| Index: src/arm/stub-cache-arm.cc
|
| ===================================================================
|
| --- src/arm/stub-cache-arm.cc (revision 6406)
|
| +++ src/arm/stub-cache-arm.cc (working copy)
|
| @@ -902,7 +902,112 @@
|
| }
|
|
|
|
|
| +// Convert and store int passed in register ival to IEEE 754 single precision
|
| +// floating point value at memory location (dst + 4 * wordoffset)
|
| +// If VFP3 is available use it for conversion.
|
| +static void StoreIntAsFloat(MacroAssembler* masm,
|
| + Register dst,
|
| + Register wordoffset,
|
| + Register ival,
|
| + Register fval,
|
| + Register scratch1,
|
| + Register scratch2) {
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| + __ vmov(s0, ival);
|
| + __ add(scratch1, dst, Operand(wordoffset, LSL, 2));
|
| + __ vcvt_f32_s32(s0, s0);
|
| + __ vstr(s0, scratch1, 0);
|
| + } else {
|
| + Label not_special, done;
|
| + // Move sign bit from source to destination. This works because the sign
|
| + // bit in the exponent word of the double has the same position and polarity
|
| + // as the 2's complement sign bit in a Smi.
|
| + ASSERT(kBinary32SignMask == 0x80000000u);
|
|
|
| + __ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
|
| + // Negate value if it is negative.
|
| + __ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
|
| +
|
| + // We have -1, 0 or 1, which we treat specially. Register ival contains
|
| + // absolute value: it is either equal to 1 (special case of -1 and 1),
|
| + // greater than 1 (not a special case) or less than 1 (special case of 0).
|
| + __ cmp(ival, Operand(1));
|
| + __ b(gt, ¬_special);
|
| +
|
| + // For 1 or -1 we need to or in the 0 exponent (biased).
|
| + static const uint32_t exponent_word_for_1 =
|
| + kBinary32ExponentBias << kBinary32ExponentShift;
|
| +
|
| + __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
|
| + __ b(&done);
|
| +
|
| + __ bind(¬_special);
|
| + // Count leading zeros.
|
| + // Gets the wrong answer for 0, but we already checked for that case above.
|
| + Register zeros = scratch2;
|
| + __ CountLeadingZeros(zeros, ival, scratch1);
|
| +
|
| + // Compute exponent and or it into the exponent register.
|
| + __ rsb(scratch1,
|
| + zeros,
|
| + Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
|
| +
|
| + __ orr(fval,
|
| + fval,
|
| + Operand(scratch1, LSL, kBinary32ExponentShift));
|
| +
|
| + // Shift up the source chopping the top bit off.
|
| + __ add(zeros, zeros, Operand(1));
|
| + // This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
|
| + __ mov(ival, Operand(ival, LSL, zeros));
|
| + // And the top (top 20 bits).
|
| + __ orr(fval,
|
| + fval,
|
| + Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
|
| +
|
| + __ bind(&done);
|
| + __ str(fval, MemOperand(dst, wordoffset, LSL, 2));
|
| + }
|
| +}
|
| +
|
| +
|
| +// Convert unsigned integer with specified number of leading zeroes in binary
|
| +// representation to IEEE 754 double.
|
| +// Integer to convert is passed in register hiword.
|
| +// Resulting double is returned in registers hiword:loword.
|
| +// This functions does not work correctly for 0.
|
| +static void GenerateUInt2Double(MacroAssembler* masm,
|
| + Register hiword,
|
| + Register loword,
|
| + Register scratch,
|
| + int leading_zeroes) {
|
| + const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
|
| + const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
|
| +
|
| + const int mantissa_shift_for_hi_word =
|
| + meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
|
| +
|
| + const int mantissa_shift_for_lo_word =
|
| + kBitsPerInt - mantissa_shift_for_hi_word;
|
| +
|
| + __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
|
| + if (mantissa_shift_for_hi_word > 0) {
|
| + __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
|
| + __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
|
| + } else {
|
| + __ mov(loword, Operand(0, RelocInfo::NONE));
|
| + __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
|
| + }
|
| +
|
| + // If least significant bit of biased exponent was not 1 it was corrupted
|
| + // by most significant bit of mantissa so we should fix that.
