Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(229)

Side by Side Diff: skia/ext/convolver.cc

Issue 6334070: SIMD implementation of Convolver for Lanczos filter etc. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: typo Created 9 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « skia/ext/convolver.h ('k') | skia/ext/convolver_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include <algorithm> 5 #include <algorithm>
6 6
7 #include "skia/ext/convolver.h" 7 #include "skia/ext/convolver.h"
8 #include "third_party/skia/include/core/SkTypes.h" 8 #include "third_party/skia/include/core/SkTypes.h"
9 9
10 #if defined(SIMD_SSE2)
11 #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h
12 #endif
13
10 namespace skia { 14 namespace skia {
11 15
12 namespace { 16 namespace {
13 17
14 // Converts the argument to an 8-bit unsigned value by clamping to the range 18 // Converts the argument to an 8-bit unsigned value by clamping to the range
15 // 0-255. 19 // 0-255.
16 inline unsigned char ClampTo8(int a) { 20 inline unsigned char ClampTo8(int a) {
17 if (static_cast<unsigned>(a) < 256) 21 if (static_cast<unsigned>(a) < 256)
18 return a; // Avoid the extra check in the common case. 22 return a; // Avoid the extra check in the common case.
19 if (a < 0) 23 if (a < 0)
(...skipping 172 matching lines...) Expand 10 before | Expand all | Expand 10 after
192 if (has_alpha) 196 if (has_alpha)
193 accum[3] >>= ConvolutionFilter1D::kShiftBits; 197 accum[3] >>= ConvolutionFilter1D::kShiftBits;
194 198
195 // Store the new pixel. 199 // Store the new pixel.
196 out_row[byte_offset + 0] = ClampTo8(accum[0]); 200 out_row[byte_offset + 0] = ClampTo8(accum[0]);
197 out_row[byte_offset + 1] = ClampTo8(accum[1]); 201 out_row[byte_offset + 1] = ClampTo8(accum[1]);
198 out_row[byte_offset + 2] = ClampTo8(accum[2]); 202 out_row[byte_offset + 2] = ClampTo8(accum[2]);
199 if (has_alpha) { 203 if (has_alpha) {
200 unsigned char alpha = ClampTo8(accum[3]); 204 unsigned char alpha = ClampTo8(accum[3]);
201 205
202 // Make sure the alpha channel doesn't come out larger than any of the 206 // Make sure the alpha channel doesn't come out smaller than any of the
203 // color channels. We use premultipled alpha channels, so this should 207 // color channels. We use premultipled alpha channels, so this should
204 // never happen, but rounding errors will cause this from time to time. 208 // never happen, but rounding errors will cause this from time to time.
205 // These "impossible" colors will cause overflows (and hence random pixel 209 // These "impossible" colors will cause overflows (and hence random pixel
206 // values) when the resulting bitmap is drawn to the screen. 210 // values) when the resulting bitmap is drawn to the screen.
207 // 211 //
208 // We only need to do this when generating the final output row (here). 212 // We only need to do this when generating the final output row (here).
209 int max_color_channel = std::max(out_row[byte_offset + 0], 213 int max_color_channel = std::max(out_row[byte_offset + 0],
210 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); 214 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
211 if (alpha < max_color_channel) 215 if (alpha < max_color_channel)
212 out_row[byte_offset + 3] = max_color_channel; 216 out_row[byte_offset + 3] = max_color_channel;
213 else 217 else
214 out_row[byte_offset + 3] = alpha; 218 out_row[byte_offset + 3] = alpha;
215 } else { 219 } else {
216 // No alpha channel, the image is opaque. 220 // No alpha channel, the image is opaque.
217 out_row[byte_offset + 3] = 0xff; 221 out_row[byte_offset + 3] = 0xff;
218 } 222 }
219 } 223 }
220 } 224 }
221 225
226
227 // Convolves horizontally along a single row. The row data is given in
228 // |src_data| and continues for the num_values() of the filter.
