| Index: src/arm/stub-cache-arm.cc
 | 
| ===================================================================
 | 
| --- src/arm/stub-cache-arm.cc	(revision 6378)
 | 
| +++ src/arm/stub-cache-arm.cc	(working copy)
 | 
| @@ -902,112 +902,7 @@
 | 
|  }
 | 
|  
 | 
|  
 | 
| -// Convert and store int passed in register ival to IEEE 754 single precision
 | 
| -// floating point value at memory location (dst + 4 * wordoffset)
 | 
| -// If VFP3 is available use it for conversion.
 | 
| -static void StoreIntAsFloat(MacroAssembler* masm,
 | 
| -                            Register dst,
 | 
| -                            Register wordoffset,
 | 
| -                            Register ival,
 | 
| -                            Register fval,
 | 
| -                            Register scratch1,
 | 
| -                            Register scratch2) {
 | 
| -  if (CpuFeatures::IsSupported(VFP3)) {
 | 
| -    CpuFeatures::Scope scope(VFP3);
 | 
| -    __ vmov(s0, ival);
 | 
| -    __ add(scratch1, dst, Operand(wordoffset, LSL, 2));
 | 
| -    __ vcvt_f32_s32(s0, s0);
 | 
| -    __ vstr(s0, scratch1, 0);
 | 
| -  } else {
 | 
| -    Label not_special, done;
 | 
| -    // Move sign bit from source to destination.  This works because the sign
 | 
| -    // bit in the exponent word of the double has the same position and polarity
 | 
| -    // as the 2's complement sign bit in a Smi.
 | 
| -    ASSERT(kBinary32SignMask == 0x80000000u);
 | 
|  
 | 
| -    __ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
 | 
| -    // Negate value if it is negative.
 | 
| -    __ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
 | 
| -
 | 
| -    // We have -1, 0 or 1, which we treat specially. Register ival contains
 | 
| -    // absolute value: it is either equal to 1 (special case of -1 and 1),
 | 
| -    // greater than 1 (not a special case) or less than 1 (special case of 0).
 | 
| -    __ cmp(ival, Operand(1));
 | 
| -    __ b(gt, ¬_special);
 | 
| -
 | 
| -    // For 1 or -1 we need to or in the 0 exponent (biased).
 | 
| -    static const uint32_t exponent_word_for_1 =
 | 
| -        kBinary32ExponentBias << kBinary32ExponentShift;
 | 
| -
 | 
| -    __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
 | 
| -    __ b(&done);
 | 
| -
 | 
| -    __ bind(¬_special);
 | 
| -    // Count leading zeros.
 | 
| -    // Gets the wrong answer for 0, but we already checked for that case above.
 | 
| -    Register zeros = scratch2;
 | 
| -    __ CountLeadingZeros(zeros, ival, scratch1);
 | 
| -
 | 
| -    // Compute exponent and or it into the exponent register.
 | 
| -    __ rsb(scratch1,
 | 
| -           zeros,
 | 
| -           Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
 | 
| -
 | 
| -    __ orr(fval,
 | 
| -           fval,
 | 
| -           Operand(scratch1, LSL, kBinary32ExponentShift));
 | 
| -
 | 
| -    // Shift up the source chopping the top bit off.
 | 
| -    __ add(zeros, zeros, Operand(1));
 | 
| -    // This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
 | 
| -    __ mov(ival, Operand(ival, LSL, zeros));
 | 
| -    // And the top (top 20 bits).
 | 
| -    __ orr(fval,
 | 
| -           fval,
 | 
| -           Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
 | 
| -
 | 
| -    __ bind(&done);
 | 
| -    __ str(fval, MemOperand(dst, wordoffset, LSL, 2));
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -// Convert unsigned integer with specified number of leading zeroes in binary
 | 
| -// representation to IEEE 754 double.
 | 
| -// Integer to convert is passed in register hiword.
 | 
| -// Resulting double is returned in registers hiword:loword.
 | 
| -// This functions does not work correctly for 0.
