| Index: gfx/skbitmap_operations.cc
|
| ===================================================================
|
| --- gfx/skbitmap_operations.cc (revision 73487)
|
| +++ gfx/skbitmap_operations.cc (working copy)
|
| @@ -1,721 +0,0 @@
|
| -// Copyright (c) 2009 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "gfx/skbitmap_operations.h"
|
| -
|
| -#include <algorithm>
|
| -#include <string.h>
|
| -
|
| -#include "base/logging.h"
|
| -#include "third_party/skia/include/core/SkBitmap.h"
|
| -#include "third_party/skia/include/core/SkCanvas.h"
|
| -#include "third_party/skia/include/core/SkColorPriv.h"
|
| -#include "third_party/skia/include/core/SkUnPreMultiply.h"
|
| -
|
| -// static
|
| -SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) {
|
| - DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
|
| -
|
| - SkAutoLockPixels lock_image(image);
|
| -
|
| - SkBitmap inverted;
|
| - inverted.setConfig(SkBitmap::kARGB_8888_Config, image.width(), image.height(),
|
| - 0);
|
| - inverted.allocPixels();
|
| - inverted.eraseARGB(0, 0, 0, 0);
|
| -
|
| - for (int y = 0; y < image.height(); ++y) {
|
| - uint32* image_row = image.getAddr32(0, y);
|
| - uint32* dst_row = inverted.getAddr32(0, y);
|
| -
|
| - for (int x = 0; x < image.width(); ++x) {
|
| - uint32 image_pixel = image_row[x];
|
| - dst_row[x] = (image_pixel & 0xFF000000) |
|
| - (0x00FFFFFF - (image_pixel & 0x00FFFFFF));
|
| - }
|
| - }
|
| -
|
| - return inverted;
|
| -}
|
| -
|
| -// static
|
| -SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first,
|
| - const SkBitmap& second) {
|
| - DCHECK(first.width() == second.width());
|
| - DCHECK(first.height() == second.height());
|
| - DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
|
| - DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
|
| -
|
| - SkAutoLockPixels lock_first(first);
|
| - SkAutoLockPixels lock_second(second);
|
| -
|
| - SkBitmap superimposed;
|
| - superimposed.setConfig(SkBitmap::kARGB_8888_Config,
|
| - first.width(), first.height());
|
| - superimposed.allocPixels();
|
| - superimposed.eraseARGB(0, 0, 0, 0);
|
| -
|
| - SkCanvas canvas(superimposed);
|
| -
|
| - SkRect rect;
|
| - rect.fLeft = 0;
|
| - rect.fTop = 0;
|
| - rect.fRight = SkIntToScalar(first.width());
|
| - rect.fBottom = SkIntToScalar(first.height());
|
| -
|
| - canvas.drawBitmapRect(first, NULL, rect);
|
| - canvas.drawBitmapRect(second, NULL, rect);
|
| -
|
| - return superimposed;
|
| -}
|
| -
|
| -// static
|
| -SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first,
|
| - const SkBitmap& second,
|
| - double alpha) {
|
| - DCHECK((alpha >= 0) && (alpha <= 1));
|
| - DCHECK(first.width() == second.width());
|
| - DCHECK(first.height() == second.height());
|
| - DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
|
| - DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
|
| -
|
| - // Optimize for case where we won't need to blend anything.