229 void ConvolveHorizontally_SSE2(const unsigned char* src_data,
230 const ConvolutionFilter1D& filter,
231 unsigned char* out_row) {
232 #if defined(SIMD_SSE2)
233 int num_values = filter.num_values();
234
235 int filter_offset, filter_length;
236 __m128i zero = _mm_setzero_si128();
237 __m128i mask[4];
238 // |mask| will be used to decimate all extra filter coefficients that are
239 // loaded by SIMD when |filter_length| is not divisible by 4.
240 // mask[0] is not used in following algorithm.
241 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
242 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
243 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
244
245 // Output one pixel each iteration, calculating all channels (RGBA) together.
246 for (int out_x = 0; out_x < num_values; out_x++) {
247 const ConvolutionFilter1D::Fixed* filter_values =
248 filter.FilterForValue(out_x, &filter_offset, &filter_length);
249
250 __m128i accum = _mm_setzero_si128();
251
252 // Compute the first pixel in this row that the filter affects. It will
253 // touch |filter_length| pixels (4 bytes each) after this.
254 const __m128i* row_to_filter =
255 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
256
257 // We will load and accumulate with four coefficients per iteration.
258 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
259
260 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
261 __m128i coeff, coeff16;
262 // [16] xx xx xx xx c3 c2 c1 c0
263 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
264 // [16] xx xx xx xx c1 c1 c0 c0
265 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
266 // [16] c1 c1 c1 c1 c0 c0 c0 c0
267 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
268
269 // Load four pixels => unpack the first two pixels to 16 bits =>
270 // multiply with coefficients => accumulate the convolution result.
271 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
272 __m128i src8 = _mm_loadu_si128(row_to_filter);
273 // [16] a1 b1 g1 r1 a0 b0 g0 r0
274 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
275 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
276 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
277 // [32] a0*c0 b0*c0 g0*c0 r0*c0
278 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
279 accum = _mm_add_epi32(accum, t);
280 // [32] a1*c1 b1*c1 g1*c1 r1*c1
281 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
282 accum = _mm_add_epi32(accum, t);
283
284 // Duplicate 3rd and 4th coefficients for all channels =>
285 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
286 // => accumulate the convolution results.
287 // [16] xx xx xx xx c3 c3 c2 c2
288 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
289 // [16] c3 c3 c3 c3 c2 c2 c2 c2
290 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
291 // [16] a3 g3 b3 r3 a2 g2 b2 r2
292 src16 = _mm_unpackhi_epi8(src8, zero);
293 mul_hi = _mm_mulhi_epi16(src16, coeff16);
294 mul_lo = _mm_mullo_epi16(src16, coeff16);
295 // [32] a2*c2 b2*c2 g2*c2 r2*c2
296 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
297 accum = _mm_add_epi32(accum, t);
298 // [32] a3*c3 b3*c3 g3*c3 r3*c3
299 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
300 accum = _mm_add_epi32(accum, t);
301
302 // Advance the pixel and coefficients pointers.
303 row_to_filter += 1;
304 filter_values += 4;
305 }
306
307 // When |filter_length| is not divisible by 4, we need to decimate some of
308 // the filter coefficient that was loaded incorrectly to zero; Other than
309 // that the algorithm is same with above, exceot that the 4th pixel will be
310 // always absent.
311 int r = filter_length&3;
312 if (r) {
313 // Note: filter_values must be padded to align_up(filter_offset, 8).
314 __m128i coeff, coeff16;
315 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
316 // Mask out extra filter taps.
317 coeff = _mm_and_si128(coeff, mask[r]);
318 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
319 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
320
321 // Note: line buffer must be padded to align_up(filter_offset, 16).
322 // We resolve this by use C-version for the last horizontal line.
323 __m128i src8 = _mm_loadu_si128(row_to_filter);
324 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
325 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
326 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
327 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
328 accum = _mm_add_epi32(accum, t);
329 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
330 accum = _mm_add_epi32(accum, t);
331
332 src16 = _mm_unpackhi_epi8(src8, zero);
333 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
334 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
335 mul_hi = _mm_mulhi_epi16(src16, coeff16);
336 mul_lo = _mm_mullo_epi16(src16, coeff16);
337 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
338 accum = _mm_add_epi32(accum, t);
339 }
340
341 // Shift right for fixed point implementation.