 | 
| -static void GenerateUInt2Double(MacroAssembler* masm,
 | 
| -                                Register hiword,
 | 
| -                                Register loword,
 | 
| -                                Register scratch,
 | 
| -                                int leading_zeroes) {
 | 
| -  const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
 | 
| -  const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
 | 
| -
 | 
| -  const int mantissa_shift_for_hi_word =
 | 
| -      meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
 | 
| -
 | 
| -  const int mantissa_shift_for_lo_word =
 | 
| -      kBitsPerInt - mantissa_shift_for_hi_word;
 | 
| -
 | 
| -  __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
 | 
| -  if (mantissa_shift_for_hi_word > 0) {
 | 
| -    __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
 | 
| -    __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
 | 
| -  } else {
 | 
| -    __ mov(loword, Operand(0, RelocInfo::NONE));
 | 
| -    __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
 | 
| -  }
 | 
| -
 | 
| -  // If least significant bit of biased exponent was not 1 it was corrupted
 | 
| -  // by most significant bit of mantissa so we should fix that.
 | 
| -  if (!(biased_exponent & 1)) {
 | 
| -    __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
|  #undef __
 | 
|  #define __ ACCESS_MASM(masm())
 | 
|  
 | 
| @@ -3329,603 +3224,6 @@
 | 
|  }
 | 
|  
 | 
|  
 | 
| -static bool IsElementTypeSigned(ExternalArrayType array_type) {
 | 
| -  switch (array_type) {
 | 
| -    case kExternalByteArray:
 | 
| -    case kExternalShortArray:
 | 
| -    case kExternalIntArray:
 | 
| -      return true;
 | 
| -
 | 
| -    case kExternalUnsignedByteArray:
 | 
| -    case kExternalUnsignedShortArray:
 | 
| -    case kExternalUnsignedIntArray:
 | 
| -      return false;
 | 
| -
 | 
| -    default:
 | 
| -      UNREACHABLE();
 | 
| -      return false;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
 | 
| -    ExternalArrayType array_type, Code::Flags flags) {
 | 
| -  // ---------- S t a t e --------------
 | 
| -  //  -- lr     : return address
 | 
| -  //  -- r0     : key
 | 
| -  //  -- r1     : receiver
 | 
| -  // -----------------------------------
 | 
| -  Label slow, failed_allocation;
 | 
| -
 | 
| -  Register key = r0;
 | 
| -  Register receiver = r1;
 | 
| -
 | 
| -  // Check that the object isn't a smi
 | 
| -  __ BranchOnSmi(receiver, &slow);
 | 
| -
 | 
| -  // Check that the key is a smi.
 | 
| -  __ BranchOnNotSmi(key, &slow);
 | 
| -
 | 
| -  // Check that the object is a JS object. Load map into r2.
 | 
| -  __ CompareObjectType(receiver, r2, r3, FIRST_JS_OBJECT_TYPE);
 | 
| -  __ b(lt, &slow);
 | 
| -
 | 
| -  // Check that the receiver does not require access checks.  We need
 | 
| -  // to check this explicitly since this generic stub does not perform
 | 
| -  // map checks.
 | 
| -  __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
 | 
| -  __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded));
 | 
| -  __ b(ne, &slow);
 | 
| -
 | 
| -  // Check that the elements array is the appropriate type of
 | 
| -  // ExternalArray.
 | 
| -  __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
 | 
| -  __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
 | 
| -  __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
 | 
| -  __ cmp(r2, ip);
 | 
| -  __ b(ne, &slow);
 | 
| -
 | 
| -  // Check that the index is in range.
 | 
| -  __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
 | 
| -  __ cmp(ip, Operand(key, ASR, kSmiTagSize));
 | 
| -  // Unsigned comparison catches both negative and too-large values.
 | 
| -  __ b(lo, &slow);
 | 
| -
 | 
| -  // r3: elements array
 | 
| -  __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
 | 
| -  // r3: base pointer of external storage
 | 
| -
 | 
| -  // We are not untagging smi key and instead work with it
 | 
| -  // as if it was premultiplied by 2.