|
| - static const double alpha_min = 1.0 / 255;
|
| - static const double alpha_max = 254.0 / 255;
|
| - if (alpha < alpha_min)
|
| - return first;
|
| - else if (alpha > alpha_max)
|
| - return second;
|
| -
|
| - SkAutoLockPixels lock_first(first);
|
| - SkAutoLockPixels lock_second(second);
|
| -
|
| - SkBitmap blended;
|
| - blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(),
|
| - 0);
|
| - blended.allocPixels();
|
| - blended.eraseARGB(0, 0, 0, 0);
|
| -
|
| - double first_alpha = 1 - alpha;
|
| -
|
| - for (int y = 0; y < first.height(); ++y) {
|
| - uint32* first_row = first.getAddr32(0, y);
|
| - uint32* second_row = second.getAddr32(0, y);
|
| - uint32* dst_row = blended.getAddr32(0, y);
|
| -
|
| - for (int x = 0; x < first.width(); ++x) {
|
| - uint32 first_pixel = first_row[x];
|
| - uint32 second_pixel = second_row[x];
|
| -
|
| - int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) +
|
| - (SkColorGetA(second_pixel) * alpha));
|
| - int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) +
|
| - (SkColorGetR(second_pixel) * alpha));
|
| - int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) +
|
| - (SkColorGetG(second_pixel) * alpha));
|
| - int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) +
|
| - (SkColorGetB(second_pixel) * alpha));
|
| -
|
| - dst_row[x] = SkColorSetARGB(a, r, g, b);
|
| - }
|
| - }
|
| -
|
| - return blended;
|
| -}
|
| -
|
| -// static
|
| -SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb,
|
| - const SkBitmap& alpha) {
|
| - DCHECK(rgb.width() == alpha.width());
|
| - DCHECK(rgb.height() == alpha.height());
|
| - DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel());
|
| - DCHECK(rgb.config() == SkBitmap::kARGB_8888_Config);
|
| - DCHECK(alpha.config() == SkBitmap::kARGB_8888_Config);
|
| -
|
| - SkBitmap masked;
|
| - masked.setConfig(SkBitmap::kARGB_8888_Config, rgb.width(), rgb.height(), 0);
|
| - masked.allocPixels();
|
| - masked.eraseARGB(0, 0, 0, 0);
|
| -
|
| - SkAutoLockPixels lock_rgb(rgb);
|
| - SkAutoLockPixels lock_alpha(alpha);
|
| - SkAutoLockPixels lock_masked(masked);
|
| -
|
| - for (int y = 0; y < masked.height(); ++y) {
|
| - uint32* rgb_row = rgb.getAddr32(0, y);
|
| - uint32* alpha_row = alpha.getAddr32(0, y);
|
| - uint32* dst_row = masked.getAddr32(0, y);
|
| -
|
| - for (int x = 0; x < masked.width(); ++x) {
|
| - SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]);
|
| - int alpha = SkAlphaMul(SkColorGetA(rgb_pixel), SkColorGetA(alpha_row[x]));
|
| - dst_row[x] = SkColorSetARGB(alpha,
|
| - SkAlphaMul(SkColorGetR(rgb_pixel), alpha),
|
| - SkAlphaMul(SkColorGetG(rgb_pixel), alpha),
|
| - SkAlphaMul(SkColorGetB(rgb_pixel), alpha));
|
| - }
|
| - }
|
| -
|
| - return masked;
|
| -}
|
| -
|
| -// static
|
| -SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color,
|
| - const SkBitmap& image,
|
| - const SkBitmap& mask) {
|
| - DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
|
| - DCHECK(mask.config() == SkBitmap::kARGB_8888_Config);
|
| -
|
| - SkBitmap background;
|
| - background.setConfig(
|
| - SkBitmap::kARGB_8888_Config, mask.width(), mask.height(), 0);
|
| - background.allocPixels();
|
| -
|
| - double bg_a = SkColorGetA(color);
|
| - double bg_r = SkColorGetR(color);
|
| - double bg_g = SkColorGetG(color);
|
| - double bg_b = SkColorGetB(color);
|
| -
|
| - SkAutoLockPixels lock_mask(mask);
|
| - SkAutoLockPixels lock_image(image);
|
| - SkAutoLockPixels lock_background(background);
|
| -
|
| - for (int y = 0; y < mask.height(); ++y) {
|
| - uint32* dst_row = background.getAddr32(0, y);
|
| - uint32* image_row = image.getAddr32(0, y % image.height());
|
| - uint32* mask_row = mask.getAddr32(0, y);
|
| -
|
| - for (int x = 0; x < mask.width(); ++x) {
|
| - uint32 image_pixel = image_row[x % image.width()];
|
| -
|
| - double img_a = SkColorGetA(image_pixel);
|
| - double img_r = SkColorGetR(image_pixel);
|
| - double img_g = SkColorGetG(image_pixel);
|
| - double img_b = SkColorGetB(image_pixel);
|
| -
|
| - double img_alpha = static_cast<double>(img_a) / 255.0;
|
| - double img_inv = 1 - img_alpha;
|
| -
|
| - double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0;
|
| -
|
| - dst_row[x] = SkColorSetARGB(
|
| - static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a),
|
| - static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a),
|
| - static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a),
|
| - static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a));
|
| - }
|
| - }
|
| -
|
| - return background;
|
| -}
|
| -
|
| -namespace {
|
| -namespace HSLShift {
|
| -
|
| -// TODO(viettrungluu): Some things have yet to be optimized at all.
