| Index: skia/ext/convolver.cc
|
| diff --git a/skia/ext/convolver.cc b/skia/ext/convolver.cc
|
| index a42a9daf32a17a3a77602f89d841de997f2787de..ee9d056fa436336338d92f8a3620d285c1d634cb 100644
|
| --- a/skia/ext/convolver.cc
|
| +++ b/skia/ext/convolver.cc
|
| @@ -7,6 +7,10 @@
|
| #include "skia/ext/convolver.h"
|
| #include "third_party/skia/include/core/SkTypes.h"
|
|
|
| +#if defined(SIMD_SSE2)
|
| +#include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h
|
| +#endif
|
| +
|
| namespace skia {
|
|
|
| namespace {
|
| @@ -199,7 +203,7 @@ void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
|
| if (has_alpha) {
|
| unsigned char alpha = ClampTo8(accum[3]);
|
|
|
| - // Make sure the alpha channel doesn't come out larger than any of the
|
| + // Make sure the alpha channel doesn't come out smaller than any of the
|
| // color channels. We use premultipled alpha channels, so this should
|
| // never happen, but rounding errors will cause this from time to time.
|
| // These "impossible" colors will cause overflows (and hence random pixel
|
| @@ -219,6 +223,433 @@ void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
|
| }
|
| }
|
|
|
| +
|
| +// Convolves horizontally along a single row. The row data is given in
|
| +// |src_data| and continues for the num_values() of the filter.
|
| +void ConvolveHorizontally_SSE2(const unsigned char* src_data,
|
| + const ConvolutionFilter1D& filter,
|
| + unsigned char* out_row) {
|
| +#if defined(SIMD_SSE2)
|
| + int num_values = filter.num_values();
|
| +
|
| + int filter_offset, filter_length;
|
| + __m128i zero = _mm_setzero_si128();
|
| + __m128i mask[4];
|
| + // |mask| will be used to decimate all extra filter coefficients that are
|
| + // loaded by SIMD when |filter_length| is not divisible by 4.
|
| + // mask[0] is not used in following algorithm.
|
| + mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
| + mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
| + mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
| +
|
| + // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| + for (int out_x = 0; out_x < num_values; out_x++) {
|
| + const ConvolutionFilter1D::Fixed* filter_values =
|
| + filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
| +
|
| + __m128i accum = _mm_setzero_si128();
|
| +
|
| + // Compute the first pixel in this row that the filter affects. It will
|
| + // touch |filter_length| pixels (4 bytes each) after this.
|
| + const __m128i* row_to_filter =
|
| + reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
|
| +
|
| + // We will load and accumulate with four coefficients per iteration.
|
| + for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
|
| +
|
| + // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
|
| + __m128i coeff, coeff16;
|
| + // [16] xx xx xx xx c3 c2 c1 c0
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // [16] xx xx xx xx c1 c1 c0 c0
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + // [16] c1 c1 c1 c1 c0 c0 c0 c0
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| +
|
| + // Load four pixels => unpack the first two pixels to 16 bits =>
|
| + // multiply with coefficients => accumulate the convolution result.
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src8 = _mm_loadu_si128(row_to_filter);
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0*c0 b0*c0 g0*c0 r0*c0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + // [32] a1*c1 b1*c1 g1*c1 r1*c1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| +
|
| + // Duplicate 3rd and 4th coefficients for all channels =>
|
| + // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
|
| + // => accumulate the convolution results.
|
| + // [16] xx xx xx xx c3 c3 c2 c2
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + // [16] c3 c3 c3 c3 c2 c2 c2 c2
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| + // [16] a3 g3 b3 r3 a2 g2 b2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2*c2 b2*c2 g2*c2 r2*c2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + // [32] a3*c3 b3*c3 g3*c3 r3*c3
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| +
|
| + // Advance the pixel and coefficients pointers.
|
| + row_to_filter += 1;
|
| + filter_values += 4;
|
| + }
|
| +
|
| + // When |filter_length| is not divisible by 4, we need to decimate some of
|
| + // the filter coefficient that was loaded incorrectly to zero; Other than
|
| + // that the algorithm is same with above, exceot that the 4th pixel will be
|
| + // always absent.
