Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(322)

Unified Diff: src/arm/ic-arm.cc

Issue 6295013: Revert r6376 and r6373 which changes external array support. The ARM... (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: Created 9 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « no previous file | src/arm/stub-cache-arm.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/arm/ic-arm.cc
===================================================================
--- src/arm/ic-arm.cc (revision 6378)
+++ src/arm/ic-arm.cc (working copy)
@@ -1337,6 +1337,311 @@
}
+// Convert unsigned integer with specified number of leading zeroes in binary
+// representation to IEEE 754 double.
+// Integer to convert is passed in register hiword.
+// Resulting double is returned in registers hiword:loword.
+// This functions does not work correctly for 0.
+static void GenerateUInt2Double(MacroAssembler* masm,
+ Register hiword,
+ Register loword,
+ Register scratch,
+ int leading_zeroes) {
+ const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
+ const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
+
+ const int mantissa_shift_for_hi_word =
+ meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
+
+ const int mantissa_shift_for_lo_word =
+ kBitsPerInt - mantissa_shift_for_hi_word;
+
+ __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
+ if (mantissa_shift_for_hi_word > 0) {
+ __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
+ __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
+ } else {
+ __ mov(loword, Operand(0, RelocInfo::NONE));
+ __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
+ }
+
+ // If least significant bit of biased exponent was not 1 it was corrupted
+ // by most significant bit of mantissa so we should fix that.
+ if (!(biased_exponent & 1)) {
+ __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
+ }
+}
+
+
+void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm,
+ ExternalArrayType array_type) {
+ // ---------- S t a t e --------------
+ // -- lr : return address
+ // -- r0 : key
+ // -- r1 : receiver
+ // -----------------------------------
+ Label slow, failed_allocation;
+
+ Register key = r0;
+ Register receiver = r1;
+
+ // Check that the object isn't a smi
+ __ BranchOnSmi(receiver, &slow);
+
+ // Check that the key is a smi.
+ __ BranchOnNotSmi(key, &slow);
+
+ // Check that the object is a JS object. Load map into r2.
+ __ CompareObjectType(receiver, r2, r3, FIRST_JS_OBJECT_TYPE);
+ __ b(lt, &slow);
+
+ // Check that the receiver does not require access checks. We need
+ // to check this explicitly since this generic stub does not perform
+ // map checks.
+ __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
+ __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded));
+ __ b(ne, &slow);
+
+ // Check that the elements array is the appropriate type of
+ // ExternalArray.
+ __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
+ __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
+ __ cmp(r2, ip);
+ __ b(ne, &slow);
+
+ // Check that the index is in range.
+ __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
+ __ cmp(ip, Operand(key, ASR, kSmiTagSize));
+ // Unsigned comparison catches both negative and too-large values.
+ __ b(lo, &slow);
+
+ // r3: elements array
+ __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
+ // r3: base pointer of external storage
+
+ // We are not untagging smi key and instead work with it
+ // as if it was premultiplied by 2.
+ ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
+
+ Register value = r2;
+ switch (array_type) {
+ case kExternalByteArray:
+ __ ldrsb(value, MemOperand(r3, key, LSR, 1));
+ break;
+ case kExternalUnsignedByteArray:
+ __ ldrb(value, MemOperand(r3, key, LSR, 1));
+ break;
+ case kExternalShortArray:
+ __ ldrsh(value, MemOperand(r3, key, LSL, 0));
+ break;
+ case kExternalUnsignedShortArray:
+ __ ldrh(value, MemOperand(r3, key, LSL, 0));
+ break;
+ case kExternalIntArray:
+ case kExternalUnsignedIntArray:
+ __ ldr(value, MemOperand(r3, key, LSL, 1));
+ break;
+ case kExternalFloatArray:
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ __ add(r2, r3, Operand(key, LSL, 1));
+ __ vldr(s0, r2, 0);
+ } else {
+ __ ldr(value, MemOperand(r3, key, LSL, 1));
+ }
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+
+ // For integer array types:
+ // r2: value
+ // For floating-point array type
+ // s0: value (if VFP3 is supported)
+ // r2: value (if VFP3 is not supported)
+
+ if (array_type == kExternalIntArray) {
+ // For the Int and UnsignedInt array types, we need to see whether
+ // the value can be represented in a Smi. If not, we need to convert
+ // it to a HeapNumber.
+ Label box_int;
+ __ cmp(value, Operand(0xC0000000));
+ __ b(mi, &box_int);
+ // Tag integer as smi and return it.