|
| -
|
| -// Notes on and conventions used in the following code
|
| -//
|
| -// Conventions:
|
| -// - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below)
|
| -// - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below)
|
| -// - variables derived from S, L shift parameters: |sdec| and |sinc| for S
|
| -// increase and decrease factors, |ldec| and |linc| for L (see also below)
|
| -//
|
| -// To try to optimize HSL shifts, we do several things:
|
| -// - Avoid unpremultiplying (then processing) then premultiplying. This means
|
| -// that R, G, B values (and also L, but not H and S) should be treated as
|
| -// having a range of 0..A (where A is alpha).
|
| -// - Do things in integer/fixed-point. This avoids costly conversions between
|
| -// floating-point and integer, though I should study the tradeoff more
|
| -// carefully (presumably, at some point of processing complexity, converting
|
| -// and processing using simpler floating-point code will begin to win in
|
| -// performance). Also to be studied is the speed/type of floating point
|
| -// conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>.
|
| -//
|
| -// Conventions for fixed-point arithmetic
|
| -// - Each function has a constant denominator (called |den|, which should be a
|
| -// power of 2), appropriate for the computations done in that function.
|
| -// - A value |x| is then typically represented by a numerator, named |x_num|,
|
| -// so that its actual value is |x_num / den| (casting to floating-point
|
| -// before division).
|
| -// - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x *
|
| -// den| (casting appropriately).
|
| -// - When necessary, a value |x| may also be represented as a numerator over
|
| -// the denominator squared (set |den2 = den * den|). In such a case, the
|
| -// corresponding variable is called |x_num2| (so that its actual value is
|
| -// |x_num^2 / den2|.
|
| -// - The representation of the product of |x| and |y| is be called |x_y_num| if
|
| -// |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In
|
| -// the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|.
|
| -
|
| -// Routine used to process a line; typically specialized for specific kinds of
|
| -// HSL shifts (to optimize).
|
| -typedef void (*LineProcessor)(color_utils::HSL,
|
| - const SkPMColor*,
|
| - SkPMColor*,
|
| - int width);
|
| -
|
| -enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps };
|
| -enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps };
|
| -enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps };
|
| -
|
| -// Epsilon used to judge when shift values are close enough to various critical
|
| -// values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should
|
| -// be small enough, but let's play it safe>
|
| -const double epsilon = 0.0005;
|
| -
|
| -// Line processor: default/universal (i.e., old-school).
|
| -void LineProcDefault(color_utils::HSL hsl_shift, const SkPMColor* in,
|
| - SkPMColor* out, int width) {
|
| - for (int x = 0; x < width; x++) {
|
| - out[x] = SkPreMultiplyColor(color_utils::HSLShift(
|
| - SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift));
|
| - }
|
| -}
|
| -
|
| -// Line processor: no-op (i.e., copy).
|
| -void LineProcCopy(color_utils::HSL hsl_shift, const SkPMColor* in,
|
| - SkPMColor* out, int width) {
|
| - DCHECK(hsl_shift.h < 0);
|
| - DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
|
| - DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
|
| - memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0]));
|
| -}
|
| -
|
| -// Line processor: H no-op, S no-op, L decrease.
|
| -void LineProcHnopSnopLdec(color_utils::HSL hsl_shift, const SkPMColor* in,
|
| - SkPMColor* out, int width) {
|
| - const uint32_t den = 65536;
|
| -
|
| - DCHECK(hsl_shift.h < 0);
|
| - DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
|
| - DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0);
|
| -
|
| - uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den);
|
| - for (int x = 0; x < width; x++) {
|
| - uint32_t a = SkGetPackedA32(in[x]);
|
| - uint32_t r = SkGetPackedR32(in[x]);
|
| - uint32_t g = SkGetPackedG32(in[x]);
|
| - uint32_t b = SkGetPackedB32(in[x]);
|
| - r = r * ldec_num / den;
|
| - g = g * ldec_num / den;
|
| - b = b * ldec_num / den;
|
| - out[x] = SkPackARGB32(a, r, g, b);
|
| - }
|
| -}
|
| -
|
| -// Line processor: H no-op, S no-op, L increase.