|
| + int r = filter_length&3;
|
| + if (r) {
|
| + // Note: filter_values must be padded to align_up(filter_offset, 8).
|
| + __m128i coeff, coeff16;
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // Mask out extra filter taps.
|
| + coeff = _mm_and_si128(coeff, mask[r]);
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| +
|
| + // Note: line buffer must be padded to align_up(filter_offset, 16).
|
| + // We resolve this by use C-version for the last horizontal line.
|
| + __m128i src8 = _mm_loadu_si128(row_to_filter);
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| +
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + }
|
| +
|
| + // Shift right for fixed point implementation.
|
| + accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
|
| +
|
| + // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| + accum = _mm_packs_epi32(accum, zero);
|
| + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| + accum = _mm_packus_epi16(accum, zero);
|
| +
|
| + // Store the pixel value of 32 bits.
|
| + *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
|
| + out_row += 4;
|
| + }
|
| +#endif
|
| +}
|
| +
|
| +// Convolves horizontally along four rows. The row data is given in
|
| +// |src_data| and continues for the num_values() of the filter.
|
| +// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
|
| +// refer to that function for detailed comments.
|
| +void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4],
|
| + const ConvolutionFilter1D& filter,
|
| + unsigned char* out_row[4]) {
|
| +#if defined(SIMD_SSE2)
|
| + int num_values = filter.num_values();
|
| +
|
| + int filter_offset, filter_length;
|
| + __m128i zero = _mm_setzero_si128();
|
| + __m128i mask[4];
|
| + // |mask| will be used to decimate all extra filter coefficients that are
|
| + // loaded by SIMD when |filter_length| is not divisible by 4.
|
| + // mask[0] is not used in following algorithm.
|
| + mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
| + mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
| + mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
| +
|
| + // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| + for (int out_x = 0; out_x < num_values; out_x++) {
|
| + const ConvolutionFilter1D::Fixed* filter_values =
|
| + filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
| +
|
| + // four pixels in a column per iteration.
|
| + __m128i accum0 = _mm_setzero_si128();
|
| + __m128i accum1 = _mm_setzero_si128();
|
| + __m128i accum2 = _mm_setzero_si128();
|
| + __m128i accum3 = _mm_setzero_si128();
|
| + int start = (filter_offset<<2);
|
| + // We will load and accumulate with four coefficients per iteration.
|
| + for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
|
| + __m128i coeff, coeff16lo, coeff16hi;
|
| + // [16] xx xx xx xx c3 c2 c1 c0
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // [16] xx xx xx xx c1 c1 c0 c0
|
| + coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + // [16] c1 c1 c1 c1 c0 c0 c0 c0
|
| + coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
| + // [16] xx xx xx xx c3 c3 c2 c2
|
| + coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + // [16] c3 c3 c3 c3 c2 c2 c2 c2
|
| + coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
| +
|
| + __m128i src8, src16, mul_hi, mul_lo, t;
|
| +
|
| +#define ITERATION(src, accum) \
|
| + src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
|
| + src16 = _mm_unpacklo_epi8(src8, zero); \
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + src16 = _mm_unpackhi_epi8(src8, zero); \
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t)
|
| +
|
| + ITERATION(src_data[0] + start, accum0);
|
| + ITERATION(src_data[1] + start, accum1);
|
| + ITERATION(src_data[2] + start, accum2);
|
| + ITERATION(src_data[3] + start, accum3);
|
| +
|
| + start += 16;
|
| + filter_values += 4;
|
| + }
|
| +
|
| + int r = filter_length & 3;
|
| + if (r) {
|
| + // Note: filter_values must be padded to align_up(filter_offset, 8);
|
| + __m128i coeff;
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // Mask out extra filter taps.