 | 
| -  ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
 | 
| -
 | 
| -  Register value = r2;
 | 
| -  switch (array_type) {
 | 
| -    case kExternalByteArray:
 | 
| -      __ ldrsb(value, MemOperand(r3, key, LSR, 1));
 | 
| -      break;
 | 
| -    case kExternalUnsignedByteArray:
 | 
| -      __ ldrb(value, MemOperand(r3, key, LSR, 1));
 | 
| -      break;
 | 
| -    case kExternalShortArray:
 | 
| -      __ ldrsh(value, MemOperand(r3, key, LSL, 0));
 | 
| -      break;
 | 
| -    case kExternalUnsignedShortArray:
 | 
| -      __ ldrh(value, MemOperand(r3, key, LSL, 0));
 | 
| -      break;
 | 
| -    case kExternalIntArray:
 | 
| -    case kExternalUnsignedIntArray:
 | 
| -      __ ldr(value, MemOperand(r3, key, LSL, 1));
 | 
| -      break;
 | 
| -    case kExternalFloatArray:
 | 
| -      if (CpuFeatures::IsSupported(VFP3)) {
 | 
| -        CpuFeatures::Scope scope(VFP3);
 | 
| -        __ add(r2, r3, Operand(key, LSL, 1));
 | 
| -        __ vldr(s0, r2, 0);
 | 
| -      } else {
 | 
| -        __ ldr(value, MemOperand(r3, key, LSL, 1));
 | 
| -      }
 | 
| -      break;
 | 
| -    default:
 | 
| -      UNREACHABLE();
 | 
| -      break;
 | 
| -  }
 | 
| -
 | 
| -  // For integer array types:
 | 
| -  // r2: value
 | 
| -  // For floating-point array type
 | 
| -  // s0: value (if VFP3 is supported)
 | 
| -  // r2: value (if VFP3 is not supported)
 | 
| -
 | 
| -  if (array_type == kExternalIntArray) {
 | 
| -    // For the Int and UnsignedInt array types, we need to see whether
 | 
| -    // the value can be represented in a Smi. If not, we need to convert
 | 
| -    // it to a HeapNumber.
 | 
| -    Label box_int;
 | 
| -    __ cmp(value, Operand(0xC0000000));
 | 
| -    __ b(mi, &box_int);
 | 
| -    // Tag integer as smi and return it.
 | 
| -    __ mov(r0, Operand(value, LSL, kSmiTagSize));
 | 
| -    __ Ret();
 | 
| -
 | 
| -    __ bind(&box_int);
 | 
| -    // Allocate a HeapNumber for the result and perform int-to-double
 | 
| -    // conversion.  Don't touch r0 or r1 as they are needed if allocation
 | 
| -    // fails.
 | 
| -    __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
 | 
| -    __ AllocateHeapNumber(r5, r3, r4, r6, &slow);
 | 
| -    // Now we can use r0 for the result as key is not needed any more.
 | 
| -    __ mov(r0, r5);
 | 
| -
 | 
| -    if (CpuFeatures::IsSupported(VFP3)) {
 | 
| -      CpuFeatures::Scope scope(VFP3);
 | 
| -      __ vmov(s0, value);
 | 
| -      __ vcvt_f64_s32(d0, s0);
 | 
| -      __ sub(r3, r0, Operand(kHeapObjectTag));
 | 
| -      __ vstr(d0, r3, HeapNumber::kValueOffset);
 | 
| -      __ Ret();
 | 
| -    } else {
 | 
| -      WriteInt32ToHeapNumberStub stub(value, r0, r3);
 | 
| -      __ TailCallStub(&stub);
 | 
| -    }
 | 
| -  } else if (array_type == kExternalUnsignedIntArray) {
 | 
| -    // The test is different for unsigned int values. Since we need
 | 
| -    // the value to be in the range of a positive smi, we can't
 | 
| -    // handle either of the top two bits being set in the value.
 | 
| -    if (CpuFeatures::IsSupported(VFP3)) {
 | 
| -      CpuFeatures::Scope scope(VFP3);
 | 
| -      Label box_int, done;
 | 
| -      __ tst(value, Operand(0xC0000000));
 | 
| -      __ b(ne, &box_int);
 | 
| -      // Tag integer as smi and return it.