|
| + if (!(biased_exponent & 1)) {
|
| + __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
|
| + }
|
| +}
|
| +
|
| +
|
| #undef __
|
| #define __ ACCESS_MASM(masm())
|
|
|
| @@ -3224,6 +3329,603 @@
|
| }
|
|
|
|
|
| +static bool IsElementTypeSigned(ExternalArrayType array_type) {
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + case kExternalShortArray:
|
| + case kExternalIntArray:
|
| + return true;
|
| +
|
| + case kExternalUnsignedByteArray:
|
| + case kExternalUnsignedShortArray:
|
| + case kExternalUnsignedIntArray:
|
| + return false;
|
| +
|
| + default:
|
| + UNREACHABLE();
|
| + return false;
|
| + }
|
| +}
|
| +
|
| +
|
| +MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
|
| + ExternalArrayType array_type, Code::Flags flags) {
|
| + // ---------- S t a t e --------------
|
| + // -- lr : return address
|
| + // -- r0 : key
|
| + // -- r1 : receiver
|
| + // -----------------------------------
|
| + Label slow, failed_allocation;
|
| +
|
| + Register key = r0;
|
| + Register receiver = r1;
|
| +
|
| + // Check that the object isn't a smi
|
| + __ BranchOnSmi(receiver, &slow);
|
| +
|
| + // Check that the key is a smi.
|
| + __ BranchOnNotSmi(key, &slow);
|
| +
|
| + // Check that the object is a JS object. Load map into r2.
|
| + __ CompareObjectType(receiver, r2, r3, FIRST_JS_OBJECT_TYPE);
|
| + __ b(lt, &slow);
|
| +
|
| + // Check that the receiver does not require access checks. We need
|
| + // to check this explicitly since this generic stub does not perform
|
| + // map checks.
|
| + __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
|
| + __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded));
|
| + __ b(ne, &slow);
|
| +
|
| + // Check that the elements array is the appropriate type of
|
| + // ExternalArray.
|
| + __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
| + __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
|
| + __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
|
| + __ cmp(r2, ip);
|
| + __ b(ne, &slow);
|
| +
|
| + // Check that the index is in range.
|
| + __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
|
| + __ cmp(ip, Operand(key, ASR, kSmiTagSize));
|
| + // Unsigned comparison catches both negative and too-large values.
|
| + __ b(lo, &slow);
|
| +
|
| + // r3: elements array
|
| + __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
|
| + // r3: base pointer of external storage
|
| +
|
| + // We are not untagging smi key and instead work with it
|
| + // as if it was premultiplied by 2.
|
| + ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
|
| +
|
| + Register value = r2;
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + __ ldrsb(value, MemOperand(r3, key, LSR, 1));
|
| + break;
|
| + case kExternalUnsignedByteArray:
|
| + __ ldrb(value, MemOperand(r3, key, LSR, 1));
|
| + break;
|
| + case kExternalShortArray:
|
| + __ ldrsh(value, MemOperand(r3, key, LSL, 0));
|
| + break;
|
| + case kExternalUnsignedShortArray:
|
| + __ ldrh(value, MemOperand(r3, key, LSL, 0));
|
| + break;
|
| + case kExternalIntArray:
|
| + case kExternalUnsignedIntArray:
|
| + __ ldr(value, MemOperand(r3, key, LSL, 1));
|
| + break;
|
| + case kExternalFloatArray:
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| + __ add(r2, r3, Operand(key, LSL, 1));
|
| + __ vldr(s0, r2, 0);
|
| + } else {
|
| + __ ldr(value, MemOperand(r3, key, LSL, 1));
|
| + }
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| +
|
| + // For integer array types:
|
| + // r2: value
|
| + // For floating-point array type
|
| + // s0: value (if VFP3 is supported)
|
| + // r2: value (if VFP3 is not supported)
|
| +
|
| + if (array_type == kExternalIntArray) {
|
| + // For the Int and UnsignedInt array types, we need to see whether
|
| + // the value can be represented in a Smi. If not, we need to convert
|
| + // it to a HeapNumber.