|
| + coeff = _mm_and_si128(coeff, mask[r]);
|
| +
|
| + __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + /* c1 c1 c1 c1 c0 c0 c0 c0 */
|
| + coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
| + __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
| +
|
| + __m128i src8, src16, mul_hi, mul_lo, t;
|
| +
|
| + ITERATION(src_data[0] + start, accum0);
|
| + ITERATION(src_data[1] + start, accum1);
|
| + ITERATION(src_data[2] + start, accum2);
|
| + ITERATION(src_data[3] + start, accum3);
|
| + }
|
| +
|
| + accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
|
| + accum0 = _mm_packs_epi32(accum0, zero);
|
| + accum0 = _mm_packus_epi16(accum0, zero);
|
| + accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_packs_epi32(accum1, zero);
|
| + accum1 = _mm_packus_epi16(accum1, zero);
|
| + accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_packs_epi32(accum2, zero);
|
| + accum2 = _mm_packus_epi16(accum2, zero);
|
| + accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
|
| + accum3 = _mm_packs_epi32(accum3, zero);
|
| + accum3 = _mm_packus_epi16(accum3, zero);
|
| +
|
| + *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
|
| + *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
|
| + *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
|
| + *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
|
| +
|
| + out_row[0] += 4;
|
| + out_row[1] += 4;
|
| + out_row[2] += 4;
|
| + out_row[3] += 4;
|
| + }
|
| +#endif
|
| +}
|
| +
|
| +// Does vertical convolution to produce one output row. The filter values and
|
| +// length are given in the first two parameters. These are applied to each
|
| +// of the rows pointed to in the |source_data_rows| array, with each row
|
| +// being |pixel_width| wide.
|
| +//
|
| +// The output must have room for |pixel_width * 4| bytes.
|
| +template<bool has_alpha>
|
| +void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
|
| + int filter_length,
|
| + unsigned char* const* source_data_rows,
|
| + int pixel_width,
|
| + unsigned char* out_row) {
|
| +#if defined(SIMD_SSE2)
|
| + int width = pixel_width & ~3;
|
| +
|
| + __m128i zero = _mm_setzero_si128();
|
| + __m128i accum0, accum1, accum2, accum3, coeff16;
|
| + const __m128i* src;
|
| + // Output four pixels per iteration (16 bytes).
|
| + for (int out_x = 0; out_x < width; out_x += 4) {
|
| +
|
| + // Accumulated result for each pixel. 32 bits per RGBA channel.
|
| + accum0 = _mm_setzero_si128();
|
| + accum1 = _mm_setzero_si128();
|
| + accum2 = _mm_setzero_si128();
|
| + accum3 = _mm_setzero_si128();
|
| +
|
| + // Convolve with one filter coefficient per iteration.
|
| + for (int filter_y = 0; filter_y < filter_length; filter_y++) {
|
| +
|
| + // Duplicate the filter coefficient 8 times.
|
| + // [16] cj cj cj cj cj cj cj cj
|
| + coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
| +
|
| + // Load four pixels (16 bytes) together.
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + src = reinterpret_cast<const __m128i*>(
|
| + &source_data_rows[filter_y][out_x << 2]);
|
| + __m128i src8 = _mm_loadu_si128(src);
|
| +
|
| + // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
|
| + // multiply with current coefficient => accumulate the result.
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0 b0 g0 r0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum0 = _mm_add_epi32(accum0, t);
|
| + // [32] a1 b1 g1 r1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum1 = _mm_add_epi32(accum1, t);
|
| +
|
| + // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
|
| + // multiply with current coefficient => accumulate the result.
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2 b2 g2 r2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum2 = _mm_add_epi32(accum2, t);
|
| + // [32] a3 b3 g3 r3
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum3 = _mm_add_epi32(accum3, t);
|
| + }
|
| +
|
| + // Shift right for fixed point implementation.
|
| + accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
|
| + accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
|
| +
|
| + // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packs_epi32(accum0, accum1);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + accum2 = _mm_packs_epi32(accum2, accum3);
|
| +
|
| + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packus_epi16(accum0, accum2);
|
| +
|
| + if (has_alpha) {
|
| + // Compute the max(ri, gi, bi) for each pixel.