|
| -void LineProcHnopSnopLinc(color_utils::HSL hsl_shift, const SkPMColor* in,
|
| - SkPMColor* out, int width) {
|
| - const uint32_t den = 65536;
|
| -
|
| - DCHECK(hsl_shift.h < 0);
|
| - DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
|
| - DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
|
| -
|
| - uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den);
|
| - for (int x = 0; x < width; x++) {
|
| - uint32_t a = SkGetPackedA32(in[x]);
|
| - uint32_t r = SkGetPackedR32(in[x]);
|
| - uint32_t g = SkGetPackedG32(in[x]);
|
| - uint32_t b = SkGetPackedB32(in[x]);
|
| - r += (a - r) * linc_num / den;
|
| - g += (a - g) * linc_num / den;
|
| - b += (a - b) * linc_num / den;
|
| - out[x] = SkPackARGB32(a, r, g, b);
|
| - }
|
| -}
|
| -
|
| -// Saturation changes modifications in RGB
|
| -//
|
| -// (Note that as a further complication, the values we deal in are
|
| -// premultiplied, so R/G/B values must be in the range 0..A. For mathematical
|
| -// purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of
|
| -// generality, assume that R/G/B values are in the range 0..1.)
|
| -//
|
| -// Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L =
|
| -// (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant.
|
| -//
|
| -// For H to remain constant, first, the (numerical) order of R/G/B (from
|
| -// smallest to largest) must remain the same. Second, all the ratios
|
| -// (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of
|
| -// course, if Max = Min, then S = 0 and no saturation change is well-defined,
|
| -// since H is not well-defined).
|
| -//
|
| -// Let C_max be a colour with value Max, C_min be one with value Min, and C_med
|
| -// the remaining colour. Increasing saturation (to the maximum) is accomplished
|
| -// by increasing the value of C_max while simultaneously decreasing C_min and
|
| -// changing C_med so that the ratios are maintained; for the latter, it suffices
|
| -// to keep (C_med-C_min)/(C_max-C_min) constant (and equal to
|
| -// (Med-Min)/(Max-Min)).
|
| -
|
| -// Line processor: H no-op, S decrease, L no-op.
|
| -void LineProcHnopSdecLnop(color_utils::HSL hsl_shift, const SkPMColor* in,
|
| - SkPMColor* out, int width) {
|
| - DCHECK(hsl_shift.h < 0);
|
| - DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
|
| - DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
|
| -
|
| - const int32_t denom = 65536;
|
| - int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
|
| - for (int x = 0; x < width; x++) {
|
| - int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
|
| - int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
|
| - int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
|
| - int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
|
| -
|
| - int32_t vmax, vmin;
|
| - if (r > g) { // This uses 3 compares rather than 4.
|
| - vmax = std::max(r, b);
|
| - vmin = std::min(g, b);
|
| - } else {
|
| - vmax = std::max(g, b);
|
| - vmin = std::min(r, b);
|
| - }
|
| -
|
| - // Use denom * L to avoid rounding.
|
| - int32_t denom_l = (vmax + vmin) * (denom / 2);
|
| - int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
|
| -
|
| - r = (denom_l + r * s_numer - s_numer_l) / denom;
|
| - g = (denom_l + g * s_numer - s_numer_l) / denom;
|
| - b = (denom_l + b * s_numer - s_numer_l) / denom;
|
| - out[x] = SkPackARGB32(a, r, g, b);
|
| - }
|
| -}
|
| -
|
| -// Line processor: H no-op, S decrease, L decrease.
|
| -void LineProcHnopSdecLdec(color_utils::HSL hsl_shift, const SkPMColor* in,
|
| - SkPMColor* out, int width) {
|
| - DCHECK(hsl_shift.h < 0);
|
| - DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
|
| - DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon);
|
| -
|
| - // Can't be too big since we need room for denom*denom and a bit for sign.
|
| - const int32_t denom = 1024;
|
| - int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom);
|
| - int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
|
| - for (int x = 0; x < width; x++) {
|
| - int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
|
| - int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
|
| - int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
|
| - int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
|
| -
|
| - int32_t vmax, vmin;
|
| - if (r > g) { // This uses 3 compares rather than 4.
