Index: gfx/skbitmap_operations.cc |
=================================================================== |
--- gfx/skbitmap_operations.cc (revision 73487) |
+++ gfx/skbitmap_operations.cc (working copy) |
@@ -1,721 +0,0 @@ |
-// Copyright (c) 2009 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "gfx/skbitmap_operations.h" |
- |
-#include <algorithm> |
-#include <string.h> |
- |
-#include "base/logging.h" |
-#include "third_party/skia/include/core/SkBitmap.h" |
-#include "third_party/skia/include/core/SkCanvas.h" |
-#include "third_party/skia/include/core/SkColorPriv.h" |
-#include "third_party/skia/include/core/SkUnPreMultiply.h" |
- |
-// static |
-SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) { |
- DCHECK(image.config() == SkBitmap::kARGB_8888_Config); |
- |
- SkAutoLockPixels lock_image(image); |
- |
- SkBitmap inverted; |
- inverted.setConfig(SkBitmap::kARGB_8888_Config, image.width(), image.height(), |
- 0); |
- inverted.allocPixels(); |
- inverted.eraseARGB(0, 0, 0, 0); |
- |
- for (int y = 0; y < image.height(); ++y) { |
- uint32* image_row = image.getAddr32(0, y); |
- uint32* dst_row = inverted.getAddr32(0, y); |
- |
- for (int x = 0; x < image.width(); ++x) { |
- uint32 image_pixel = image_row[x]; |
- dst_row[x] = (image_pixel & 0xFF000000) | |
- (0x00FFFFFF - (image_pixel & 0x00FFFFFF)); |
- } |
- } |
- |
- return inverted; |
-} |
- |
-// static |
-SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first, |
- const SkBitmap& second) { |
- DCHECK(first.width() == second.width()); |
- DCHECK(first.height() == second.height()); |
- DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); |
- DCHECK(first.config() == SkBitmap::kARGB_8888_Config); |
- |
- SkAutoLockPixels lock_first(first); |
- SkAutoLockPixels lock_second(second); |
- |
- SkBitmap superimposed; |
- superimposed.setConfig(SkBitmap::kARGB_8888_Config, |
- first.width(), first.height()); |
- superimposed.allocPixels(); |
- superimposed.eraseARGB(0, 0, 0, 0); |
- |
- SkCanvas canvas(superimposed); |
- |
- SkRect rect; |
- rect.fLeft = 0; |
- rect.fTop = 0; |
- rect.fRight = SkIntToScalar(first.width()); |
- rect.fBottom = SkIntToScalar(first.height()); |
- |
- canvas.drawBitmapRect(first, NULL, rect); |
- canvas.drawBitmapRect(second, NULL, rect); |
- |
- return superimposed; |
-} |
- |
-// static |
-SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first, |
- const SkBitmap& second, |
- double alpha) { |
- DCHECK((alpha >= 0) && (alpha <= 1)); |
- DCHECK(first.width() == second.width()); |
- DCHECK(first.height() == second.height()); |
- DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); |
- DCHECK(first.config() == SkBitmap::kARGB_8888_Config); |
- |
- // Optimize for case where we won't need to blend anything. |
- static const double alpha_min = 1.0 / 255; |
- static const double alpha_max = 254.0 / 255; |
- if (alpha < alpha_min) |
- return first; |
- else if (alpha > alpha_max) |
- return second; |
- |
- SkAutoLockPixels lock_first(first); |
- SkAutoLockPixels lock_second(second); |
- |
- SkBitmap blended; |
- blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(), |
- 0); |
- blended.allocPixels(); |
- blended.eraseARGB(0, 0, 0, 0); |
- |
- double first_alpha = 1 - alpha; |
- |
- for (int y = 0; y < first.height(); ++y) { |
- uint32* first_row = first.getAddr32(0, y); |
- uint32* second_row = second.getAddr32(0, y); |
- uint32* dst_row = blended.getAddr32(0, y); |
- |
- for (int x = 0; x < first.width(); ++x) { |
- uint32 first_pixel = first_row[x]; |
- uint32 second_pixel = second_row[x]; |
- |
- int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) + |
- (SkColorGetA(second_pixel) * alpha)); |
- int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) + |
- (SkColorGetR(second_pixel) * alpha)); |
- int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) + |
- (SkColorGetG(second_pixel) * alpha)); |
- int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) + |
- (SkColorGetB(second_pixel) * alpha)); |
- |
- dst_row[x] = SkColorSetARGB(a, r, g, b); |
- } |
- } |
- |
- return blended; |
-} |
- |
-// static |
-SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb, |
- const SkBitmap& alpha) { |
- DCHECK(rgb.width() == alpha.width()); |
- DCHECK(rgb.height() == alpha.height()); |
- DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel()); |
- DCHECK(rgb.config() == SkBitmap::kARGB_8888_Config); |
- DCHECK(alpha.config() == SkBitmap::kARGB_8888_Config); |
- |
- SkBitmap masked; |
- masked.setConfig(SkBitmap::kARGB_8888_Config, rgb.width(), rgb.height(), 0); |
- masked.allocPixels(); |
- masked.eraseARGB(0, 0, 0, 0); |
- |
- SkAutoLockPixels lock_rgb(rgb); |
- SkAutoLockPixels lock_alpha(alpha); |
- SkAutoLockPixels lock_masked(masked); |
- |
- for (int y = 0; y < masked.height(); ++y) { |
- uint32* rgb_row = rgb.getAddr32(0, y); |
- uint32* alpha_row = alpha.getAddr32(0, y); |
- uint32* dst_row = masked.getAddr32(0, y); |
- |
- for (int x = 0; x < masked.width(); ++x) { |
- SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]); |
- int alpha = SkAlphaMul(SkColorGetA(rgb_pixel), SkColorGetA(alpha_row[x])); |
- dst_row[x] = SkColorSetARGB(alpha, |
- SkAlphaMul(SkColorGetR(rgb_pixel), alpha), |