|
| + Label box_int;
|
| + __ cmp(value, Operand(0xC0000000));
|
| + __ b(mi, &box_int);
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| +
|
| + __ bind(&box_int);
|
| + // Allocate a HeapNumber for the result and perform int-to-double
|
| + // conversion. Don't touch r0 or r1 as they are needed if allocation
|
| + // fails.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r5, r3, r4, r6, &slow);
|
| + // Now we can use r0 for the result as key is not needed any more.
|
| + __ mov(r0, r5);
|
| +
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| + __ vmov(s0, value);
|
| + __ vcvt_f64_s32(d0, s0);
|
| + __ sub(r3, r0, Operand(kHeapObjectTag));
|
| + __ vstr(d0, r3, HeapNumber::kValueOffset);
|
| + __ Ret();
|
| + } else {
|
| + WriteInt32ToHeapNumberStub stub(value, r0, r3);
|
| + __ TailCallStub(&stub);
|
| + }
|
| + } else if (array_type == kExternalUnsignedIntArray) {
|
| + // The test is different for unsigned int values. Since we need
|
| + // the value to be in the range of a positive smi, we can't
|
| + // handle either of the top two bits being set in the value.
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| + Label box_int, done;
|
| + __ tst(value, Operand(0xC0000000));
|
| + __ b(ne, &box_int);
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| +
|
| + __ bind(&box_int);
|
| + __ vmov(s0, value);
|
| + // Allocate a HeapNumber for the result and perform int-to-double
|
| + // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all
|
| + // registers - also when jumping due to exhausted young space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
|
| +
|
| + __ vcvt_f64_u32(d0, s0);
|
| + __ sub(r1, r2, Operand(kHeapObjectTag));
|
| + __ vstr(d0, r1, HeapNumber::kValueOffset);
|
| +
|
| + __ mov(r0, r2);
|
| + __ Ret();
|
| + } else {
|
| + // Check whether unsigned integer fits into smi.
|
| + Label box_int_0, box_int_1, done;
|
| + __ tst(value, Operand(0x80000000));
|
| + __ b(ne, &box_int_0);
|
| + __ tst(value, Operand(0x40000000));
|
| + __ b(ne, &box_int_1);
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| +
|
| + Register hiword = value; // r2.
|
| + Register loword = r3;
|
| +
|
| + __ bind(&box_int_0);
|
| + // Integer does not have leading zeros.
|
| + GenerateUInt2Double(masm(), hiword, loword, r4, 0);
|
| + __ b(&done);
|
| +
|
| + __ bind(&box_int_1);
|
| + // Integer has one leading zero.
|
| + GenerateUInt2Double(masm(), hiword, loword, r4, 1);
|
| +
|
| +
|
| + __ bind(&done);
|
| + // Integer was converted to double in registers hiword:loword.
|
| + // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber
|
| + // clobbers all registers - also when jumping due to exhausted young
|
| + // space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r4, r5, r7, r6, &slow);
|
| +
|
| + __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset));
|
| + __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
|
| +
|
| + __ mov(r0, r4);
|
| + __ Ret();
|
| + }
|
| + } else if (array_type == kExternalFloatArray) {
|
| + // For the floating-point array type, we need to always allocate a
|
| + // HeapNumber.
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| + // Allocate a HeapNumber for the result. Don't use r0 and r1 as
|
| + // AllocateHeapNumber clobbers all registers - also when jumping due to
|
| + // exhausted young space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
|
| + __ vcvt_f64_f32(d0, s0);
|
| + __ sub(r1, r2, Operand(kHeapObjectTag));
|
| + __ vstr(d0, r1, HeapNumber::kValueOffset);
|
| +
|
| + __ mov(r0, r2);
|
| + __ Ret();
|
| + } else {
|
| + // Allocate a HeapNumber for the result. Don't use r0 and r1 as
|
| + // AllocateHeapNumber clobbers all registers - also when jumping due to
|
| + // exhausted young space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r3, r4, r5, r6, &slow);
|
| + // VFP is not available, do manual single to double conversion.
|
| +
|
| + // r2: floating point value (binary32)
|
| + // r3: heap number for result
|
| +
|
| + // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to
|
| + // the slow case from here.