+ __ mov(r0, Operand(value, LSL, kSmiTagSize));
+ __ Ret();
+
+ __ bind(&box_int);
+ // Allocate a HeapNumber for the result and perform int-to-double
+ // conversion. Don't touch r0 or r1 as they are needed if allocation
+ // fails.
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(r5, r3, r4, r6, &slow);
+ // Now we can use r0 for the result as key is not needed any more.
+ __ mov(r0, r5);
+
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ __ vmov(s0, value);
+ __ vcvt_f64_s32(d0, s0);
+ __ sub(r3, r0, Operand(kHeapObjectTag));
+ __ vstr(d0, r3, HeapNumber::kValueOffset);
+ __ Ret();
+ } else {
+ WriteInt32ToHeapNumberStub stub(value, r0, r3);
+ __ TailCallStub(&stub);
+ }
+ } else if (array_type == kExternalUnsignedIntArray) {
+ // The test is different for unsigned int values. Since we need
+ // the value to be in the range of a positive smi, we can't
+ // handle either of the top two bits being set in the value.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ Label box_int, done;
+ __ tst(value, Operand(0xC0000000));
+ __ b(ne, &box_int);
+ // Tag integer as smi and return it.
+ __ mov(r0, Operand(value, LSL, kSmiTagSize));
+ __ Ret();
+
+ __ bind(&box_int);
+ __ vmov(s0, value);
+ // Allocate a HeapNumber for the result and perform int-to-double
+ // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all
+ // registers - also when jumping due to exhausted young space.
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
+
+ __ vcvt_f64_u32(d0, s0);
+ __ sub(r1, r2, Operand(kHeapObjectTag));
+ __ vstr(d0, r1, HeapNumber::kValueOffset);
+
+ __ mov(r0, r2);
+ __ Ret();
+ } else {
+ // Check whether unsigned integer fits into smi.
+ Label box_int_0, box_int_1, done;
+ __ tst(value, Operand(0x80000000));
+ __ b(ne, &box_int_0);
+ __ tst(value, Operand(0x40000000));
+ __ b(ne, &box_int_1);
+ // Tag integer as smi and return it.
+ __ mov(r0, Operand(value, LSL, kSmiTagSize));
+ __ Ret();
+
+ Register hiword = value; // r2.
+ Register loword = r3;
+
+ __ bind(&box_int_0);
+ // Integer does not have leading zeros.
+ GenerateUInt2Double(masm, hiword, loword, r4, 0);
+ __ b(&done);
+
+ __ bind(&box_int_1);
+ // Integer has one leading zero.
+ GenerateUInt2Double(masm, hiword, loword, r4, 1);
+
+
+ __ bind(&done);
+ // Integer was converted to double in registers hiword:loword.
+ // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber
+ // clobbers all registers - also when jumping due to exhausted young
+ // space.
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(r4, r5, r7, r6, &slow);
+
+ __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset));
+ __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
+
+ __ mov(r0, r4);
+ __ Ret();
+ }
+ } else if (array_type == kExternalFloatArray) {
+ // For the floating-point array type, we need to always allocate a
+ // HeapNumber.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ // Allocate a HeapNumber for the result. Don't use r0 and r1 as
+ // AllocateHeapNumber clobbers all registers - also when jumping due to
+ // exhausted young space.
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
+ __ vcvt_f64_f32(d0, s0);
+ __ sub(r1, r2, Operand(kHeapObjectTag));
+ __ vstr(d0, r1, HeapNumber::kValueOffset);
+
+ __ mov(r0, r2);
+ __ Ret();
+ } else {
+ // Allocate a HeapNumber for the result. Don't use r0 and r1 as
+ // AllocateHeapNumber clobbers all registers - also when jumping due to
+ // exhausted young space.
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(r3, r4, r5, r6, &slow);
+ // VFP is not available, do manual single to double conversion.
+
+ // r2: floating point value (binary32)
+ // r3: heap number for result
+
+ // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to
+ // the slow case from here.
+ __ and_(r0, value, Operand(kBinary32MantissaMask));
+
+ // Extract exponent to r1. OK to clobber r1 now as there are no jumps to
+ // the slow case from here.
+ __ mov(r1, Operand(value, LSR, kBinary32MantissaBits));
+ __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
+
+ Label exponent_rebiased;
+ __ teq(r1, Operand(0x00, RelocInfo::NONE));
+ __ b(eq, &exponent_rebiased);
+
+ __ teq(r1, Operand(0xff));
+ __ mov(r1, Operand(0x7ff), LeaveCC, eq);
+ __ b(eq, &exponent_rebiased);
+
+ // Rebias exponent.
