Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(6)

Unified Diff: src/arm/stub-cache-arm.cc

Issue 6295013: Revert r6376 and r6373 which changes external array support. The ARM... (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: Created 9 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/arm/ic-arm.cc ('k') | src/builtins.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/arm/stub-cache-arm.cc
===================================================================
--- src/arm/stub-cache-arm.cc (revision 6378)
+++ src/arm/stub-cache-arm.cc (working copy)
@@ -902,112 +902,7 @@
}
-// Convert and store int passed in register ival to IEEE 754 single precision
-// floating point value at memory location (dst + 4 * wordoffset)
-// If VFP3 is available use it for conversion.
-static void StoreIntAsFloat(MacroAssembler* masm,
- Register dst,
- Register wordoffset,
- Register ival,
- Register fval,
- Register scratch1,
- Register scratch2) {
- if (CpuFeatures::IsSupported(VFP3)) {
- CpuFeatures::Scope scope(VFP3);
- __ vmov(s0, ival);
- __ add(scratch1, dst, Operand(wordoffset, LSL, 2));
- __ vcvt_f32_s32(s0, s0);
- __ vstr(s0, scratch1, 0);
- } else {
- Label not_special, done;
- // Move sign bit from source to destination. This works because the sign
- // bit in the exponent word of the double has the same position and polarity
- // as the 2's complement sign bit in a Smi.
- ASSERT(kBinary32SignMask == 0x80000000u);
- __ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
- // Negate value if it is negative.
- __ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
-
- // We have -1, 0 or 1, which we treat specially. Register ival contains
- // absolute value: it is either equal to 1 (special case of -1 and 1),
- // greater than 1 (not a special case) or less than 1 (special case of 0).
- __ cmp(ival, Operand(1));
- __ b(gt, &not_special);
-
- // For 1 or -1 we need to or in the 0 exponent (biased).
- static const uint32_t exponent_word_for_1 =
- kBinary32ExponentBias << kBinary32ExponentShift;
-
- __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
- __ b(&done);
-
- __ bind(&not_special);
- // Count leading zeros.
- // Gets the wrong answer for 0, but we already checked for that case above.
- Register zeros = scratch2;
- __ CountLeadingZeros(zeros, ival, scratch1);
-
- // Compute exponent and or it into the exponent register.
- __ rsb(scratch1,
- zeros,
- Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
-
- __ orr(fval,
- fval,
- Operand(scratch1, LSL, kBinary32ExponentShift));
-
- // Shift up the source chopping the top bit off.
- __ add(zeros, zeros, Operand(1));
- // This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
- __ mov(ival, Operand(ival, LSL, zeros));
- // And the top (top 20 bits).
- __ orr(fval,
- fval,
- Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
-
- __ bind(&done);
- __ str(fval, MemOperand(dst, wordoffset, LSL, 2));
- }
-}
-
-
-// Convert unsigned integer with specified number of leading zeroes in binary
-// representation to IEEE 754 double.
-// Integer to convert is passed in register hiword.
-// Resulting double is returned in registers hiword:loword.
-// This functions does not work correctly for 0.
-static void GenerateUInt2Double(MacroAssembler* masm,
- Register hiword,
- Register loword,
- Register scratch,
- int leading_zeroes) {
- const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
- const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
-
- const int mantissa_shift_for_hi_word =
- meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
-
- const int mantissa_shift_for_lo_word =
- kBitsPerInt - mantissa_shift_for_hi_word;
-
- __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
- if (mantissa_shift_for_hi_word > 0) {
- __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
- __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
- } else {
- __ mov(loword, Operand(0, RelocInfo::NONE));
- __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
- }
-
- // If least significant bit of biased exponent was not 1 it was corrupted
- // by most significant bit of mantissa so we should fix that.
- if (!(biased_exponent & 1)) {
- __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
- }
-}
-
-
#undef __
#define __ ACCESS_MASM(masm())
@@ -3329,603 +3224,6 @@
}
-static bool IsElementTypeSigned(ExternalArrayType array_type) {
- switch (array_type) {
- case kExternalByteArray:
- case kExternalShortArray:
- case kExternalIntArray:
- return true;
-
- case kExternalUnsignedByteArray:
- case kExternalUnsignedShortArray:
- case kExternalUnsignedIntArray:
- return false;
-
- default:
- UNREACHABLE();
- return false;
- }
-}
-
-
-MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
- ExternalArrayType array_type, Code::Flags flags) {
- // ---------- S t a t e --------------
- // -- lr : return address
- // -- r0 : key
- // -- r1 : receiver
- // -----------------------------------
- Label slow, failed_allocation;
-
- Register key = r0;
- Register receiver = r1;
-
- // Check that the object isn't a smi
- __ BranchOnSmi(receiver, &slow);
-
- // Check that the key is a smi.