 | 
| -      __ mov(r0, Operand(value, LSL, kSmiTagSize));
 | 
| -      __ Ret();
 | 
| -
 | 
| -      __ bind(&box_int);
 | 
| -      __ vmov(s0, value);
 | 
| -      // Allocate a HeapNumber for the result and perform int-to-double
 | 
| -      // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all
 | 
| -      // registers - also when jumping due to exhausted young space.
 | 
| -      __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
 | 
| -      __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
 | 
| -
 | 
| -      __ vcvt_f64_u32(d0, s0);
 | 
| -      __ sub(r1, r2, Operand(kHeapObjectTag));
 | 
| -      __ vstr(d0, r1, HeapNumber::kValueOffset);
 | 
| -
 | 
| -      __ mov(r0, r2);
 | 
| -      __ Ret();
 | 
| -    } else {
 | 
| -      // Check whether unsigned integer fits into smi.
 | 
| -      Label box_int_0, box_int_1, done;
 | 
| -      __ tst(value, Operand(0x80000000));
 | 
| -      __ b(ne, &box_int_0);
 | 
| -      __ tst(value, Operand(0x40000000));
 | 
| -      __ b(ne, &box_int_1);
 | 
| -      // Tag integer as smi and return it.
 | 
| -      __ mov(r0, Operand(value, LSL, kSmiTagSize));
 | 
| -      __ Ret();
 | 
| -
 | 
| -      Register hiword = value;  // r2.
 | 
| -      Register loword = r3;
 | 
| -
 | 
| -      __ bind(&box_int_0);
 | 
| -      // Integer does not have leading zeros.
 | 
| -      GenerateUInt2Double(masm(), hiword, loword, r4, 0);
 | 
| -      __ b(&done);
 | 
| -
 | 
| -      __ bind(&box_int_1);
 | 
| -      // Integer has one leading zero.
 | 
| -      GenerateUInt2Double(masm(), hiword, loword, r4, 1);
 | 
| -
 | 
| -
 | 
| -      __ bind(&done);
 | 
| -      // Integer was converted to double in registers hiword:loword.
 | 
| -      // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber
 | 
| -      // clobbers all registers - also when jumping due to exhausted young
 | 
| -      // space.
 | 
| -      __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
 | 
| -      __ AllocateHeapNumber(r4, r5, r7, r6, &slow);
 | 
| -
 | 
| -      __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset));
 | 
| -      __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
 | 
| -
 | 
| -      __ mov(r0, r4);
 | 
| -      __ Ret();
 | 
| -    }
 | 
| -  } else if (array_type == kExternalFloatArray) {
 | 
| -    // For the floating-point array type, we need to always allocate a
 | 
| -    // HeapNumber.
 | 
| -    if (CpuFeatures::IsSupported(VFP3)) {
 | 
| -      CpuFeatures::Scope scope(VFP3);
 | 
| -      // Allocate a HeapNumber for the result. Don't use r0 and r1 as
 | 
| -      // AllocateHeapNumber clobbers all registers - also when jumping due to
 | 
| -      // exhausted young space.
 | 
| -      __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
 | 
| -      __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
 | 
| -      __ vcvt_f64_f32(d0, s0);
 | 
| -      __ sub(r1, r2, Operand(kHeapObjectTag));
 | 
| -      __ vstr(d0, r1, HeapNumber::kValueOffset);
 | 
| -
 | 
| -      __ mov(r0, r2);
 | 
| -      __ Ret();
 | 
| -    } else {
 | 
| -      // Allocate a HeapNumber for the result. Don't use r0 and r1 as
 | 
| -      // AllocateHeapNumber clobbers all registers - also when jumping due to
 | 
| -      // exhausted young space.
 | 
| -      __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
 | 
| -      __ AllocateHeapNumber(r3, r4, r5, r6, &slow);
 | 
| -      // VFP is not available, do manual single to double conversion.
 | 
| -
 | 
| -      // r2: floating point value (binary32)
 | 
| -      // r3: heap number for result
 | 
| -
 | 
| -      // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to
 | 
| -      // the slow case from here.
