OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2010 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #ifndef BASE_SINGLETON_H_ |
| 6 #define BASE_SINGLETON_H_ |
| 7 #pragma once |
| 8 |
| 9 #include "base/at_exit.h" |
| 10 #include "base/atomicops.h" |
| 11 #include "base/third_party/dynamic_annotations/dynamic_annotations.h" |
| 12 #include "base/threading/platform_thread.h" |
| 13 #include "base/threading/thread_restrictions.h" |
| 14 |
| 15 // Default traits for Singleton<Type>. Calls operator new and operator delete on |
| 16 // the object. Registers automatic deletion at process exit. |
| 17 // Overload if you need arguments or another memory allocation function. |
| 18 template<typename Type> |
| 19 struct DefaultSingletonTraits { |
| 20 // Allocates the object. |
| 21 static Type* New() { |
| 22 // The parenthesis is very important here; it forces POD type |
| 23 // initialization. |
| 24 return new Type(); |
| 25 } |
| 26 |
| 27 // Destroys the object. |
| 28 static void Delete(Type* x) { |
| 29 delete x; |
| 30 } |
| 31 |
| 32 // Set to true to automatically register deletion of the object on process |
| 33 // exit. See below for the required call that makes this happen. |
| 34 static const bool kRegisterAtExit = true; |
| 35 |
| 36 // Set to false to disallow access on a non-joinable thread. This is |
| 37 // different from kRegisterAtExit because StaticMemorySingletonTraits allows |
| 38 // access on non-joinable threads, and gracefully handles this. |
| 39 static const bool kAllowedToAccessOnNonjoinableThread = false; |
| 40 }; |
| 41 |
| 42 |
| 43 // Alternate traits for use with the Singleton<Type>. Identical to |
| 44 // DefaultSingletonTraits except that the Singleton will not be cleaned up |
| 45 // at exit. |
| 46 template<typename Type> |
| 47 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> { |
| 48 static const bool kRegisterAtExit = false; |
| 49 static const bool kAllowedToAccessOnNonjoinableThread = true; |
| 50 }; |
| 51 |
| 52 |
| 53 // Alternate traits for use with the Singleton<Type>. Allocates memory |
| 54 // for the singleton instance from a static buffer. The singleton will |
| 55 // be cleaned up at exit, but can't be revived after destruction unless |
| 56 // the Resurrect() method is called. |
| 57 // |
| 58 // This is useful for a certain category of things, notably logging and |
| 59 // tracing, where the singleton instance is of a type carefully constructed to |
| 60 // be safe to access post-destruction. |
| 61 // In logging and tracing you'll typically get stray calls at odd times, like |
| 62 // during static destruction, thread teardown and the like, and there's a |
| 63 // termination race on the heap-based singleton - e.g. if one thread calls |
| 64 // get(), but then another thread initiates AtExit processing, the first thread |
| 65 // may call into an object residing in unallocated memory. If the instance is |
| 66 // allocated from the data segment, then this is survivable. |
| 67 // |
| 68 // The destructor is to deallocate system resources, in this case to unregister |
| 69 // a callback the system will invoke when logging levels change. Note that |
| 70 // this is also used in e.g. Chrome Frame, where you have to allow for the |
| 71 // possibility of loading briefly into someone else's process space, and |
| 72 // so leaking is not an option, as that would sabotage the state of your host |
| 73 // process once you've unloaded. |
| 74 template <typename Type> |
| 75 struct StaticMemorySingletonTraits { |
| 76 // WARNING: User has to deal with get() in the singleton class |
| 77 // this is traits for returning NULL. |
| 78 static Type* New() { |
| 79 if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1)) |
| 80 return NULL; |
| 81 Type* ptr = reinterpret_cast<Type*>(buffer_); |
| 82 |
| 83 // We are protected by a memory barrier. |
| 84 new(ptr) Type(); |
| 85 return ptr; |
| 86 } |
| 87 |
| 88 static void Delete(Type* p) { |
| 89 base::subtle::NoBarrier_Store(&dead_, 1); |