- __ BranchOnNotSmi(key, &slow);
-
- // Check that the object is a JS object. Load map into r2.
- __ CompareObjectType(receiver, r2, r3, FIRST_JS_OBJECT_TYPE);
- __ b(lt, &slow);
-
- // Check that the receiver does not require access checks. We need
- // to check this explicitly since this generic stub does not perform
- // map checks.
- __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
- __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded));
- __ b(ne, &slow);
-
- // Check that the elements array is the appropriate type of
- // ExternalArray.
- __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
- __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
- __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
- __ cmp(r2, ip);
- __ b(ne, &slow);
-
- // Check that the index is in range.
- __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
- __ cmp(ip, Operand(key, ASR, kSmiTagSize));
- // Unsigned comparison catches both negative and too-large values.
- __ b(lo, &slow);
-
- // r3: elements array
- __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
- // r3: base pointer of external storage
-
- // We are not untagging smi key and instead work with it
- // as if it was premultiplied by 2.
- ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
-
- Register value = r2;
- switch (array_type) {
- case kExternalByteArray:
- __ ldrsb(value, MemOperand(r3, key, LSR, 1));
- break;
- case kExternalUnsignedByteArray:
- __ ldrb(value, MemOperand(r3, key, LSR, 1));
- break;
- case kExternalShortArray:
- __ ldrsh(value, MemOperand(r3, key, LSL, 0));
- break;
- case kExternalUnsignedShortArray:
- __ ldrh(value, MemOperand(r3, key, LSL, 0));
- break;
- case kExternalIntArray:
- case kExternalUnsignedIntArray:
- __ ldr(value, MemOperand(r3, key, LSL, 1));
- break;
- case kExternalFloatArray:
- if (CpuFeatures::IsSupported(VFP3)) {
- CpuFeatures::Scope scope(VFP3);
- __ add(r2, r3, Operand(key, LSL, 1));
- __ vldr(s0, r2, 0);
- } else {
- __ ldr(value, MemOperand(r3, key, LSL, 1));
- }
- break;
- default:
- UNREACHABLE();
- break;
- }
-
- // For integer array types:
- // r2: value
- // For floating-point array type
- // s0: value (if VFP3 is supported)
- // r2: value (if VFP3 is not supported)
-
- if (array_type == kExternalIntArray) {
- // For the Int and UnsignedInt array types, we need to see whether
- // the value can be represented in a Smi. If not, we need to convert
- // it to a HeapNumber.
- Label box_int;
- __ cmp(value, Operand(0xC0000000));
- __ b(mi, &box_int);
- // Tag integer as smi and return it.
- __ mov(r0, Operand(value, LSL, kSmiTagSize));
- __ Ret();
-
- __ bind(&box_int);
- // Allocate a HeapNumber for the result and perform int-to-double
- // conversion. Don't touch r0 or r1 as they are needed if allocation
- // fails.
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
- __ AllocateHeapNumber(r5, r3, r4, r6, &slow);
- // Now we can use r0 for the result as key is not needed any more.
- __ mov(r0, r5);
-
- if (CpuFeatures::IsSupported(VFP3)) {
- CpuFeatures::Scope scope(VFP3);
- __ vmov(s0, value);
- __ vcvt_f64_s32(d0, s0);
- __ sub(r3, r0, Operand(kHeapObjectTag));
- __ vstr(d0, r3, HeapNumber::kValueOffset);
- __ Ret();
- } else {
- WriteInt32ToHeapNumberStub stub(value, r0, r3);
- __ TailCallStub(&stub);
- }
- } else if (array_type == kExternalUnsignedIntArray) {
- // The test is different for unsigned int values. Since we need
- // the value to be in the range of a positive smi, we can't
- // handle either of the top two bits being set in the value.
- if (CpuFeatures::IsSupported(VFP3)) {
- CpuFeatures::Scope scope(VFP3);
- Label box_int, done;
- __ tst(value, Operand(0xC0000000));
- __ b(ne, &box_int);
- // Tag integer as smi and return it.
- __ mov(r0, Operand(value, LSL, kSmiTagSize));
- __ Ret();
-
- __ bind(&box_int);
- __ vmov(s0, value);
- // Allocate a HeapNumber for the result and perform int-to-double
- // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all
- // registers - also when jumping due to exhausted young space.