|
| - vmax = std::max(r, b);
|
| - vmin = std::min(g, b);
|
| - } else {
|
| - vmax = std::max(g, b);
|
| - vmin = std::min(r, b);
|
| - }
|
| -
|
| - // Use denom * L to avoid rounding.
|
| - int32_t denom_l = (vmax + vmin) * (denom / 2);
|
| - int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
|
| -
|
| - r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom);
|
| - g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom);
|
| - b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom);
|
| - out[x] = SkPackARGB32(a, r, g, b);
|
| - }
|
| -}
|
| -
|
| -// Line processor: H no-op, S decrease, L increase.
|
| -void LineProcHnopSdecLinc(color_utils::HSL hsl_shift, const SkPMColor* in,
|
| - SkPMColor* out, int width) {
|
| - DCHECK(hsl_shift.h < 0);
|
| - DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
|
| - DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
|
| -
|
| - // Can't be too big since we need room for denom*denom and a bit for sign.
|
| - const int32_t denom = 1024;
|
| - int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom);
|
| - int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
|
| - for (int x = 0; x < width; x++) {
|
| - int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
|
| - int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
|
| - int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
|
| - int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
|
| -
|
| - int32_t vmax, vmin;
|
| - if (r > g) { // This uses 3 compares rather than 4.
|
| - vmax = std::max(r, b);
|
| - vmin = std::min(g, b);
|
| - } else {
|
| - vmax = std::max(g, b);
|
| - vmin = std::min(r, b);
|
| - }
|
| -
|
| - // Use denom * L to avoid rounding.
|
| - int32_t denom_l = (vmax + vmin) * (denom / 2);
|
| - int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
|
| -
|
| - r = denom_l + r * s_numer - s_numer_l;
|
| - g = denom_l + g * s_numer - s_numer_l;
|
| - b = denom_l + b * s_numer - s_numer_l;
|
| -
|
| - r = (r * denom + (a * denom - r) * l_numer) / (denom * denom);
|
| - g = (g * denom + (a * denom - g) * l_numer) / (denom * denom);
|
| - b = (b * denom + (a * denom - b) * l_numer) / (denom * denom);
|
| - out[x] = SkPackARGB32(a, r, g, b);
|
| - }
|
| -}
|
| -
|
| -const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = {
|
| - { // H: kOpHNone
|
| - { // S: kOpSNone
|
| - LineProcCopy, // L: kOpLNone
|
| - LineProcHnopSnopLdec, // L: kOpLDec
|
| - LineProcHnopSnopLinc // L: kOpLInc
|
| - },
|
| - { // S: kOpSDec
|
| - LineProcHnopSdecLnop, // L: kOpLNone
|
| - LineProcHnopSdecLdec, // L: kOpLDec
|
| - LineProcHnopSdecLinc // L: kOpLInc
|
| - },
|
| - { // S: kOpSInc
|
| - LineProcDefault, // L: kOpLNone
|
| - LineProcDefault, // L: kOpLDec
|
| - LineProcDefault // L: kOpLInc
|
| - }
|
| - },
|
| - { // H: kOpHShift
|
| - { // S: kOpSNone
|
| - LineProcDefault, // L: kOpLNone
|
| - LineProcDefault, // L: kOpLDec
|
| - LineProcDefault // L: kOpLInc
|
| - },
|
| - { // S: kOpSDec
|
| - LineProcDefault, // L: kOpLNone
|
| - LineProcDefault, // L: kOpLDec
|
| - LineProcDefault // L: kOpLInc
|
| - },
|
| - { // S: kOpSInc
|
| - LineProcDefault, // L: kOpLNone
|
| - LineProcDefault, // L: kOpLDec
|
| - LineProcDefault // L: kOpLInc
|
| - }
|
| - }
|
| -};
|
| -
|
| -} // namespace HSLShift
|
| -} // namespace
|
| -
|
| -// static
|
| -SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap(
|
| - const SkBitmap& bitmap,
|
| - color_utils::HSL hsl_shift) {
|
| - // Default to NOPs.