 | 
| -      __ and_(r0, value, Operand(kBinary32MantissaMask));
 | 
| -
 | 
| -      // Extract exponent to r1. OK to clobber r1 now as there are no jumps to
 | 
| -      // the slow case from here.
 | 
| -      __ mov(r1, Operand(value, LSR, kBinary32MantissaBits));
 | 
| -      __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
 | 
| -
 | 
| -      Label exponent_rebiased;
 | 
| -      __ teq(r1, Operand(0x00));
 | 
| -      __ b(eq, &exponent_rebiased);
 | 
| -
 | 
| -      __ teq(r1, Operand(0xff));
 | 
| -      __ mov(r1, Operand(0x7ff), LeaveCC, eq);
 | 
| -      __ b(eq, &exponent_rebiased);
 | 
| -
 | 
| -      // Rebias exponent.
 | 
| -      __ add(r1,
 | 
| -             r1,
 | 
| -             Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
 | 
| -
 | 
| -      __ bind(&exponent_rebiased);
 | 
| -      __ and_(r2, value, Operand(kBinary32SignMask));
 | 
| -      value = no_reg;
 | 
| -      __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord));
 | 
| -
 | 
| -      // Shift mantissa.
 | 
| -      static const int kMantissaShiftForHiWord =
 | 
| -          kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
 | 
| -
 | 
| -      static const int kMantissaShiftForLoWord =
 | 
| -          kBitsPerInt - kMantissaShiftForHiWord;
 | 
| -
 | 
| -      __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord));
 | 
| -      __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord));
 | 
| -
 | 
| -      __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset));
 | 
| -      __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
 | 
| -
 | 
| -      __ mov(r0, r3);
 | 
| -      __ Ret();
 | 
| -    }
 | 
| -
 | 
| -  } else {
 | 
| -    // Tag integer as smi and return it.
 | 
| -    __ mov(r0, Operand(value, LSL, kSmiTagSize));
 | 
| -    __ Ret();
 | 
| -  }
 | 
| -
 | 
| -  // Slow case, key and receiver still in r0 and r1.
 | 
| -  __ bind(&slow);
 | 
| -  __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r2, r3);
 | 
| -
 | 
| -  // ---------- S t a t e --------------
 | 
| -  //  -- lr     : return address
 | 
| -  //  -- r0     : key
 | 
| -  //  -- r1     : receiver
 | 
| -  // -----------------------------------
 | 
| -
 | 
| -  __ Push(r1, r0);
 | 
| -
 | 
| -  __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
 | 
| -
 | 
| -  return GetCode(flags);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub(
 | 
| -    ExternalArrayType array_type, Code::Flags flags) {
 | 
| -  // ---------- S t a t e --------------
 | 
| -  //  -- r0     : value
 | 
| -  //  -- r1     : key
 | 
| -  //  -- r2     : receiver
 | 
| -  //  -- lr     : return address
 | 
| -  // -----------------------------------
 | 
| -  Label slow, check_heap_number;
 | 
| -
 | 
| -  // Register usage.
 | 
| -  Register value = r0;
 | 
| -  Register key = r1;
 | 
| -  Register receiver = r2;
 | 
| -  // r3 mostly holds the elements array or the destination external array.
 | 
| -
 | 
| -  // Check that the object isn't a smi.
 | 
| -  __ BranchOnSmi(receiver, &slow);
 | 
| -
 | 
| -  // Check that the object is a JS object. Load map into r3.
 | 
| -  __ CompareObjectType(receiver, r3, r4, FIRST_JS_OBJECT_TYPE);
 | 
| -  __ b(le, &slow);
 | 
| -
 | 
| -  // Check that the receiver does not require access checks.  We need
 | 
| -  // to do this because this generic stub does not perform map checks.
 | 
| -  __ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset));
 | 
| -  __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded));
 | 
| -  __ b(ne, &slow);
 | 
| -
 | 
| -  // Check that the key is a smi.
 | 
| -  __ BranchOnNotSmi(key, &slow);
 | 
| -
 | 
| -  // Check that the elements array is the appropriate type of ExternalArray.