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
- __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
-
- __ vcvt_f64_u32(d0, s0);
- __ sub(r1, r2, Operand(kHeapObjectTag));
- __ vstr(d0, r1, HeapNumber::kValueOffset);
-
- __ mov(r0, r2);
- __ Ret();
- } else {
- // Check whether unsigned integer fits into smi.
- Label box_int_0, box_int_1, done;
- __ tst(value, Operand(0x80000000));
- __ b(ne, &box_int_0);
- __ tst(value, Operand(0x40000000));
- __ b(ne, &box_int_1);
- // Tag integer as smi and return it.
- __ mov(r0, Operand(value, LSL, kSmiTagSize));
- __ Ret();
-
- Register hiword = value; // r2.
- Register loword = r3;
-
- __ bind(&box_int_0);
- // Integer does not have leading zeros.
- GenerateUInt2Double(masm(), hiword, loword, r4, 0);
- __ b(&done);
-
- __ bind(&box_int_1);
- // Integer has one leading zero.
- GenerateUInt2Double(masm(), hiword, loword, r4, 1);
-
-
- __ bind(&done);
- // Integer was converted to double in registers hiword:loword.
- // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber
- // clobbers all registers - also when jumping due to exhausted young
- // space.
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
- __ AllocateHeapNumber(r4, r5, r7, r6, &slow);
-
- __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset));
- __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
-
- __ mov(r0, r4);
- __ Ret();
- }
- } else if (array_type == kExternalFloatArray) {
- // For the floating-point array type, we need to always allocate a
- // HeapNumber.
- if (CpuFeatures::IsSupported(VFP3)) {
- CpuFeatures::Scope scope(VFP3);
- // Allocate a HeapNumber for the result. Don't use r0 and r1 as
- // AllocateHeapNumber clobbers all registers - also when jumping due to
- // exhausted young space.
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
- __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
- __ vcvt_f64_f32(d0, s0);
- __ sub(r1, r2, Operand(kHeapObjectTag));
- __ vstr(d0, r1, HeapNumber::kValueOffset);
-
- __ mov(r0, r2);
- __ Ret();
- } else {
- // Allocate a HeapNumber for the result. Don't use r0 and r1 as
- // AllocateHeapNumber clobbers all registers - also when jumping due to
- // exhausted young space.
- __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
- __ AllocateHeapNumber(r3, r4, r5, r6, &slow);
- // VFP is not available, do manual single to double conversion.
-
- // r2: floating point value (binary32)
- // r3: heap number for result
-
- // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to
- // the slow case from here.
- __ and_(r0, value, Operand(kBinary32MantissaMask));
-
- // Extract exponent to r1. OK to clobber r1 now as there are no jumps to
- // the slow case from here.
- __ mov(r1, Operand(value, LSR, kBinary32MantissaBits));
- __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
-
- Label exponent_rebiased;
- __ teq(r1, Operand(0x00));
- __ b(eq, &exponent_rebiased);
-
- __ teq(r1, Operand(0xff));
- __ mov(r1, Operand(0x7ff), LeaveCC, eq);
- __ b(eq, &exponent_rebiased);
-
- // Rebias exponent.
- __ add(r1,
- r1,
- Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
-
- __ bind(&exponent_rebiased);
- __ and_(r2, value, Operand(kBinary32SignMask));
- value = no_reg;
- __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord));
-
- // Shift mantissa.
- static const int kMantissaShiftForHiWord =
- kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
-
- static const int kMantissaShiftForLoWord =
- kBitsPerInt - kMantissaShiftForHiWord;
-
- __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord));
- __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord));
-
- __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset));
- __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
-
- __ mov(r0, r3);
- __ Ret();
- }
-
- } else {
- // Tag integer as smi and return it.
- __ mov(r0, Operand(value, LSL, kSmiTagSize));
- __ Ret();
- }
-
- // Slow case, key and receiver still in r0 and r1.
- __ bind(&slow);
- __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r2, r3);
-
- // ---------- S t a t e --------------
- // -- lr : return address
- // -- r0 : key
- // -- r1 : receiver
- // -----------------------------------
-
- __ Push(r1, r0);
-
- __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
-
- return GetCode(flags);
-}
-
-
-MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub(
- ExternalArrayType array_type, Code::Flags flags) {
- // ---------- S t a t e --------------
- // -- r0 : value
- // -- r1 : key
- // -- r2 : receiver
- // -- lr : return address
- // -----------------------------------
- Label slow, check_heap_number;
-
- // Register usage.