|
| + __ and_(r0, value, Operand(kBinary32MantissaMask));
|
| +
|
| + // Extract exponent to r1. OK to clobber r1 now as there are no jumps to
|
| + // the slow case from here.
|
| + __ mov(r1, Operand(value, LSR, kBinary32MantissaBits));
|
| + __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
|
| +
|
| + Label exponent_rebiased;
|
| + __ teq(r1, Operand(0x00));
|
| + __ b(eq, &exponent_rebiased);
|
| +
|
| + __ teq(r1, Operand(0xff));
|
| + __ mov(r1, Operand(0x7ff), LeaveCC, eq);
|
| + __ b(eq, &exponent_rebiased);
|
| +
|
| + // Rebias exponent.
|
| + __ add(r1,
|
| + r1,
|
| + Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
|
| +
|
| + __ bind(&exponent_rebiased);
|
| + __ and_(r2, value, Operand(kBinary32SignMask));
|
| + value = no_reg;
|
| + __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord));
|
| +
|
| + // Shift mantissa.
|
| + static const int kMantissaShiftForHiWord =
|
| + kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
|
| +
|
| + static const int kMantissaShiftForLoWord =
|
| + kBitsPerInt - kMantissaShiftForHiWord;
|
| +
|
| + __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord));
|
| + __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord));
|
| +
|
| + __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset));
|
| + __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
|
| +
|
| + __ mov(r0, r3);
|
| + __ Ret();
|
| + }
|
| +
|
| + } else {
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| + }
|
| +
|
| + // Slow case, key and receiver still in r0 and r1.
|
| + __ bind(&slow);
|
| + __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r2, r3);
|
| +
|
| + // ---------- S t a t e --------------
|
| + // -- lr : return address
|
| + // -- r0 : key
|
| + // -- r1 : receiver
|
| + // -----------------------------------
|
| +
|
| + __ Push(r1, r0);
|
| +
|
| + __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
|
| +
|
| + return GetCode(flags);
|
| +}
|
| +
|
| +
|
| +MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub(
|
| + ExternalArrayType array_type, Code::Flags flags) {
|
| + // ---------- S t a t e --------------
|
| + // -- r0 : value
|
| + // -- r1 : key
|
| + // -- r2 : receiver
|
| + // -- lr : return address
|
| + // -----------------------------------
|
| + Label slow, check_heap_number;
|
| +
|
| + // Register usage.
|
| + Register value = r0;
|
| + Register key = r1;
|
| + Register receiver = r2;
|
| + // r3 mostly holds the elements array or the destination external array.
|
| +
|
| + // Check that the object isn't a smi.
|
| + __ BranchOnSmi(receiver, &slow);
|
| +
|
| + // Check that the object is a JS object. Load map into r3.
|
| + __ CompareObjectType(receiver, r3, r4, FIRST_JS_OBJECT_TYPE);
|
| + __ b(le, &slow);
|
| +
|
| + // Check that the receiver does not require access checks. We need
|
| + // to do this because this generic stub does not perform map checks.
|
| + __ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset));
|
| + __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded));
|
| + __ b(ne, &slow);
|
| +
|
| + // Check that the key is a smi.
|
| + __ BranchOnNotSmi(key, &slow);
|
| +
|
| + // Check that the elements array is the appropriate type of ExternalArray.
|
| + __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
| + __ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
|
| + __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
|
| + __ cmp(r4, ip);
|
| + __ b(ne, &slow);
|
| +
|
| + // Check that the index is in range.
|
| + __ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the index.
|
| + __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
|
| + __ cmp(r4, ip);
|
| + // Unsigned comparison catches both negative and too-large values.
|
| + __ b(hs, &slow);
|
| +
|
| + // Handle both smis and HeapNumbers in the fast path. Go to the
|
| + // runtime for all other kinds of values.
|
| + // r3: external array.
|
| + // r4: key (integer).
|
| + __ BranchOnNotSmi(value, &check_heap_number);
|
| + __ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value.
|
| + __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
|
| +
|
| + // r3: base pointer of external storage.
|
| + // r4: key (integer).
|
| + // r5: value (integer).