| 90 base::subtle::MemoryBarrier(); |
| 91 if (p != NULL) |
| 92 p->Type::~Type(); |
| 93 } |
| 94 |
| 95 static const bool kRegisterAtExit = true; |
| 96 static const bool kAllowedToAccessOnNonjoinableThread = true; |
| 97 |
| 98 // Exposed for unittesting. |
| 99 static void Resurrect() { |
| 100 base::subtle::NoBarrier_Store(&dead_, 0); |
| 101 } |
| 102 |
| 103 private: |
| 104 static const size_t kBufferSize = (sizeof(Type) + |
| 105 sizeof(intptr_t) - 1) / sizeof(intptr_t); |
| 106 static intptr_t buffer_[kBufferSize]; |
| 107 |
| 108 // Signal the object was already deleted, so it is not revived. |
| 109 static base::subtle::Atomic32 dead_; |
| 110 }; |
| 111 |
| 112 template <typename Type> intptr_t |
| 113 StaticMemorySingletonTraits<Type>::buffer_[kBufferSize]; |
| 114 template <typename Type> base::subtle::Atomic32 |
| 115 StaticMemorySingletonTraits<Type>::dead_ = 0; |
| 116 |
| 117 // The Singleton<Type, Traits, DifferentiatingType> class manages a single |
| 118 // instance of Type which will be created on first use and will be destroyed at |
| 119 // normal process exit). The Trait::Delete function will not be called on |
| 120 // abnormal process exit. |
| 121 // |
| 122 // DifferentiatingType is used as a key to differentiate two different |
| 123 // singletons having the same memory allocation functions but serving a |
| 124 // different purpose. This is mainly used for Locks serving different purposes. |
| 125 // |
| 126 // Example usage: |
| 127 // |
| 128 // In your header: |
| 129 // #include "base/singleton.h" |
| 130 // class FooClass { |
| 131 // public: |
| 132 // static FooClass* GetInstance(); <-- See comment below on this. |
| 133 // void Bar() { ... } |
| 134 // private: |
| 135 // FooClass() { ... } |
| 136 // friend struct DefaultSingletonTraits<FooClass>; |
| 137 // |
| 138 // DISALLOW_COPY_AND_ASSIGN(FooClass); |
| 139 // }; |
| 140 // |
| 141 // In your source file: |
| 142 // FooClass* FooClass::GetInstance() { |
| 143 // return Singleton<FooClass>::get(); |
| 144 // } |
| 145 // |
| 146 // And to call methods on FooClass: |
| 147 // FooClass::GetInstance()->Bar(); |
| 148 // |
| 149 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance |
| 150 // and it is important that FooClass::GetInstance() is not inlined in the |
| 151 // header. This makes sure that when source files from multiple targets include |
| 152 // this header they don't end up with different copies of the inlined code |
| 153 // creating multiple copies of the singleton. |
| 154 // |
| 155 // Singleton<> has no non-static members and doesn't need to actually be |
| 156 // instantiated. |
| 157 // |
| 158 // This class is itself thread-safe. The underlying Type must of course be |
| 159 // thread-safe if you want to use it concurrently. Two parameters may be tuned |
| 160 // depending on the user's requirements. |
| 161 // |
| 162 // Glossary: |
| 163 // RAE = kRegisterAtExit |
| 164 // |
| 165 // On every platform, if Traits::RAE is true, the singleton will be destroyed at |
| 166 // process exit. More precisely it uses base::AtExitManager which requires an |
| 167 // object of this type to be instantiated. AtExitManager mimics the semantics |
| 168 // of atexit() such as LIFO order but under Windows is safer to call. For more |
| 169 // information see at_exit.h. |
| 170 // |
| 171 // If Traits::RAE is false, the singleton will not be freed at process exit, |
| 172 // thus the singleton will be leaked if it is ever accessed. Traits::RAE |
| 173 // shouldn't be false unless absolutely necessary. Remember that the heap where |
| 174 // the object is allocated may be destroyed by the CRT anyway. |
| 175 // |
| 176 // Caveats: |
| 177 // (a) Every call to get(), operator->() and operator*() incurs some overhead |
| 178 // (16ns on my P4/2.8GHz) to check whether the object has already been |
| 179 // initialized. You may wish to cache the result of get(); it will not |
| 180 // change. |
| 181 // |