342 accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
343
344 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
345 accum = _mm_packs_epi32(accum, zero);
346 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
347 accum = _mm_packus_epi16(accum, zero);
348
349 // Store the pixel value of 32 bits.
350 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
351 out_row += 4;
352 }
353 #endif
354 }
355
356 // Convolves horizontally along four rows. The row data is given in
357 // |src_data| and continues for the num_values() of the filter.
358 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
359 // refer to that function for detailed comments.
360 void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4],
361 const ConvolutionFilter1D& filter,
362 unsigned char* out_row[4]) {
363 #if defined(SIMD_SSE2)
364 int num_values = filter.num_values();
365
366 int filter_offset, filter_length;
367 __m128i zero = _mm_setzero_si128();
368 __m128i mask[4];
369 // |mask| will be used to decimate all extra filter coefficients that are
370 // loaded by SIMD when |filter_length| is not divisible by 4.
371 // mask[0] is not used in following algorithm.
372 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
373 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
374 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
375
376 // Output one pixel each iteration, calculating all channels (RGBA) together.
377 for (int out_x = 0; out_x < num_values; out_x++) {
378 const ConvolutionFilter1D::Fixed* filter_values =
379 filter.FilterForValue(out_x, &filter_offset, &filter_length);
380
381 // four pixels in a column per iteration.
382 __m128i accum0 = _mm_setzero_si128();
383 __m128i accum1 = _mm_setzero_si128();
384 __m128i accum2 = _mm_setzero_si128();
385 __m128i accum3 = _mm_setzero_si128();
386 int start = (filter_offset<<2);
387 // We will load and accumulate with four coefficients per iteration.
388 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
389 __m128i coeff, coeff16lo, coeff16hi;
390 // [16] xx xx xx xx c3 c2 c1 c0
391 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
392 // [16] xx xx xx xx c1 c1 c0 c0
393 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
394 // [16] c1 c1 c1 c1 c0 c0 c0 c0
395 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
396 // [16] xx xx xx xx c3 c3 c2 c2
397 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
398 // [16] c3 c3 c3 c3 c2 c2 c2 c2
399 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
400
401 __m128i src8, src16, mul_hi, mul_lo, t;
402
403 #define ITERATION(src, accum) \
404 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
405 src16 = _mm_unpacklo_epi8(src8, zero); \
406 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
407 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
408 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
409 accum = _mm_add_epi32(accum, t); \
410 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
411 accum = _mm_add_epi32(accum, t); \
412 src16 = _mm_unpackhi_epi8(src8, zero); \
413 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
414 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
415 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
416 accum = _mm_add_epi32(accum, t); \
417 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
418 accum = _mm_add_epi32(accum, t)
419
420 ITERATION(src_data[0] + start, accum0);
421 ITERATION(src_data[1] + start, accum1);
422 ITERATION(src_data[2] + start, accum2);
423 ITERATION(src_data[3] + start, accum3);
424
425 start += 16;
426 filter_values += 4;
427 }
428
429 int r = filter_length & 3;
430 if (r) {
431 // Note: filter_values must be padded to align_up(filter_offset, 8);
432 __m128i coeff;
433 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
434 // Mask out extra filter taps.
435 coeff = _mm_and_si128(coeff, mask[r]);
436
437 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
438 /* c1 c1 c1 c1 c0 c0 c0 c0 */
439 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
440 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
441 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
442
443 __m128i src8, src16, mul_hi, mul_lo, t;
444
445 ITERATION(src_data[0] + start, accum0);
446 ITERATION(src_data[1] + start, accum1);
447 ITERATION(src_data[2] + start, accum2);
448 ITERATION(src_data[3] + start, accum3);
449 }
450
451 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
452 accum0 = _mm_packs_epi32(accum0, zero);
453 accum0 = _mm_packus_epi16(accum0, zero);
454 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
455 accum1 = _mm_packs_epi32(accum1, zero);
456 accum1 = _mm_packus_epi16(accum1, zero);
457 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
458 accum2 = _mm_packs_epi32(accum2, zero);
459 accum2 = _mm_packus_epi16(accum2, zero);
460 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
461 accum3 = _mm_packs_epi32(accum3, zero);
462 accum3 = _mm_packus_epi16(accum3, zero);
463
464 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
465 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
466 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
467 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
468
469 out_row[0] += 4;
470 out_row[1] += 4;
471 out_row[2] += 4;
472 out_row[3] += 4;
473 }
474 #endif
475 }
476
477 // Does vertical convolution to produce one output row. The filter values and
478 // length are given in the first two parameters. These are applied to each
479 // of the rows pointed to in the |source_data_rows| array, with each row
480 // being |pixel_width| wide.