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + case kExternalUnsignedByteArray:
|
| + __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| + break;
|
| + case kExternalShortArray:
|
| + case kExternalUnsignedShortArray:
|
| + __ strh(r5, MemOperand(r3, r4, LSL, 1));
|
| + break;
|
| + case kExternalIntArray:
|
| + case kExternalUnsignedIntArray:
|
| + __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| + break;
|
| + case kExternalFloatArray:
|
| + // Perform int-to-float conversion and store to memory.
|
| + StoreIntAsFloat(masm(), r3, r4, r5, r6, r7, r9);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| +
|
| + // Entry registers are intact, r0 holds the value which is the return value.
|
| + __ Ret();
|
| +
|
| +
|
| + // r3: external array.
|
| + // r4: index (integer).
|
| + __ bind(&check_heap_number);
|
| + __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE);
|
| + __ b(ne, &slow);
|
| +
|
| + __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
|
| +
|
| + // r3: base pointer of external storage.
|
| + // r4: key (integer).
|
| +
|
| + // The WebGL specification leaves the behavior of storing NaN and
|
| + // +/-Infinity into integer arrays basically undefined. For more
|
| + // reproducible behavior, convert these to zero.
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| +
|
| +
|
| + if (array_type == kExternalFloatArray) {
|
| + // vldr requires offset to be a multiple of 4 so we can not
|
| + // include -kHeapObjectTag into it.
|
| + __ sub(r5, r0, Operand(kHeapObjectTag));
|
| + __ vldr(d0, r5, HeapNumber::kValueOffset);
|
| + __ add(r5, r3, Operand(r4, LSL, 2));
|
| + __ vcvt_f32_f64(s0, d0);
|
| + __ vstr(s0, r5, 0);
|
| + } else {
|
| + // Need to perform float-to-int conversion.
|
| + // Test for NaN or infinity (both give zero).
|
| + __ ldr(r6, FieldMemOperand(value, HeapNumber::kExponentOffset));
|
| +
|
| + // Hoisted load. vldr requires offset to be a multiple of 4 so we can not
|
| + // include -kHeapObjectTag into it.
|
| + __ sub(r5, value, Operand(kHeapObjectTag));
|
| + __ vldr(d0, r5, HeapNumber::kValueOffset);
|
| +
|
| + __ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
|
| + // NaNs and Infinities have all-one exponents so they sign extend to -1.
|
| + __ cmp(r6, Operand(-1));
|
| + __ mov(r5, Operand(0), LeaveCC, eq);
|
| +
|
| + // Not infinity or NaN simply convert to int.
|
| + if (IsElementTypeSigned(array_type)) {
|
| + __ vcvt_s32_f64(s0, d0, Assembler::RoundToZero, ne);
|
| + } else {
|
| + __ vcvt_u32_f64(s0, d0, Assembler::RoundToZero, ne);
|
| + }
|
| + __ vmov(r5, s0, ne);
|
| +
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + case kExternalUnsignedByteArray:
|
| + __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| + break;
|
| + case kExternalShortArray:
|
| + case kExternalUnsignedShortArray:
|
| + __ strh(r5, MemOperand(r3, r4, LSL, 1));
|
| + break;
|
| + case kExternalIntArray:
|
| + case kExternalUnsignedIntArray:
|
| + __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| +
|
| + // Entry registers are intact, r0 holds the value which is the return value.
|
| + __ Ret();
|
| + } else {
|
| + // VFP3 is not available do manual conversions.
|
| + __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset));
|
| + __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset));
|
| +
|
| + if (array_type == kExternalFloatArray) {
|
| + Label done, nan_or_infinity_or_zero;
|
| + static const int kMantissaInHiWordShift =
|
| + kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
|
| +
|
| + static const int kMantissaInLoWordShift =
|
| + kBitsPerInt - kMantissaInHiWordShift;
|
| +
|
| + // Test for all special exponent values: zeros, subnormal numbers, NaNs
|
| + // and infinities. All these should be converted to 0.