| 182 // (b) Your factory function must never throw an exception. This class is not |
| 183 // exception-safe. |
| 184 // |
| 185 template <typename Type, |
| 186 typename Traits = DefaultSingletonTraits<Type>, |
| 187 typename DifferentiatingType = Type> |
| 188 class Singleton { |
| 189 private: |
| 190 // Classes using the Singleton<T> pattern should declare a GetInstance() |
| 191 // method and call Singleton::get() from within that. |
| 192 friend Type* Type::GetInstance(); |
| 193 |
| 194 // This class is safe to be constructed and copy-constructed since it has no |
| 195 // member. |
| 196 |
| 197 // Return a pointer to the one true instance of the class. |
| 198 static Type* get() { |
| 199 if (!Traits::kAllowedToAccessOnNonjoinableThread) |
| 200 base::ThreadRestrictions::AssertSingletonAllowed(); |
| 201 |
| 202 // Our AtomicWord doubles as a spinlock, where a value of |
| 203 // kBeingCreatedMarker means the spinlock is being held for creation. |
| 204 static const base::subtle::AtomicWord kBeingCreatedMarker = 1; |
| 205 |
| 206 base::subtle::AtomicWord value = base::subtle::NoBarrier_Load(&instance_); |
| 207 if (value != 0 && value != kBeingCreatedMarker) { |
| 208 // See the corresponding HAPPENS_BEFORE below. |
| 209 ANNOTATE_HAPPENS_AFTER(&instance_); |
| 210 return reinterpret_cast<Type*>(value); |
| 211 } |
| 212 |
| 213 // Object isn't created yet, maybe we will get to create it, let's try... |
| 214 if (base::subtle::Acquire_CompareAndSwap(&instance_, |
| 215 0, |
| 216 kBeingCreatedMarker) == 0) { |
| 217 // instance_ was NULL and is now kBeingCreatedMarker. Only one thread |
| 218 // will ever get here. Threads might be spinning on us, and they will |
| 219 // stop right after we do this store. |
| 220 Type* newval = Traits::New(); |
| 221 |
| 222 // This annotation helps race detectors recognize correct lock-less |
| 223 // synchronization between different threads calling get(). |
| 224 // See the corresponding HAPPENS_AFTER below and above. |
| 225 ANNOTATE_HAPPENS_BEFORE(&instance_); |
| 226 base::subtle::Release_Store( |
| 227 &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval)); |
| 228 |
| 229 if (newval != NULL && Traits::kRegisterAtExit) |
| 230 base::AtExitManager::RegisterCallback(OnExit, NULL); |
| 231 |
| 232 return newval; |
| 233 } |
| 234 |
| 235 // We hit a race. Another thread beat us and either: |
| 236 // - Has the object in BeingCreated state |
| 237 // - Already has the object created... |
| 238 // We know value != NULL. It could be kBeingCreatedMarker, or a valid ptr. |
| 239 // Unless your constructor can be very time consuming, it is very unlikely |
| 240 // to hit this race. When it does, we just spin and yield the thread until |
| 241 // the object has been created. |
| 242 while (true) { |
| 243 value = base::subtle::NoBarrier_Load(&instance_); |
| 244 if (value != kBeingCreatedMarker) |
| 245 break; |
| 246 base::PlatformThread::YieldCurrentThread(); |
| 247 } |
| 248 |
| 249 // See the corresponding HAPPENS_BEFORE above. |
| 250 ANNOTATE_HAPPENS_AFTER(&instance_); |
| 251 return reinterpret_cast<Type*>(value); |
| 252 } |
| 253 |
| 254 // Adapter function for use with AtExit(). This should be called single |
| 255 // threaded, so don't use atomic operations. |
| 256 // Calling OnExit while singleton is in use by other threads is a mistake. |
| 257 static void OnExit(void* /*unused*/) { |
| 258 // AtExit should only ever be register after the singleton instance was |
| 259 // created. We should only ever get here with a valid instance_ pointer. |
| 260 Traits::Delete( |
| 261 reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_))); |
| 262 instance_ = 0; |
| 263 } |
| 264 static base::subtle::AtomicWord instance_; |
| 265 }; |
| 266 |
| 267 template <typename Type, typename Traits, typename DifferentiatingType> |
| 268 base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>:: |
| 269 instance_ = 0; |
| 270 |
| 271 #endif // BASE_SINGLETON_H_ |
OLD | NEW |