481 //
482 // The output must have room for |pixel_width * 4| bytes.
483 template<bool has_alpha>
484 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
485 int filter_length,
486 unsigned char* const* source_data_rows,
487 int pixel_width,
488 unsigned char* out_row) {
489 #if defined(SIMD_SSE2)
490 int width = pixel_width & ~3;
491
492 __m128i zero = _mm_setzero_si128();
493 __m128i accum0, accum1, accum2, accum3, coeff16;
494 const __m128i* src;
495 // Output four pixels per iteration (16 bytes).
496 for (int out_x = 0; out_x < width; out_x += 4) {
497
498 // Accumulated result for each pixel. 32 bits per RGBA channel.
499 accum0 = _mm_setzero_si128();
500 accum1 = _mm_setzero_si128();
501 accum2 = _mm_setzero_si128();
502 accum3 = _mm_setzero_si128();
503
504 // Convolve with one filter coefficient per iteration.
505 for (int filter_y = 0; filter_y < filter_length; filter_y++) {
506
507 // Duplicate the filter coefficient 8 times.
508 // [16] cj cj cj cj cj cj cj cj
509 coeff16 = _mm_set1_epi16(filter_values[filter_y]);
510
511 // Load four pixels (16 bytes) together.
512 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
513 src = reinterpret_cast<const __m128i*>(
514 &source_data_rows[filter_y][out_x << 2]);
515 __m128i src8 = _mm_loadu_si128(src);
516
517 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
518 // multiply with current coefficient => accumulate the result.
519 // [16] a1 b1 g1 r1 a0 b0 g0 r0
520 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
521 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
522 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
523 // [32] a0 b0 g0 r0
524 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
525 accum0 = _mm_add_epi32(accum0, t);
526 // [32] a1 b1 g1 r1
527 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
528 accum1 = _mm_add_epi32(accum1, t);
529
530 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
531 // multiply with current coefficient => accumulate the result.
532 // [16] a3 b3 g3 r3 a2 b2 g2 r2
533 src16 = _mm_unpackhi_epi8(src8, zero);
534 mul_hi = _mm_mulhi_epi16(src16, coeff16);
535 mul_lo = _mm_mullo_epi16(src16, coeff16);
536 // [32] a2 b2 g2 r2
537 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
538 accum2 = _mm_add_epi32(accum2, t);
539 // [32] a3 b3 g3 r3
540 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
541 accum3 = _mm_add_epi32(accum3, t);
542 }
543
544 // Shift right for fixed point implementation.
545 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
546 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
547 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
548 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
549
550 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
551 // [16] a1 b1 g1 r1 a0 b0 g0 r0
552 accum0 = _mm_packs_epi32(accum0, accum1);
553 // [16] a3 b3 g3 r3 a2 b2 g2 r2
554 accum2 = _mm_packs_epi32(accum2, accum3);
555
556 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
557 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
558 accum0 = _mm_packus_epi16(accum0, accum2);
559
560 if (has_alpha) {
561 // Compute the max(ri, gi, bi) for each pixel.
562 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
563 __m128i a = _mm_srli_epi32(accum0, 8);
564 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
565 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
566 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
567 a = _mm_srli_epi32(accum0, 16);
568 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
569 b = _mm_max_epu8(a, b); // Max of r and g and b.
570 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
571 b = _mm_slli_epi32(b, 24);
572
573 // Make sure the value of alpha channel is always larger than maximum
574 // value of color channels.
575 accum0 = _mm_max_epu8(b, accum0);
576 } else {
577 // Set value of alpha channels to 0xFF.