 | 
| -  __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
 | 
| -  __ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
 | 
| -  __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
 | 
| -  __ cmp(r4, ip);
 | 
| -  __ b(ne, &slow);
 | 
| -
 | 
| -  // Check that the index is in range.
 | 
| -  __ mov(r4, Operand(key, ASR, kSmiTagSize));  // Untag the index.
 | 
| -  __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
 | 
| -  __ cmp(r4, ip);
 | 
| -  // Unsigned comparison catches both negative and too-large values.
 | 
| -  __ b(hs, &slow);
 | 
| -
 | 
| -  // Handle both smis and HeapNumbers in the fast path. Go to the
 | 
| -  // runtime for all other kinds of values.
 | 
| -  // r3: external array.
 | 
| -  // r4: key (integer).
 | 
| -  __ BranchOnNotSmi(value, &check_heap_number);
 | 
| -  __ mov(r5, Operand(value, ASR, kSmiTagSize));  // Untag the value.
 | 
| -  __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
 | 
| -
 | 
| -  // r3: base pointer of external storage.
 | 
| -  // r4: key (integer).
 | 
| -  // r5: value (integer).
 | 
| -  switch (array_type) {
 | 
| -    case kExternalByteArray:
 | 
| -    case kExternalUnsignedByteArray:
 | 
| -      __ strb(r5, MemOperand(r3, r4, LSL, 0));
 | 
| -      break;
 | 
| -    case kExternalShortArray:
 | 
| -    case kExternalUnsignedShortArray:
 | 
| -      __ strh(r5, MemOperand(r3, r4, LSL, 1));
 | 
| -      break;
 | 
| -    case kExternalIntArray:
 | 
| -    case kExternalUnsignedIntArray:
 | 
| -      __ str(r5, MemOperand(r3, r4, LSL, 2));
 | 
| -      break;
 | 
| -    case kExternalFloatArray:
 | 
| -      // Perform int-to-float conversion and store to memory.
 | 
| -      StoreIntAsFloat(masm(), r3, r4, r5, r6, r7, r9);
 | 
| -      break;
 | 
| -    default:
 | 
| -      UNREACHABLE();
 | 
| -      break;
 | 
| -  }
 | 
| -
 | 
| -  // Entry registers are intact, r0 holds the value which is the return value.
 | 
| -  __ Ret();
 | 
| -
 | 
| -
 | 
| -  // r3: external array.
 | 
| -  // r4: index (integer).
 | 
| -  __ bind(&check_heap_number);
 | 
| -  __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE);
 | 
| -  __ b(ne, &slow);
 | 
| -
 | 
| -  __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
 | 
| -
 | 
| -  // r3: base pointer of external storage.
 | 
| -  // r4: key (integer).
 | 
| -
 | 
| -  // The WebGL specification leaves the behavior of storing NaN and
 | 
| -  // +/-Infinity into integer arrays basically undefined. For more
 | 
| -  // reproducible behavior, convert these to zero.
 | 
| -  if (CpuFeatures::IsSupported(VFP3)) {
 | 
| -    CpuFeatures::Scope scope(VFP3);
 | 
| -
 | 
| -
 | 
| -    if (array_type == kExternalFloatArray) {
 | 
| -      // vldr requires offset to be a multiple of 4 so we can not
 | 
| -      // include -kHeapObjectTag into it.
 | 
| -      __ sub(r5, r0, Operand(kHeapObjectTag));
 | 
| -      __ vldr(d0, r5, HeapNumber::kValueOffset);
 | 
| -      __ add(r5, r3, Operand(r4, LSL, 2));
 | 
| -      __ vcvt_f32_f64(s0, d0);
 | 
| -      __ vstr(s0, r5, 0);
 | 
| -    } else {
 | 
| -      // Need to perform float-to-int conversion.
 | 
| -      // Test for NaN or infinity (both give zero).
 | 
| -      __ ldr(r6, FieldMemOperand(r5, HeapNumber::kExponentOffset));
 | 
| -
 | 
| -      // Hoisted load.  vldr requires offset to be a multiple of 4 so we can not
 | 
| -      // include -kHeapObjectTag into it.