|
| + __ mov(r7, Operand(HeapNumber::kExponentMask));
|
| + __ and_(r9, r5, Operand(r7), SetCC);
|
| + __ b(eq, &nan_or_infinity_or_zero);
|
| +
|
| + __ teq(r9, Operand(r7));
|
| + __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq);
|
| + __ b(eq, &nan_or_infinity_or_zero);
|
| +
|
| + // Rebias exponent.
|
| + __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
|
| + __ add(r9,
|
| + r9,
|
| + Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
|
| +
|
| + __ cmp(r9, Operand(kBinary32MaxExponent));
|
| + __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt);
|
| + __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt);
|
| + __ b(gt, &done);
|
| +
|
| + __ cmp(r9, Operand(kBinary32MinExponent));
|
| + __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt);
|
| + __ b(lt, &done);
|
| +
|
| + __ and_(r7, r5, Operand(HeapNumber::kSignMask));
|
| + __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| + __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift));
|
| + __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift));
|
| + __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift));
|
| +
|
| + __ bind(&done);
|
| + __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| + // Entry registers are intact, r0 holds the value which is the return
|
| + // value.
|
| + __ Ret();
|
| +
|
| + __ bind(&nan_or_infinity_or_zero);
|
| + __ and_(r7, r5, Operand(HeapNumber::kSignMask));
|
| + __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| + __ orr(r9, r9, r7);
|
| + __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift));
|
| + __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift));
|
| + __ b(&done);
|
| + } else {
|
| + bool is_signed_type = IsElementTypeSigned(array_type);
|
| + int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
|
| + int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
|
| +
|
| + Label done, sign;
|
| +
|
| + // Test for all special exponent values: zeros, subnormal numbers, NaNs
|
| + // and infinities. All these should be converted to 0.
|
| + __ mov(r7, Operand(HeapNumber::kExponentMask));
|
| + __ and_(r9, r5, Operand(r7), SetCC);
|
| + __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
|
| + __ b(eq, &done);
|
| +
|
| + __ teq(r9, Operand(r7));
|
| + __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
|
| + __ b(eq, &done);
|
| +
|
| + // Unbias exponent.
|
| + __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
|
| + __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC);
|
| + // If exponent is negative then result is 0.
|
| + __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi);
|
| + __ b(mi, &done);
|
| +
|
| + // If exponent is too big then result is minimal value.
|
| + __ cmp(r9, Operand(meaningfull_bits - 1));
|
| + __ mov(r5, Operand(min_value), LeaveCC, ge);
|
| + __ b(ge, &done);
|
| +
|
| + __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC);
|
| + __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| + __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
|
| +
|
| + __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
|
| + __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl);
|
| + __ b(pl, &sign);
|
| +
|
| + __ rsb(r9, r9, Operand(0, RelocInfo::NONE));
|
| + __ mov(r5, Operand(r5, LSL, r9));
|
| + __ rsb(r9, r9, Operand(meaningfull_bits));
|
| + __ orr(r5, r5, Operand(r6, LSR, r9));
|
| +
|
| + __ bind(&sign);
|
| + __ teq(r7, Operand(0, RelocInfo::NONE));
|
| + __ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne);
|
| +
|
| + __ bind(&done);
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + case kExternalUnsignedByteArray:
|
| + __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| + break;
|
| + case kExternalShortArray:
|
| + case kExternalUnsignedShortArray:
|
| + __ strh(r5, MemOperand(r3, r4, LSL, 1));
|
| + break;
|
| + case kExternalIntArray:
|
| + case kExternalUnsignedIntArray:
|
| + __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Slow case: call runtime.
|
| + __ bind(&slow);
|
| +
|
| + // Entry registers are intact.
|
| + // ---------- S t a t e --------------
|
| + // -- r0 : value
|
| + // -- r1 : key
|
| + // -- r2 : receiver
|
| + // -- lr : return address
|
| + // -----------------------------------
|
| +
|
| + // Push receiver, key and value for runtime call.
|
| + __ Push(r2, r1, r0);
|
| +
|
| + __ TailCallRuntime(Runtime::kSetProperty, 3, 1);
|
| +
|
| + return GetCode(flags);
|
| +}
|
| +
|
| +
|
| #undef __
|
|
|
| } } // namespace v8::internal
|
|
|