578 __m128i mask = _mm_set1_epi32(0xff000000);
579 accum0 = _mm_or_si128(accum0, mask);
580 }
581
582 // Store the convolution result (16 bytes) and advance the pixel pointers.
583 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
584 out_row += 16;
585 }
586
587 // When the width of the output is not divisible by 4, We need to save one
588 // pixel (4 bytes) each time. And also the fourth pixel is always absent.
589 if (pixel_width & 3) {
590 accum0 = _mm_setzero_si128();
591 accum1 = _mm_setzero_si128();
592 accum2 = _mm_setzero_si128();
593 for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
594 coeff16 = _mm_set1_epi16(filter_values[filter_y]);
595 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
596 src = reinterpret_cast<const __m128i*>(
597 &source_data_rows[filter_y][width<<2]);
598 __m128i src8 = _mm_loadu_si128(src);
599 // [16] a1 b1 g1 r1 a0 b0 g0 r0
600 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
601 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
602 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
603 // [32] a0 b0 g0 r0
604 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
605 accum0 = _mm_add_epi32(accum0, t);
606 // [32] a1 b1 g1 r1
607 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
608 accum1 = _mm_add_epi32(accum1, t);
609 // [16] a3 b3 g3 r3 a2 b2 g2 r2
610 src16 = _mm_unpackhi_epi8(src8, zero);
611 mul_hi = _mm_mulhi_epi16(src16, coeff16);
612 mul_lo = _mm_mullo_epi16(src16, coeff16);
613 // [32] a2 b2 g2 r2
614 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
615 accum2 = _mm_add_epi32(accum2, t);
616 }
617
618 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
619 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
620 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
621 // [16] a1 b1 g1 r1 a0 b0 g0 r0
622 accum0 = _mm_packs_epi32(accum0, accum1);
623 // [16] a3 b3 g3 r3 a2 b2 g2 r2
624 accum2 = _mm_packs_epi32(accum2, zero);
625 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
626 accum0 = _mm_packus_epi16(accum0, accum2);
627 if (has_alpha) {
628 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
629 __m128i a = _mm_srli_epi32(accum0, 8);
630 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
631 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
632 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
633 a = _mm_srli_epi32(accum0, 16);
634 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
635 b = _mm_max_epu8(a, b); // Max of r and g and b.
636 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
637 b = _mm_slli_epi32(b, 24);
638 accum0 = _mm_max_epu8(b, accum0);
639 } else {
640 __m128i mask = _mm_set1_epi32(0xff000000);
641 accum0 = _mm_or_si128(accum0, mask);
642 }
643
644 for (int out_x = width; out_x < pixel_width; out_x++) {
645 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
646 accum0 = _mm_srli_si128(accum0, 4);
647 out_row += 4;
648 }
649 }
650 #endif
651 }
652
222 } // namespace 653 } // namespace
223 654
224 // ConvolutionFilter1D --------------------------------------------------------- 655 // ConvolutionFilter1D ---------------------------------------------------------
225 656
226 ConvolutionFilter1D::ConvolutionFilter1D() 657 ConvolutionFilter1D::ConvolutionFilter1D()
227 : max_filter_(0) { 658 : max_filter_(0) {
228 } 659 }
229 660
230 ConvolutionFilter1D::~ConvolutionFilter1D() { 661 ConvolutionFilter1D::~ConvolutionFilter1D() {
231 } 662 }
(...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after
277 // We pushed filter_length elements onto filter_values_ 708 // We pushed filter_length elements onto filter_values_
278 instance.data_location = (static_cast<int>(filter_values_.size()) - 709 instance.data_location = (static_cast<int>(filter_values_.size()) -
279 filter_length); 710 filter_length);
280 instance.offset = filter_offset; 711 instance.offset = filter_offset;
281 instance.length = filter_length; 712 instance.length = filter_length;
282 filters_.push_back(instance); 713 filters_.push_back(instance);
283 714
284 max_filter_ = std::max(max_filter_, filter_length); 715 max_filter_ = std::max(max_filter_, filter_length);
285 } 716 }
286 717
287 // BGRAConvolve2D -------------------------------------------------------------
288
289 void BGRAConvolve2D(const unsigned char* source_data, 718 void BGRAConvolve2D(const unsigned char* source_data,
290 int source_byte_row_stride, 719 int source_byte_row_stride,
291 bool source_has_alpha, 720 bool source_has_alpha,
292 const ConvolutionFilter1D& filter_x, 721 const ConvolutionFilter1D& filter_x,
293 const ConvolutionFilter1D& filter_y, 722 const ConvolutionFilter1D& filter_y,
294 int output_byte_row_stride, 723 int output_byte_row_stride,
295 unsigned char* output) { 724 unsigned char* output,
725 bool use_sse2) {
726 #if !defined(SIMD_SSE2)
727 // Even we have runtime support for SSE2 instructions, since the binary
728 // was not built with SSE2 support, we had to fallback to C version.