+ __ add(r1,
+ r1,
+ Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
+
+ __ bind(&exponent_rebiased);
+ __ and_(r2, value, Operand(kBinary32SignMask));
+ value = no_reg;
+ __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord));
+
+ // Shift mantissa.
+ static const int kMantissaShiftForHiWord =
+ kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
+
+ static const int kMantissaShiftForLoWord =
+ kBitsPerInt - kMantissaShiftForHiWord;
+
+ __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord));
+ __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord));
+
+ __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset));
+ __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
+
+ __ mov(r0, r3);
+ __ Ret();
+ }
+
+ } else {
+ // Tag integer as smi and return it.
+ __ mov(r0, Operand(value, LSL, kSmiTagSize));
+ __ Ret();
+ }
+
+ // Slow case, key and receiver still in r0 and r1.
+ __ bind(&slow);
+ __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r2, r3);
+ GenerateRuntimeGetProperty(masm);
+}
+
+
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
@@ -1533,6 +1838,384 @@
}
+// Convert and store int passed in register ival to IEEE 754 single precision
+// floating point value at memory location (dst + 4 * wordoffset)
+// If VFP3 is available use it for conversion.
+static void StoreIntAsFloat(MacroAssembler* masm,
+ Register dst,
+ Register wordoffset,
+ Register ival,
+ Register fval,
+ Register scratch1,
+ Register scratch2) {
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ __ vmov(s0, ival);
+ __ add(scratch1, dst, Operand(wordoffset, LSL, 2));
+ __ vcvt_f32_s32(s0, s0);
+ __ vstr(s0, scratch1, 0);
+ } else {
+ Label not_special, done;
+ // Move sign bit from source to destination. This works because the sign
+ // bit in the exponent word of the double has the same position and polarity
+ // as the 2's complement sign bit in a Smi.
+ ASSERT(kBinary32SignMask == 0x80000000u);
+
+ __ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
+ // Negate value if it is negative.
+ __ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
+
+ // We have -1, 0 or 1, which we treat specially. Register ival contains
+ // absolute value: it is either equal to 1 (special case of -1 and 1),
+ // greater than 1 (not a special case) or less than 1 (special case of 0).
+ __ cmp(ival, Operand(1));
+ __ b(gt, &not_special);
+
+ // For 1 or -1 we need to or in the 0 exponent (biased).
+ static const uint32_t exponent_word_for_1 =
+ kBinary32ExponentBias << kBinary32ExponentShift;
+
+ __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
+ __ b(&done);
+
+ __ bind(&not_special);
+ // Count leading zeros.
+ // Gets the wrong answer for 0, but we already checked for that case above.
+ Register zeros = scratch2;
+ __ CountLeadingZeros(zeros, ival, scratch1);
+
+ // Compute exponent and or it into the exponent register.
+ __ rsb(scratch1,
+ zeros,
+ Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
+
+ __ orr(fval,
+ fval,
+ Operand(scratch1, LSL, kBinary32ExponentShift));
+
+ // Shift up the source chopping the top bit off.
+ __ add(zeros, zeros, Operand(1));
+ // This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
+ __ mov(ival, Operand(ival, LSL, zeros));
+ // And the top (top 20 bits).
+ __ orr(fval,
+ fval,
+ Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
+
+ __ bind(&done);
+ __ str(fval, MemOperand(dst, wordoffset, LSL, 2));
+ }
+}
+
+
+static bool IsElementTypeSigned(ExternalArrayType array_type) {
+ switch (array_type) {
+ case kExternalByteArray:
+ case kExternalShortArray:
+ case kExternalIntArray:
+ return true;
+
+ case kExternalUnsignedByteArray:
+ case kExternalUnsignedShortArray:
+ case kExternalUnsignedIntArray:
+ return false;
+
+ default:
+ UNREACHABLE();
+ return false;
+ }
+}
+
+
+void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm,
+ ExternalArrayType array_type) {
+ // ---------- S t a t e --------------
+ // -- r0 : value
+ // -- r1 : key
+ // -- r2 : receiver
+ // -- lr : return address
+ // -----------------------------------
+ Label slow, check_heap_number;
+
+ // Register usage.
+ Register value = r0;
+ Register key = r1;
+ Register receiver = r2;
+ // r3 mostly holds the elements array or the destination external array.