 | 
| -      __ sub(r5, r0, Operand(kHeapObjectTag));
 | 
| -      __ vldr(d0, r5, HeapNumber::kValueOffset);
 | 
| -
 | 
| -      __ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
 | 
| -      // NaNs and Infinities have all-one exponents so they sign extend to -1.
 | 
| -      __ cmp(r6, Operand(-1));
 | 
| -      __ mov(r5, Operand(Smi::FromInt(0)), LeaveCC, eq);
 | 
| -
 | 
| -      // Not infinity or NaN simply convert to int.
 | 
| -      if (IsElementTypeSigned(array_type)) {
 | 
| -        __ vcvt_s32_f64(s0, d0, Assembler::RoundToZero, ne);
 | 
| -      } else {
 | 
| -        __ vcvt_u32_f64(s0, d0, Assembler::RoundToZero, ne);
 | 
| -      }
 | 
| -      __ vmov(r5, s0, ne);
 | 
| -
 | 
| -      switch (array_type) {
 | 
| -        case kExternalByteArray:
 | 
| -        case kExternalUnsignedByteArray:
 | 
| -          __ strb(r5, MemOperand(r3, r4, LSL, 0));
 | 
| -          break;
 | 
| -        case kExternalShortArray:
 | 
| -        case kExternalUnsignedShortArray:
 | 
| -          __ strh(r5, MemOperand(r3, r4, LSL, 1));
 | 
| -          break;
 | 
| -        case kExternalIntArray:
 | 
| -        case kExternalUnsignedIntArray:
 | 
| -          __ str(r5, MemOperand(r3, r4, LSL, 2));
 | 
| -          break;
 | 
| -        default:
 | 
| -          UNREACHABLE();
 | 
| -          break;
 | 
| -      }
 | 
| -    }
 | 
| -
 | 
| -    // Entry registers are intact, r0 holds the value which is the return value.
 | 
| -    __ Ret();
 | 
| -  } else {
 | 
| -    // VFP3 is not available do manual conversions.
 | 
| -    __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset));
 | 
| -    __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset));
 | 
| -
 | 
| -    if (array_type == kExternalFloatArray) {
 | 
| -      Label done, nan_or_infinity_or_zero;
 | 
| -      static const int kMantissaInHiWordShift =
 | 
| -          kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
 | 
| -
 | 
| -      static const int kMantissaInLoWordShift =
 | 
| -          kBitsPerInt - kMantissaInHiWordShift;
 | 
| -
 | 
| -      // Test for all special exponent values: zeros, subnormal numbers, NaNs
 | 
| -      // and infinities. All these should be converted to 0.
 | 
| -      __ mov(r7, Operand(HeapNumber::kExponentMask));
 | 
| -      __ and_(r9, r5, Operand(r7), SetCC);
 | 
| -      __ b(eq, &nan_or_infinity_or_zero);
 | 
| -
 | 
| -      __ teq(r9, Operand(r7));
 | 
| -      __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq);
 | 
| -      __ b(eq, &nan_or_infinity_or_zero);
 | 
| -
 | 
| -      // Rebias exponent.
 | 
| -      __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
 | 
| -      __ add(r9,
 | 
| -             r9,
 | 
| -             Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
 | 
| -
 | 
| -      __ cmp(r9, Operand(kBinary32MaxExponent));
 | 
| -      __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt);
 | 
| -      __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt);
 | 
| -      __ b(gt, &done);
 | 
| -
 | 
| -      __ cmp(r9, Operand(kBinary32MinExponent));
 | 
| -      __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt);
 | 
| -      __ b(lt, &done);
 | 
| -
 | 
| -      __ and_(r7, r5, Operand(HeapNumber::kSignMask));
 | 
| -      __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
 | 
| -      __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift));
 | 
| -      __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift));
 | 
| -      __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift));
 | 
| -
 | 
| -      __ bind(&done);
 | 
| -      __ str(r5, MemOperand(r3, r4, LSL, 2));
 | 
| -      // Entry registers are intact, r0 holds the value which is the return
 | 
| -      // value.