- Register value = r0;
- Register key = r1;
- Register receiver = r2;
- // r3 mostly holds the elements array or the destination external array.
-
- // Check that the object isn't a smi.
- __ BranchOnSmi(receiver, &slow);
-
- // Check that the object is a JS object. Load map into r3.
- __ CompareObjectType(receiver, r3, r4, FIRST_JS_OBJECT_TYPE);
- __ b(le, &slow);
-
- // Check that the receiver does not require access checks. We need
- // to do this because this generic stub does not perform map checks.
- __ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset));
- __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded));
- __ b(ne, &slow);
-
- // Check that the key is a smi.
- __ BranchOnNotSmi(key, &slow);
-
- // Check that the elements array is the appropriate type of ExternalArray.
- __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
- __ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
- __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
- __ cmp(r4, ip);
- __ b(ne, &slow);
-
- // Check that the index is in range.
- __ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the index.
- __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
- __ cmp(r4, ip);
- // Unsigned comparison catches both negative and too-large values.
- __ b(hs, &slow);
-
- // Handle both smis and HeapNumbers in the fast path. Go to the
- // runtime for all other kinds of values.
- // r3: external array.
- // r4: key (integer).
- __ BranchOnNotSmi(value, &check_heap_number);
- __ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value.
- __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
-
- // r3: base pointer of external storage.
- // r4: key (integer).
- // r5: value (integer).
- switch (array_type) {
- case kExternalByteArray:
- case kExternalUnsignedByteArray:
- __ strb(r5, MemOperand(r3, r4, LSL, 0));
- break;
- case kExternalShortArray:
- case kExternalUnsignedShortArray:
- __ strh(r5, MemOperand(r3, r4, LSL, 1));
- break;
- case kExternalIntArray:
- case kExternalUnsignedIntArray:
- __ str(r5, MemOperand(r3, r4, LSL, 2));
- break;
- case kExternalFloatArray:
- // Perform int-to-float conversion and store to memory.
- StoreIntAsFloat(masm(), r3, r4, r5, r6, r7, r9);
- break;
- default:
- UNREACHABLE();
- break;
- }
-
- // Entry registers are intact, r0 holds the value which is the return value.
- __ Ret();
-
-
- // r3: external array.
- // r4: index (integer).
- __ bind(&check_heap_number);
- __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE);
- __ b(ne, &slow);
-
- __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
-
- // r3: base pointer of external storage.
- // r4: key (integer).
-
- // The WebGL specification leaves the behavior of storing NaN and
- // +/-Infinity into integer arrays basically undefined. For more
- // reproducible behavior, convert these to zero.
- if (CpuFeatures::IsSupported(VFP3)) {
- CpuFeatures::Scope scope(VFP3);
-
-
- if (array_type == kExternalFloatArray) {
- // vldr requires offset to be a multiple of 4 so we can not
- // include -kHeapObjectTag into it.
- __ sub(r5, r0, Operand(kHeapObjectTag));
- __ vldr(d0, r5, HeapNumber::kValueOffset);
- __ add(r5, r3, Operand(r4, LSL, 2));
- __ vcvt_f32_f64(s0, d0);
- __ vstr(s0, r5, 0);
- } else {
- // Need to perform float-to-int conversion.
- // Test for NaN or infinity (both give zero).
- __ ldr(r6, FieldMemOperand(r5, HeapNumber::kExponentOffset));
-
- // Hoisted load. vldr requires offset to be a multiple of 4 so we can not
- // include -kHeapObjectTag into it.
- __ sub(r5, r0, Operand(kHeapObjectTag));
- __ vldr(d0, r5, HeapNumber::kValueOffset);
-
- __ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
- // NaNs and Infinities have all-one exponents so they sign extend to -1.
- __ cmp(r6, Operand(-1));
- __ mov(r5, Operand(Smi::FromInt(0)), LeaveCC, eq);
-
- // Not infinity or NaN simply convert to int.
- if (IsElementTypeSigned(array_type)) {
- __ vcvt_s32_f64(s0, d0, Assembler::RoundToZero, ne);
- } else {
- __ vcvt_u32_f64(s0, d0, Assembler::RoundToZero, ne);
- }
- __ vmov(r5, s0, ne);
-
- switch (array_type) {
- case kExternalByteArray:
- case kExternalUnsignedByteArray:
- __ strb(r5, MemOperand(r3, r4, LSL, 0));
- break;
- case kExternalShortArray:
- case kExternalUnsignedShortArray:
- __ strh(r5, MemOperand(r3, r4, LSL, 1));
- break;
- case kExternalIntArray:
- case kExternalUnsignedIntArray:
- __ str(r5, MemOperand(r3, r4, LSL, 2));
- break;
- default:
- UNREACHABLE();
- break;
- }
- }
-
- // Entry registers are intact, r0 holds the value which is the return value.