+
+ // Check that the object isn't a smi.
+ __ BranchOnSmi(receiver, &slow);
+
+ // Check that the object is a JS object. Load map into r3.
+ __ CompareObjectType(receiver, r3, r4, FIRST_JS_OBJECT_TYPE);
+ __ b(le, &slow);
+
+ // Check that the receiver does not require access checks. We need
+ // to do this because this generic stub does not perform map checks.
+ __ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset));
+ __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded));
+ __ b(ne, &slow);
+
+ // Check that the key is a smi.
+ __ BranchOnNotSmi(key, &slow);
+
+ // Check that the elements array is the appropriate type of ExternalArray.
+ __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
+ __ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
+ __ cmp(r4, ip);
+ __ b(ne, &slow);
+
+ // Check that the index is in range.
+ __ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the index.
+ __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
+ __ cmp(r4, ip);
+ // Unsigned comparison catches both negative and too-large values.
+ __ b(hs, &slow);
+
+ // Handle both smis and HeapNumbers in the fast path. Go to the
+ // runtime for all other kinds of values.
+ // r3: external array.
+ // r4: key (integer).
+ __ BranchOnNotSmi(value, &check_heap_number);
+ __ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value.
+ __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
+
+ // r3: base pointer of external storage.
+ // r4: key (integer).
+ // r5: value (integer).
+ switch (array_type) {
+ case kExternalByteArray:
+ case kExternalUnsignedByteArray:
+ __ strb(r5, MemOperand(r3, r4, LSL, 0));
+ break;
+ case kExternalShortArray:
+ case kExternalUnsignedShortArray:
+ __ strh(r5, MemOperand(r3, r4, LSL, 1));
+ break;
+ case kExternalIntArray:
+ case kExternalUnsignedIntArray:
+ __ str(r5, MemOperand(r3, r4, LSL, 2));
+ break;
+ case kExternalFloatArray:
+ // Perform int-to-float conversion and store to memory.
+ StoreIntAsFloat(masm, r3, r4, r5, r6, r7, r9);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+
+ // Entry registers are intact, r0 holds the value which is the return value.
+ __ Ret();
+
+
+ // r3: external array.
+ // r4: index (integer).
+ __ bind(&check_heap_number);
+ __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE);
+ __ b(ne, &slow);
+
+ __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
+
+ // r3: base pointer of external storage.
+ // r4: key (integer).
+
+ // The WebGL specification leaves the behavior of storing NaN and
+ // +/-Infinity into integer arrays basically undefined. For more
+ // reproducible behavior, convert these to zero.
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+
+
+ if (array_type == kExternalFloatArray) {
+ // vldr requires offset to be a multiple of 4 so we can not
+ // include -kHeapObjectTag into it.
+ __ sub(r5, r0, Operand(kHeapObjectTag));
+ __ vldr(d0, r5, HeapNumber::kValueOffset);
+ __ add(r5, r3, Operand(r4, LSL, 2));
+ __ vcvt_f32_f64(s0, d0);
+ __ vstr(s0, r5, 0);
+ } else {
+ // Need to perform float-to-int conversion.
+ // Test for NaN or infinity (both give zero).
+ __ ldr(r6, FieldMemOperand(r5, HeapNumber::kExponentOffset));
+
+ // Hoisted load. vldr requires offset to be a multiple of 4 so we can not
+ // include -kHeapObjectTag into it.
+ __ sub(r5, r0, Operand(kHeapObjectTag));
+ __ vldr(d0, r5, HeapNumber::kValueOffset);
+
+ __ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
+ // NaNs and Infinities have all-one exponents so they sign extend to -1.
+ __ cmp(r6, Operand(-1));
+ __ mov(r5, Operand(Smi::FromInt(0)), LeaveCC, eq);
+
+ // Not infinity or NaN simply convert to int.
+ if (IsElementTypeSigned(array_type)) {
+ __ vcvt_s32_f64(s0, d0, Assembler::RoundToZero, ne);
+ } else {
+ __ vcvt_u32_f64(s0, d0, Assembler::RoundToZero, ne);
+ }
+ __ vmov(r5, s0, ne);
+
+ switch (array_type) {
+ case kExternalByteArray:
+ case kExternalUnsignedByteArray:
+ __ strb(r5, MemOperand(r3, r4, LSL, 0));
+ break;
+ case kExternalShortArray:
+ case kExternalUnsignedShortArray:
+ __ strh(r5, MemOperand(r3, r4, LSL, 1));
+ break;
+ case kExternalIntArray:
+ case kExternalUnsignedIntArray:
+ __ str(r5, MemOperand(r3, r4, LSL, 2));
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+
+ // Entry registers are intact, r0 holds the value which is the return value.