|
| - HSLShift::OperationOnH H_op = HSLShift::kOpHNone;
|
| - HSLShift::OperationOnS S_op = HSLShift::kOpSNone;
|
| - HSLShift::OperationOnL L_op = HSLShift::kOpLNone;
|
| -
|
| - if (hsl_shift.h >= 0 && hsl_shift.h <= 1)
|
| - H_op = HSLShift::kOpHShift;
|
| -
|
| - // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate.
|
| - if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon))
|
| - S_op = HSLShift::kOpSDec;
|
| - else if (hsl_shift.s >= (0.5 + HSLShift::epsilon))
|
| - S_op = HSLShift::kOpSInc;
|
| -
|
| - // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white.
|
| - if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon))
|
| - L_op = HSLShift::kOpLDec;
|
| - else if (hsl_shift.l >= (0.5 + HSLShift::epsilon))
|
| - L_op = HSLShift::kOpLInc;
|
| -
|
| - HSLShift::LineProcessor line_proc =
|
| - HSLShift::kLineProcessors[H_op][S_op][L_op];
|
| -
|
| - DCHECK(bitmap.empty() == false);
|
| - DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
|
| -
|
| - SkBitmap shifted;
|
| - shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(),
|
| - bitmap.height(), 0);
|
| - shifted.allocPixels();
|
| - shifted.eraseARGB(0, 0, 0, 0);
|
| - shifted.setIsOpaque(false);
|
| -
|
| - SkAutoLockPixels lock_bitmap(bitmap);
|
| - SkAutoLockPixels lock_shifted(shifted);
|
| -
|
| - // Loop through the pixels of the original bitmap.
|
| - for (int y = 0; y < bitmap.height(); ++y) {
|
| - SkPMColor* pixels = bitmap.getAddr32(0, y);
|
| - SkPMColor* tinted_pixels = shifted.getAddr32(0, y);
|
| -
|
| - (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width());
|
| - }
|
| -
|
| - return shifted;
|
| -}
|
| -
|
| -// static
|
| -SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source,
|
| - int src_x, int src_y,
|
| - int dst_w, int dst_h) {
|
| - DCHECK(source.getConfig() == SkBitmap::kARGB_8888_Config);
|
| -
|
| - SkBitmap cropped;
|
| - cropped.setConfig(SkBitmap::kARGB_8888_Config, dst_w, dst_h, 0);
|
| - cropped.allocPixels();
|
| - cropped.eraseARGB(0, 0, 0, 0);
|
| -
|
| - SkAutoLockPixels lock_source(source);
|
| - SkAutoLockPixels lock_cropped(cropped);
|
| -
|
| - // Loop through the pixels of the original bitmap.
|
| - for (int y = 0; y < dst_h; ++y) {
|
| - int y_pix = (src_y + y) % source.height();
|
| - while (y_pix < 0)
|
| - y_pix += source.height();
|
| -
|
| - uint32* source_row = source.getAddr32(0, y_pix);
|
| - uint32* dst_row = cropped.getAddr32(0, y);
|
| -
|
| - for (int x = 0; x < dst_w; ++x) {
|
| - int x_pix = (src_x + x) % source.width();
|
| - while (x_pix < 0)
|
| - x_pix += source.width();
|
| -
|
| - dst_row[x] = source_row[x_pix];
|
| - }
|
| - }
|
| -
|
| - return cropped;
|
| -}
|
| -
|
| -// static
|
| -SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap,
|
| - int min_w, int min_h) {
|
| - if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) ||
|
| - (min_w < 0) || (min_h < 0))
|
| - return bitmap;
|
| -
|
| - // Since bitmaps are refcounted, this copy will be fast.
|
| - SkBitmap current = bitmap;
|
| - while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) &&
|
| - (current.width() > 1) && (current.height() > 1))
|
| - current = DownsampleByTwo(current);
|
| - return current;
|
| -}
|
| -
|
| -// static
|
| -SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) {
|
| - // Handle the nop case.
|
| - if ((bitmap.width() <= 1) || (bitmap.height() <= 1))
|
| - return bitmap;
|
| -
|
| - SkBitmap result;
|
| - result.setConfig(SkBitmap::kARGB_8888_Config,
|
| - (bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2);
|
| - result.allocPixels();
|
| -
|
| - SkAutoLockPixels lock(bitmap);
|
| - for (int dest_y = 0; dest_y < result.height(); ++dest_y) {
|
| - for (int dest_x = 0; dest_x < result.width(); ++dest_x) {
|
| - // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very
|
| - // clever in that it does two channels at once: alpha and green ("ag")
|
| - // and red and blue ("rb"). Each channel gets averaged across 4 pixels
|
| - // to get the result.
