::subtle::Atomic32 dead_;
+};
+
+template <typename Type> intptr_t
+ StaticMemorySingletonTraits<Type>::buffer_[kBufferSize];
+template <typename Type> base::subtle::Atomic32
+ StaticMemorySingletonTraits<Type>::dead_ = 0;
+
+// The Singleton<Type, Traits, DifferentiatingType> class manages a single
+// instance of Type which will be created on first use and will be destroyed at
+// normal process exit). The Trait::Delete function will not be called on
+// abnormal process exit.
+//
+// DifferentiatingType is used as a key to differentiate two different
+// singletons having the same memory allocation functions but serving a
+// different purpose. This is mainly used for Locks serving different purposes.
+//
+// Example usage:
+//
+// In your header:
+// #include "base/singleton.h"
+// class FooClass {
+// public:
+// static FooClass* GetInstance(); <-- See comment below on this.
+// void Bar() { ... }
+// private:
+// FooClass() { ... }
+// friend struct DefaultSingletonTraits<FooClass>;
+//
+// DISALLOW_COPY_AND_ASSIGN(FooClass);
+// };
+//
+// In your source file:
+// FooClass* FooClass::GetInstance() {
+// return Singleton<FooClass>::get();
+// }
+//
+// And to call methods on FooClass:
+// FooClass::GetInstance()->Bar();
+//
+// NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
+// and it is important that FooClass::GetInstance() is not inlined in the
+// header. This makes sure that when source files from multiple targets include
+// this header they don't end up with different copies of the inlined code
+// creating multiple copies of the singleton.
+//
+// Singleton<> has no non-static members and doesn't need to actually be
+// instantiated.
+//
+// This class is itself thread-safe. The underlying Type must of course be
+// thread-safe if you want to use it concurrently. Two parameters may be tuned
+// depending on the user's requirements.
+//
+// Glossary:
+// RAE = kRegisterAtExit
+//
+// On every platform, if Traits::RAE is true, the singleton will be destroyed at
+// process exit. More precisely it uses base::AtExitManager which requires an
+// object of this type to be instantiated. AtExitManager mimics the semantics
+// of atexit() such as LIFO order but under Windows is safer to call. For more
+// information see at_exit.h.
+//
+// If Traits::RAE is false, the singleton will not be freed at process exit,
+// thus the singleton will be leaked if it is ever accessed. Traits::RAE
+// shouldn't be false unless absolutely necessary. Remember that the heap where
+// the object is allocated may be destroyed by the CRT anyway.
+//
+// Caveats:
+// (a) Every call to get(), operator->() and operator*() incurs some overhead
+// (16ns on my P4/2.8GHz) to check whether the object has already been
+// initialized. You may wish to cache the result of get(); it will not
+// change.
+//
+// (b) Your factory function must never throw an exception. This class is not
+// exception-safe.
+//
+template <typename Type,
+ typename Traits = DefaultSingletonTraits<Type>,
+ typename DifferentiatingType = Type>
+class Singleton {
+ private:
+ // Classes using the Singleton<T> pattern should declare a GetInstance()
+ // method and call Singleton::get() from within that.
+ friend Type* Type::GetInstance();
+
+ // This class is safe to be constructed and copy-constructed since it has no
+ // member.
+
+ // Return a pointer to the one true instance of the class.
+ static Type* get() {
+ if (!Traits::kAllowedToAccessOnNonjoinableThread)
+ base::ThreadRestrictions::AssertSingletonAllowed();
+
+ // Our AtomicWord doubles as a spinlock, where a value of
+ // kBeingCreatedMarker means the spinlock is being held for creation.
+ static const base::subtle::AtomicWord kBeingCreatedMarker = 1;
+
+ base::subtle::AtomicWord value = base::subtle::NoBarrier_Load(&instance_);
+ if (value != 0 && value != kBeingCreatedMarker) {
+ // See the corresponding HAPPENS_BEFORE below.
+ ANNOTATE_HAPPENS_AFTER(&instance_);
+ return reinterpret_cast<Type*>(value);
+ }
+
+ // Object isn't created yet, maybe we will get to create it, let's try...
+ if (base::subtle::Acquire_CompareAndSwap(&instance_,
+ 0,
+ kBeingCreatedMarker) == 0) {
+ // instance_ was NULL and is now kBeingCreatedMarker. Only one thread
+ // will ever get here. Threads might be spinning on us, and they will
+ // stop right after we do this store.
+ Type* newval = Traits::New();
+
+ // This annotation helps race detectors recognize correct lock-less
+ // synchronization between different threads calling get().
+ // See the corresponding HAPPENS_AFTER below and above.
+ ANNOTATE_HAPPENS_BEFORE(&instance_);
+ base::subtle::Release_Store(
+ &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval));
+
+ if (newval != NULL && Traits::kRegisterAtExit)
+ base::AtExitManager::RegisterCallback(OnExit, NULL);
+
+ return newval;
+ }
+
+ // We hit a race. Another thread beat us and either:
+ // - Has the object in BeingCreated state
+ // - Already has the object created...
+ // We know value != NULL. It could be kBeingCreatedMarker, or a valid ptr.
+ // Unless your constructor can be very time consuming, it is very unlikely
+ // to hit this race. When it does, we just spin and yield the thread until
+ // the object has been created.
+ while (true) {
+ value = base::subtle::NoBarrier_Load(&instance_);
+ if (value != kBeingCreatedMarker)
+ break;
+ base::PlatformThread::YieldCurrentThread();
+ }
+
+ // See the corresponding HAPPENS_BEFORE above.
+ ANNOTATE_HAPPENS_AFTER(&instance_);
+ return reinterpret_cast<Type*>(value);
+ }
+
+ // Adapter function for use with AtExit(). This should be called single
+ // threaded, so don't use atomic operations.
+ // Calling OnExit while singleton is in use by other threads is a mistake.
+ static void OnExit(void* /*unused*/) {
+ // AtExit should only ever be register after the singleton instance was
+ // created. We should only ever get here with a valid instance_ pointer.
+ Traits::Delete(
+ reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_)));
+ instance_ = 0;
+ }
+ static base::subtle::AtomicWord instance_;
+};
+
+template <typename Type, typename Traits, typename DifferentiatingType>
+base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::
+ instance_ = 0;
+
+#endif // BASE_SINGLETON_H_
Property changes on: third_party\libphonenumber\cpp\src\base\singleton.h
___________________________________________________________________
Added: svn:eol-style
+ LF

Powered by Google App Engine
This is Rietveld 408576698