 | 
| -      __ Ret();
 | 
| -
 | 
| -      __ bind(&nan_or_infinity_or_zero);
 | 
| -      __ and_(r7, r5, Operand(HeapNumber::kSignMask));
 | 
| -      __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
 | 
| -      __ orr(r9, r9, r7);
 | 
| -      __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift));
 | 
| -      __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift));
 | 
| -      __ b(&done);
 | 
| -    } else {
 | 
| -      bool is_signed_type = IsElementTypeSigned(array_type);
 | 
| -      int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
 | 
| -      int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
 | 
| -
 | 
| -      Label done, sign;
 | 
| -
 | 
| -      // Test for all special exponent values: zeros, subnormal numbers, NaNs
 | 
| -      // and infinities. All these should be converted to 0.
 | 
| -      __ mov(r7, Operand(HeapNumber::kExponentMask));
 | 
| -      __ and_(r9, r5, Operand(r7), SetCC);
 | 
| -      __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
 | 
| -      __ b(eq, &done);
 | 
| -
 | 
| -      __ teq(r9, Operand(r7));
 | 
| -      __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
 | 
| -      __ b(eq, &done);
 | 
| -
 | 
| -      // Unbias exponent.
 | 
| -      __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
 | 
| -      __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC);
 | 
| -      // If exponent is negative than result is 0.
 | 
| -      __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi);
 | 
| -      __ b(mi, &done);
 | 
| -
 | 
| -      // If exponent is too big than result is minimal value.
 | 
| -      __ cmp(r9, Operand(meaningfull_bits - 1));
 | 
| -      __ mov(r5, Operand(min_value), LeaveCC, ge);
 | 
| -      __ b(ge, &done);
 | 
| -
 | 
| -      __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC);
 | 
| -      __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
 | 
| -      __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
 | 
| -
 | 
| -      __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
 | 
| -      __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl);
 | 
| -      __ b(pl, &sign);
 | 
| -
 | 
| -      __ rsb(r9, r9, Operand(0, RelocInfo::NONE));
 | 
| -      __ mov(r5, Operand(r5, LSL, r9));
 | 
| -      __ rsb(r9, r9, Operand(meaningfull_bits));
 | 
| -      __ orr(r5, r5, Operand(r6, LSR, r9));
 | 
| -
 | 
| -      __ bind(&sign);
 | 
| -      __ teq(r7, Operand(0, RelocInfo::NONE));
 | 
| -      __ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne);
 | 
| -
 | 
| -      __ bind(&done);
 | 
| -      switch (array_type) {
 | 
| -        case kExternalByteArray:
 | 
| -        case kExternalUnsignedByteArray:
 | 
| -          __ strb(r5, MemOperand(r3, r4, LSL, 0));
 | 
| -          break;
 | 
| -        case kExternalShortArray:
 | 
| -        case kExternalUnsignedShortArray:
 | 
| -          __ strh(r5, MemOperand(r3, r4, LSL, 1));
 | 
| -          break;
 | 
| -        case kExternalIntArray:
 | 
| -        case kExternalUnsignedIntArray:
 | 
| -          __ str(r5, MemOperand(r3, r4, LSL, 2));
 | 
| -          break;
 | 
| -        default:
 | 
| -          UNREACHABLE();
 | 
| -          break;
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  // Slow case: call runtime.
 | 
| -  __ bind(&slow);
 | 
| -
 | 
| -  // Entry registers are intact.
 | 
| -  // ---------- S t a t e --------------
 | 
| -  //  -- r0     : value
 | 
| -  //  -- r1     : key
 | 
| -  //  -- r2     : receiver
 | 
| -  //  -- lr     : return address
 | 
| -  // -----------------------------------
 | 
| -
 | 
| -  // Push receiver, key and value for runtime call.
 | 
| -  __ Push(r2, r1, r0);
 | 
| -
 | 
| -  __ TailCallRuntime(Runtime::kSetProperty, 3, 1);
 | 
| -
 | 
| -  return GetCode(flags);
 | 
| -}
 | 
| -
 | 
| -
 | 
|  #undef __
 | 
|  
 | 
|  } }  // namespace v8::internal
 | 
| 
 |