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + __m128i a = _mm_srli_epi32(accum0, 8);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = _mm_srli_epi32(accum0, 16);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = _mm_max_epu8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = _mm_slli_epi32(b, 24);
|
| +
|
| + // Make sure the value of alpha channel is always larger than maximum
|
| + // value of color channels.
|
| + accum0 = _mm_max_epu8(b, accum0);
|
| + } else {
|
| + // Set value of alpha channels to 0xFF.
|
| + __m128i mask = _mm_set1_epi32(0xff000000);
|
| + accum0 = _mm_or_si128(accum0, mask);
|
| + }
|
| +
|
| + // Store the convolution result (16 bytes) and advance the pixel pointers.
|
| + _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
|
| + out_row += 16;
|
| + }
|
| +
|
| + // When the width of the output is not divisible by 4, We need to save one
|
| + // pixel (4 bytes) each time. And also the fourth pixel is always absent.
|
| + if (pixel_width & 3) {
|
| + accum0 = _mm_setzero_si128();
|
| + accum1 = _mm_setzero_si128();
|
| + accum2 = _mm_setzero_si128();
|
| + for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
|
| + coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + src = reinterpret_cast<const __m128i*>(
|
| + &source_data_rows[filter_y][width<<2]);
|
| + __m128i src8 = _mm_loadu_si128(src);
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0 b0 g0 r0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum0 = _mm_add_epi32(accum0, t);
|
| + // [32] a1 b1 g1 r1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum1 = _mm_add_epi32(accum1, t);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2 b2 g2 r2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum2 = _mm_add_epi32(accum2, t);
|
| + }
|
| +
|
| + accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packs_epi32(accum0, accum1);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + accum2 = _mm_packs_epi32(accum2, zero);
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packus_epi16(accum0, accum2);
|
| + if (has_alpha) {
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + __m128i a = _mm_srli_epi32(accum0, 8);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = _mm_srli_epi32(accum0, 16);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = _mm_max_epu8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = _mm_slli_epi32(b, 24);
|
| + accum0 = _mm_max_epu8(b, accum0);
|
| + } else {
|
| + __m128i mask = _mm_set1_epi32(0xff000000);
|
| + accum0 = _mm_or_si128(accum0, mask);
|
| + }
|
| +
|
| + for (int out_x = width; out_x < pixel_width; out_x++) {
|
| + *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
|
| + accum0 = _mm_srli_si128(accum0, 4);
|
| + out_row += 4;
|
| + }
|
| + }
|
| +#endif
|
| +}
|
| +
|
| } // namespace
|
|
|
| // ConvolutionFilter1D ---------------------------------------------------------
|
| @@ -284,15 +715,20 @@ void ConvolutionFilter1D::AddFilter(int filter_offset,
|
| max_filter_ = std::max(max_filter_, filter_length);
|
| }
|
|
|
| -// BGRAConvolve2D -------------------------------------------------------------
|
| -
|
| void BGRAConvolve2D(const unsigned char* source_data,
|
| int source_byte_row_stride,
|
| bool source_has_alpha,
|
| const ConvolutionFilter1D& filter_x,
|
| const ConvolutionFilter1D& filter_y,
|
| int output_byte_row_stride,
|
| - unsigned char* output) {
|
| + unsigned char* output,
|
| + bool use_sse2) {
|
| +#if !defined(SIMD_SSE2)
|
| + // Even we have runtime support for SSE2 instructions, since the binary
|
| + // was not built with SSE2 support, we had to fallback to C version.
|
| + use_sse2 = false;
|
| +#endif
|
| +
|
| int max_y_filter_size = filter_y.max_filter();
|
|
|
| // The next row in the input that we will generate a horizontally
|
| @@ -310,29 +746,78 @@ void BGRAConvolve2D(const unsigned char* source_data,
|
| // a circular buffer of convolved rows and do vertical convolution as rows
|
| // are available. This prevents us from having to store the entire
|
| // intermediate image and helps cache coherency.
|
| - CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size,
|
| + // We will need four extra rows to allow horizontal convolution could be done
|
| + // simultaneously. We also padding each row in row buffer to be aligned-up to
|
| + // 16 bytes.
|
| + // TODO(jiesun): We do not use aligned load from row buffer in vertical
|
| + // convolution pass yet. Somehow Windows does not like it.
|
| + int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
|
| + int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0);
|
| + CircularRowBuffer row_buffer(row_buffer_width,
|
| + row_buffer_height,
|
| filter_offset);
|
|
|
| // Loop over every possible output row, processing just enough horizontal
|
| // convolutions to run each subsequent vertical convolution.
|
| SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
|
| int num_output_rows = filter_y.num_values();
|
| +
|
| + // We need to check which is the last line to convolve before we advance 4
|
| + // lines in one iteration.