- __ Ret();
- } else {
- // VFP3 is not available do manual conversions.
- __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset));
- __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset));
-
- if (array_type == kExternalFloatArray) {
- Label done, nan_or_infinity_or_zero;
- static const int kMantissaInHiWordShift =
- kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
-
- static const int kMantissaInLoWordShift =
- kBitsPerInt - kMantissaInHiWordShift;
-
- // Test for all special exponent values: zeros, subnormal numbers, NaNs
- // and infinities. All these should be converted to 0.
- __ mov(r7, Operand(HeapNumber::kExponentMask));
- __ and_(r9, r5, Operand(r7), SetCC);
- __ b(eq, &nan_or_infinity_or_zero);
-
- __ teq(r9, Operand(r7));
- __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq);
- __ b(eq, &nan_or_infinity_or_zero);
-
- // Rebias exponent.
- __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
- __ add(r9,
- r9,
- Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
-
- __ cmp(r9, Operand(kBinary32MaxExponent));
- __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt);
- __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt);
- __ b(gt, &done);
-
- __ cmp(r9, Operand(kBinary32MinExponent));
- __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt);
- __ b(lt, &done);
-
- __ and_(r7, r5, Operand(HeapNumber::kSignMask));
- __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
- __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift));
- __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift));
- __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift));
-
- __ bind(&done);
- __ str(r5, MemOperand(r3, r4, LSL, 2));
- // Entry registers are intact, r0 holds the value which is the return
- // value.
- __ Ret();
-
- __ bind(&nan_or_infinity_or_zero);
- __ and_(r7, r5, Operand(HeapNumber::kSignMask));
- __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
- __ orr(r9, r9, r7);
- __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift));
- __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift));
- __ b(&done);
- } else {
- bool is_signed_type = IsElementTypeSigned(array_type);
- int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
- int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
-
- Label done, sign;
-
- // Test for all special exponent values: zeros, subnormal numbers, NaNs
- // and infinities. All these should be converted to 0.
- __ mov(r7, Operand(HeapNumber::kExponentMask));
- __ and_(r9, r5, Operand(r7), SetCC);
- __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
- __ b(eq, &done);
-
- __ teq(r9, Operand(r7));
- __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
- __ b(eq, &done);
-
- // Unbias exponent.
- __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
- __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC);
- // If exponent is negative than result is 0.
- __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi);
- __ b(mi, &done);
-
- // If exponent is too big than result is minimal value.
- __ cmp(r9, Operand(meaningfull_bits - 1));
- __ mov(r5, Operand(min_value), LeaveCC, ge);
- __ b(ge, &done);
-
- __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC);
- __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
- __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
-
- __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
- __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl);
- __ b(pl, &sign);
-
- __ rsb(r9, r9, Operand(0, RelocInfo::NONE));
- __ mov(r5, Operand(r5, LSL, r9));
- __ rsb(r9, r9, Operand(meaningfull_bits));
- __ orr(r5, r5, Operand(r6, LSR, r9));
-
- __ bind(&sign);
- __ teq(r7, Operand(0, RelocInfo::NONE));
- __ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne);
-
- __ bind(&done);
- switch (array_type) {
- case kExternalByteArray:
- case kExternalUnsignedByteArray:
- __ strb(r5, MemOperand(r3, r4, LSL, 0));
- break;
- case kExternalShortArray:
- case kExternalUnsignedShortArray:
- __ strh(r5, MemOperand(r3, r4, LSL, 1));
- break;
- case kExternalIntArray:
- case kExternalUnsignedIntArray:
- __ str(r5, MemOperand(r3, r4, LSL, 2));
- break;
- default:
- UNREACHABLE();
- break;
- }
- }
- }
-
- // Slow case: call runtime.
- __ bind(&slow);
-
- // Entry registers are intact.
- // ---------- S t a t e --------------
- // -- r0 : value
- // -- r1 : key
- // -- r2 : receiver
- // -- lr : return address
- // -----------------------------------
-
- // Push receiver, key and value for runtime call.
- __ Push(r2, r1, r0);
-
- __ TailCallRuntime(Runtime::kSetProperty, 3, 1);
-
- return GetCode(flags);
-}
-
-
#undef __
} } // namespace v8::internal
« no previous file with comments | « src/arm/ic-arm.cc ('k') | src/builtins.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698