729 use_sse2 = false;
730 #endif
731
296 int max_y_filter_size = filter_y.max_filter(); 732 int max_y_filter_size = filter_y.max_filter();
297 733
298 // The next row in the input that we will generate a horizontally 734 // The next row in the input that we will generate a horizontally
299 // convolved row for. If the filter doesn't start at the beginning of the 735 // convolved row for. If the filter doesn't start at the beginning of the
300 // image (this is the case when we are only resizing a subset), then we 736 // image (this is the case when we are only resizing a subset), then we
301 // don't want to generate any output rows before that. Compute the starting 737 // don't want to generate any output rows before that. Compute the starting
302 // row for convolution as the first pixel for the first vertical filter. 738 // row for convolution as the first pixel for the first vertical filter.
303 int filter_offset, filter_length; 739 int filter_offset, filter_length;
304 const ConvolutionFilter1D::Fixed* filter_values = 740 const ConvolutionFilter1D::Fixed* filter_values =
305 filter_y.FilterForValue(0, &filter_offset, &filter_length); 741 filter_y.FilterForValue(0, &filter_offset, &filter_length);
306 int next_x_row = filter_offset; 742 int next_x_row = filter_offset;
307 743
308 // We loop over each row in the input doing a horizontal convolution. This 744 // We loop over each row in the input doing a horizontal convolution. This
309 // will result in a horizontally convolved image. We write the results into 745 // will result in a horizontally convolved image. We write the results into
310 // a circular buffer of convolved rows and do vertical convolution as rows 746 // a circular buffer of convolved rows and do vertical convolution as rows
311 // are available. This prevents us from having to store the entire 747 // are available. This prevents us from having to store the entire
312 // intermediate image and helps cache coherency. 748 // intermediate image and helps cache coherency.
313 CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size, 749 // We will need four extra rows to allow horizontal convolution could be done
750 // simultaneously. We also padding each row in row buffer to be aligned-up to
751 // 16 bytes.
752 // TODO(jiesun): We do not use aligned load from row buffer in vertical
753 // convolution pass yet. Somehow Windows does not like it.
754 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
755 int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0);
756 CircularRowBuffer row_buffer(row_buffer_width,
757 row_buffer_height,
314 filter_offset); 758 filter_offset);
315 759
316 // Loop over every possible output row, processing just enough horizontal 760 // Loop over every possible output row, processing just enough horizontal
317 // convolutions to run each subsequent vertical convolution. 761 // convolutions to run each subsequent vertical convolution.
318 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); 762 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
319 int num_output_rows = filter_y.num_values(); 763 int num_output_rows = filter_y.num_values();
764
765 // We need to check which is the last line to convolve before we advance 4
766 // lines in one iteration.
767 int last_filter_offset, last_filter_length;
768 filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset,
769 &last_filter_length);
770
320 for (int out_y = 0; out_y < num_output_rows; out_y++) { 771 for (int out_y = 0; out_y < num_output_rows; out_y++) {
321 filter_values = filter_y.FilterForValue(out_y, 772 filter_values = filter_y.FilterForValue(out_y,
322 &filter_offset, &filter_length); 773 &filter_offset, &filter_length);
323 774
324 // Generate output rows until we have enough to run the current filter. 775 // Generate output rows until we have enough to run the current filter.