|
| + int last_filter_offset, last_filter_length;
|
| + filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset,
|
| + &last_filter_length);
|
| +
|
| for (int out_y = 0; out_y < num_output_rows; out_y++) {
|
| filter_values = filter_y.FilterForValue(out_y,
|
| &filter_offset, &filter_length);
|
|
|
| // Generate output rows until we have enough to run the current filter.
|
| - while (next_x_row < filter_offset + filter_length) {
|
| - if (source_has_alpha) {
|
| - ConvolveHorizontally<true>(
|
| - &source_data[next_x_row * source_byte_row_stride],
|
| - filter_x, row_buffer.AdvanceRow());
|
| - } else {
|
| - ConvolveHorizontally<false>(
|
| - &source_data[next_x_row * source_byte_row_stride],
|
| - filter_x, row_buffer.AdvanceRow());
|
| + if (use_sse2) {
|
| + while (next_x_row < filter_offset + filter_length) {
|
| + if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) {
|
| + const unsigned char* src[4];
|
| + unsigned char* out_row[4];
|
| + for (int i = 0; i < 4; ++i) {
|
| + src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
|
| + out_row[i] = row_buffer.AdvanceRow();
|
| + }
|
| + ConvolveHorizontally4_SSE2(src, filter_x, out_row);
|
| + next_x_row += 4;
|
| + } else {
|
| + // For the last row, SSE2 load possibly to access data beyond the
|
| + // image area. therefore we use C version here.
|
| + if (next_x_row == last_filter_offset + last_filter_length - 1) {
|
| + if (source_has_alpha) {
|
| + ConvolveHorizontally<true>(
|
| + &source_data[next_x_row * source_byte_row_stride],
|
| + filter_x, row_buffer.AdvanceRow());
|
| + } else {
|
| + ConvolveHorizontally<false>(
|
| + &source_data[next_x_row * source_byte_row_stride],
|
| + filter_x, row_buffer.AdvanceRow());
|
| + }
|
| + } else {
|
| + ConvolveHorizontally_SSE2(
|
| + &source_data[next_x_row * source_byte_row_stride],
|
| + filter_x, row_buffer.AdvanceRow());
|
| + }
|
| + next_x_row++;
|
| + }
|
| + }
|
| + } else {
|
| + while (next_x_row < filter_offset + filter_length) {
|
| + if (source_has_alpha) {
|
| + ConvolveHorizontally<true>(
|
| + &source_data[next_x_row * source_byte_row_stride],
|
| + filter_x, row_buffer.AdvanceRow());
|
| + } else {
|
| + ConvolveHorizontally<false>(
|
| + &source_data[next_x_row * source_byte_row_stride],
|
| + filter_x, row_buffer.AdvanceRow());
|
| + }
|
| + next_x_row++;
|
| }
|
| - next_x_row++;
|
| }
|
|
|
| // Compute where in the output image this row of final data will go.
|
| @@ -349,13 +834,25 @@ void BGRAConvolve2D(const unsigned char* source_data,
|
| &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
|
|
|
| if (source_has_alpha) {
|
| - ConvolveVertically<true>(filter_values, filter_length,
|
| - first_row_for_filter,
|
| - filter_x.num_values(), cur_output_row);
|
| + if (use_sse2) {
|
| + ConvolveVertically_SSE2<true>(filter_values, filter_length,
|
| + first_row_for_filter,
|
| + filter_x.num_values(), cur_output_row);
|
| + } else {
|
| + ConvolveVertically<true>(filter_values, filter_length,
|
| + first_row_for_filter,
|
| + filter_x.num_values(), cur_output_row);
|
| + }
|
| } else {
|
| - ConvolveVertically<false>(filter_values, filter_length,
|
| - first_row_for_filter,
|
| - filter_x.num_values(), cur_output_row);
|
| + if (use_sse2) {
|
| + ConvolveVertically_SSE2<false>(filter_values, filter_length,
|
| + first_row_for_filter,
|
| + filter_x.num_values(), cur_output_row);
|
| + } else {
|
| + ConvolveVertically<false>(filter_values, filter_length,
|
| + first_row_for_filter,
|
| + filter_x.num_values(), cur_output_row);
|
| + }
|
| }
|
| }
|
| }
|
|
|