+ __ Ret();
+ } else {
+ // VFP3 is not available do manual conversions.
+ __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset));
+ __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset));
+
+ if (array_type == kExternalFloatArray) {
+ Label done, nan_or_infinity_or_zero;
+ static const int kMantissaInHiWordShift =
+ kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
+
+ static const int kMantissaInLoWordShift =
+ kBitsPerInt - kMantissaInHiWordShift;
+
+ // Test for all special exponent values: zeros, subnormal numbers, NaNs
+ // and infinities. All these should be converted to 0.
+ __ mov(r7, Operand(HeapNumber::kExponentMask));
+ __ and_(r9, r5, Operand(r7), SetCC);
+ __ b(eq, &nan_or_infinity_or_zero);
+
+ __ teq(r9, Operand(r7));
+ __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq);
+ __ b(eq, &nan_or_infinity_or_zero);
+
+ // Rebias exponent.
+ __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
+ __ add(r9,
+ r9,
+ Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
+
+ __ cmp(r9, Operand(kBinary32MaxExponent));
+ __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt);
+ __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt);
+ __ b(gt, &done);
+
+ __ cmp(r9, Operand(kBinary32MinExponent));
+ __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt);
+ __ b(lt, &done);
+
+ __ and_(r7, r5, Operand(HeapNumber::kSignMask));
+ __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
+ __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift));
+ __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift));
+ __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift));
+
+ __ bind(&done);
+ __ str(r5, MemOperand(r3, r4, LSL, 2));
+ // Entry registers are intact, r0 holds the value which is the return
+ // value.
+ __ Ret();
+
+ __ bind(&nan_or_infinity_or_zero);
+ __ and_(r7, r5, Operand(HeapNumber::kSignMask));
+ __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
+ __ orr(r9, r9, r7);
+ __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift));
+ __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift));
+ __ b(&done);
+ } else {
+ bool is_signed_type = IsElementTypeSigned(array_type);
+ int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
+ int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
+
+ Label done, sign;
+
+ // Test for all special exponent values: zeros, subnormal numbers, NaNs
+ // and infinities. All these should be converted to 0.
+ __ mov(r7, Operand(HeapNumber::kExponentMask));
+ __ and_(r9, r5, Operand(r7), SetCC);
+ __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
+ __ b(eq, &done);
+
+ __ teq(r9, Operand(r7));
+ __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
+ __ b(eq, &done);
+
+ // Unbias exponent.
+ __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
+ __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC);
+ // If exponent is negative than result is 0.
+ __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi);
+ __ b(mi, &done);
+
+ // If exponent is too big than result is minimal value.
+ __ cmp(r9, Operand(meaningfull_bits - 1));
+ __ mov(r5, Operand(min_value), LeaveCC, ge);
+ __ b(ge, &done);
+
+ __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC);
+ __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
+ __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
+
+ __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
+ __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl);
+ __ b(pl, &sign);
+
+ __ rsb(r9, r9, Operand(0, RelocInfo::NONE));
+ __ mov(r5, Operand(r5, LSL, r9));
+ __ rsb(r9, r9, Operand(meaningfull_bits));
+ __ orr(r5, r5, Operand(r6, LSR, r9));
+
+ __ bind(&sign);
+ __ teq(r7, Operand(0, RelocInfo::NONE));
+ __ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne);
+
+ __ bind(&done);
+ switch (array_type) {
+ case kExternalByteArray:
+ case kExternalUnsignedByteArray:
+ __ strb(r5, MemOperand(r3, r4, LSL, 0));
+ break;
+ case kExternalShortArray:
+ case kExternalUnsignedShortArray:
+ __ strh(r5, MemOperand(r3, r4, LSL, 1));
+ break;
+ case kExternalIntArray:
+ case kExternalUnsignedIntArray:
+ __ str(r5, MemOperand(r3, r4, LSL, 2));
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+
+ // Slow case: call runtime.
+ __ bind(&slow);
+
+ // Entry registers are intact.
+ // r0: value
+ // r1: key
+ // r2: receiver
+ GenerateRuntimeSetProperty(masm);
+}
+
+
void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : value
« no previous file with comments | « no previous file | src/arm/stub-cache-arm.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698