325 while (next_x_row < filter_offset + filter_length) { 776 if (use_sse2) {
326 if (source_has_alpha) { 777 while (next_x_row < filter_offset + filter_length) {
327 ConvolveHorizontally<true>( 778 if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) {
328 &source_data[next_x_row * source_byte_row_stride], 779 const unsigned char* src[4];
329 filter_x, row_buffer.AdvanceRow()); 780 unsigned char* out_row[4];
330 } else { 781 for (int i = 0; i < 4; ++i) {
331 ConvolveHorizontally<false>( 782 src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
332 &source_data[next_x_row * source_byte_row_stride], 783 out_row[i] = row_buffer.AdvanceRow();
333 filter_x, row_buffer.AdvanceRow()); 784 }
785 ConvolveHorizontally4_SSE2(src, filter_x, out_row);
786 next_x_row += 4;
787 } else {
788 // For the last row, SSE2 load possibly to access data beyond the
789 // image area. therefore we use C version here.
790 if (next_x_row == last_filter_offset + last_filter_length - 1) {
791 if (source_has_alpha) {
792 ConvolveHorizontally<true>(
793 &source_data[next_x_row * source_byte_row_stride],
794 filter_x, row_buffer.AdvanceRow());
795 } else {
796 ConvolveHorizontally<false>(
797 &source_data[next_x_row * source_byte_row_stride],
798 filter_x, row_buffer.AdvanceRow());
799 }
800 } else {
801 ConvolveHorizontally_SSE2(
802 &source_data[next_x_row * source_byte_row_stride],
803 filter_x, row_buffer.AdvanceRow());
804 }
805 next_x_row++;
806 }
334 } 807 }
335 next_x_row++; 808 } else {
809 while (next_x_row < filter_offset + filter_length) {
810 if (source_has_alpha) {
811 ConvolveHorizontally<true>(
812 &source_data[next_x_row * source_byte_row_stride],
813 filter_x, row_buffer.AdvanceRow());
814 } else {
815 ConvolveHorizontally<false>(
816 &source_data[next_x_row * source_byte_row_stride],
817 filter_x, row_buffer.AdvanceRow());
818 }
819 next_x_row++;
820 }
336 } 821 }
337 822
338 // Compute where in the output image this row of final data will go. 823 // Compute where in the output image this row of final data will go.
339 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; 824 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride];
340 825
341 // Get the list of rows that the circular buffer has, in order. 826 // Get the list of rows that the circular buffer has, in order.
342 int first_row_in_circular_buffer; 827 int first_row_in_circular_buffer;
343 unsigned char* const* rows_to_convolve = 828 unsigned char* const* rows_to_convolve =
344 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); 829 row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
345 830
346 // Now compute the start of the subset of those rows that the filter 831 // Now compute the start of the subset of those rows that the filter
347 // needs. 832 // needs.
348 unsigned char* const* first_row_for_filter = 833 unsigned char* const* first_row_for_filter =
349 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; 834 &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
350 835
351 if (source_has_alpha) { 836 if (source_has_alpha) {
352 ConvolveVertically<true>(filter_values, filter_length, 837 if (use_sse2) {
353 first_row_for_filter, 838 ConvolveVertically_SSE2<true>(filter_values, filter_length,
354 filter_x.num_values(), cur_output_row); 839 first_row_for_filter,
840 filter_x.num_values(), cur_output_row);
841 } else {
842 ConvolveVertically<true>(filter_values, filter_length,
843 first_row_for_filter,
844 filter_x.num_values(), cur_output_row);
845 }
355 } else { 846 } else {
356 ConvolveVertically<false>(filter_values, filter_length, 847 if (use_sse2) {
357 first_row_for_filter, 848 ConvolveVertically_SSE2<false>(filter_values, filter_length,
358 filter_x.num_values(), cur_output_row); 849 first_row_for_filter,
850 filter_x.num_values(), cur_output_row);
851 } else {
852 ConvolveVertically<false>(filter_values, filter_length,
853 first_row_for_filter,
854 filter_x.num_values(), cur_output_row);
855 }
359 } 856 }
360 } 857 }
361 } 858 }
362 859
363 } // namespace skia 860 } // namespace skia
OLDNEW
« no previous file with comments | « skia/ext/convolver.h ('k') | skia/ext/convolver_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698