|
| - int src_x = dest_x << 1;
|
| - int src_y = dest_y << 1;
|
| - const SkPMColor* cur_src = bitmap.getAddr32(src_x, src_y);
|
| - SkPMColor tmp, ag, rb;
|
| -
|
| - // Top left pixel of the 2x2 block.
|
| - tmp = *cur_src;
|
| - ag = (tmp >> 8) & 0xFF00FF;
|
| - rb = tmp & 0xFF00FF;
|
| - if (src_x < (bitmap.width() - 1))
|
| - ++cur_src;
|
| -
|
| - // Top right pixel of the 2x2 block.
|
| - tmp = *cur_src;
|
| - ag += (tmp >> 8) & 0xFF00FF;
|
| - rb += tmp & 0xFF00FF;
|
| - if (src_y < (bitmap.height() - 1))
|
| - cur_src = bitmap.getAddr32(src_x, src_y + 1);
|
| - else
|
| - cur_src = bitmap.getAddr32(src_x, src_y); // Move back to the first.
|
| -
|
| - // Bottom left pixel of the 2x2 block.
|
| - tmp = *cur_src;
|
| - ag += (tmp >> 8) & 0xFF00FF;
|
| - rb += tmp & 0xFF00FF;
|
| - if (src_x < (bitmap.width() - 1))
|
| - ++cur_src;
|
| -
|
| - // Bottom right pixel of the 2x2 block.
|
| - tmp = *cur_src;
|
| - ag += (tmp >> 8) & 0xFF00FF;
|
| - rb += tmp & 0xFF00FF;
|
| -
|
| - // Put the channels back together, dividing each by 4 to get the average.
|
| - // |ag| has the alpha and green channels shifted right by 8 bits from
|
| - // there they should end up, so shifting left by 6 gives them in the
|
| - // correct position divided by 4.
|
| - *result.getAddr32(dest_x, dest_y) =
|
| - ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
|
| - }
|
| - }
|
| -
|
| - return result;
|
| -}
|
| -
|
| -// static
|
| -SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) {
|
| - if (bitmap.isNull())
|
| - return bitmap;
|
| - if (bitmap.isOpaque())
|
| - return bitmap;
|
| -
|
| - SkBitmap opaque_bitmap;
|
| - opaque_bitmap.setConfig(bitmap.config(), bitmap.width(), bitmap.height());
|
| - opaque_bitmap.allocPixels();
|
| -
|
| - {
|
| - SkAutoLockPixels bitmap_lock(bitmap);
|
| - SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap);
|
| - for (int y = 0; y < opaque_bitmap.height(); y++) {
|
| - for (int x = 0; x < opaque_bitmap.width(); x++) {
|
| - uint32 src_pixel = *bitmap.getAddr32(x, y);
|
| - uint32* dst_pixel = opaque_bitmap.getAddr32(x, y);
|
| - SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel);
|
| - *dst_pixel = unmultiplied;
|
| - }
|
| - }
|
| - }
|
| -
|
| - opaque_bitmap.setIsOpaque(true);
|
| - return opaque_bitmap;
|
| -}
|
| -
|
| -// static
|
| -SkBitmap SkBitmapOperations::CreateTransposedBtmap(const SkBitmap& image) {
|
| - DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
|
| -
|
| - SkAutoLockPixels lock_image(image);
|
| -
|
| - SkBitmap transposed;
|
| - transposed.setConfig(
|
| - SkBitmap::kARGB_8888_Config, image.height(), image.width(), 0);
|
| - transposed.allocPixels();
|
| - transposed.eraseARGB(0, 0, 0, 0);
|
| -
|
| - for (int y = 0; y < image.height(); ++y) {
|
| - uint32* image_row = image.getAddr32(0, y);
|
| - for (int x = 0; x < image.width(); ++x) {
|
| - uint32* dst = transposed.getAddr32(y, x);
|
| - *dst = image_row[x];
|
| - }
|
| - }
|
| -
|
| - return transposed;
|
| -}
|
| -
|
|
|