- SkAlphaMul(SkColorGetG(rgb_pixel), alpha), |
- SkAlphaMul(SkColorGetB(rgb_pixel), alpha)); |
- } |
- } |
- |
- return masked; |
-} |
- |
-// static |
-SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color, |
- const SkBitmap& image, |
- const SkBitmap& mask) { |
- DCHECK(image.config() == SkBitmap::kARGB_8888_Config); |
- DCHECK(mask.config() == SkBitmap::kARGB_8888_Config); |
- |
- SkBitmap background; |
- background.setConfig( |
- SkBitmap::kARGB_8888_Config, mask.width(), mask.height(), 0); |
- background.allocPixels(); |
- |
- double bg_a = SkColorGetA(color); |
- double bg_r = SkColorGetR(color); |
- double bg_g = SkColorGetG(color); |
- double bg_b = SkColorGetB(color); |
- |
- SkAutoLockPixels lock_mask(mask); |
- SkAutoLockPixels lock_image(image); |
- SkAutoLockPixels lock_background(background); |
- |
- for (int y = 0; y < mask.height(); ++y) { |
- uint32* dst_row = background.getAddr32(0, y); |
- uint32* image_row = image.getAddr32(0, y % image.height()); |
- uint32* mask_row = mask.getAddr32(0, y); |
- |
- for (int x = 0; x < mask.width(); ++x) { |
- uint32 image_pixel = image_row[x % image.width()]; |
- |
- double img_a = SkColorGetA(image_pixel); |
- double img_r = SkColorGetR(image_pixel); |
- double img_g = SkColorGetG(image_pixel); |
- double img_b = SkColorGetB(image_pixel); |
- |
- double img_alpha = static_cast<double>(img_a) / 255.0; |
- double img_inv = 1 - img_alpha; |
- |
- double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0; |
- |
- dst_row[x] = SkColorSetARGB( |
- static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a), |
- static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a), |
- static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a), |
- static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a)); |
- } |
- } |
- |
- return background; |
-} |
- |
-namespace { |
-namespace HSLShift { |
- |
-// TODO(viettrungluu): Some things have yet to be optimized at all. |
- |
-// Notes on and conventions used in the following code |
-// |
-// Conventions: |
-// - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below) |
-// - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below) |
-// - variables derived from S, L shift parameters: |sdec| and |sinc| for S |
-// increase and decrease factors, |ldec| and |linc| for L (see also below) |
-// |
-// To try to optimize HSL shifts, we do several things: |
-// - Avoid unpremultiplying (then processing) then premultiplying. This means |
-// that R, G, B values (and also L, but not H and S) should be treated as |
-// having a range of 0..A (where A is alpha). |
-// - Do things in integer/fixed-point. This avoids costly conversions between |
-// floating-point and integer, though I should study the tradeoff more |
-// carefully (presumably, at some point of processing complexity, converting |
-// and processing using simpler floating-point code will begin to win in |
-// performance). Also to be studied is the speed/type of floating point |
-// conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>. |
-// |
-// Conventions for fixed-point arithmetic |
-// - Each function has a constant denominator (called |den|, which should be a |
-// power of 2), appropriate for the computations done in that function. |
-// - A value |x| is then typically represented by a numerator, named |x_num|, |
-// so that its actual value is |x_num / den| (casting to floating-point |
-// before division). |
-// - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x * |
-// den| (casting appropriately). |
-// - When necessary, a value |x| may also be represented as a numerator over |
-// the denominator squared (set |den2 = den * den|). In such a case, the |
-// corresponding variable is called |x_num2| (so that its actual value is |
-// |x_num^2 / den2|. |
-// - The representation of the product of |x| and |y| is be called |x_y_num| if |
-// |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In |
-// the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|. |
- |
-// Routine used to process a line; typically specialized for specific kinds of |
-// HSL shifts (to optimize). |
-typedef void (*LineProcessor)(color_utils::HSL, |
- const SkPMColor*, |
- SkPMColor*, |
- int width); |
- |
-enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps }; |
-enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps }; |
-enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps }; |
- |
-// Epsilon used to judge when shift values are close enough to various critical |
-// values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should |
-// be small enough, but let's play it safe> |
-const double epsilon = 0.0005; |
- |
-// Line processor: default/universal (i.e., old-school). |
-void LineProcDefault(color_utils::HSL hsl_shift, const SkPMColor* in, |
- SkPMColor* out, int width) { |
- for (int x = 0; x < width; x++) { |
- out[x] = SkPreMultiplyColor(color_utils::HSLShift( |
- SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift)); |
- } |
-} |
- |
-// Line processor: no-op (i.e., copy). |
-void LineProcCopy(color_utils::HSL hsl_shift, const SkPMColor* in, |
- SkPMColor* out, int width) { |
- DCHECK(hsl_shift.h < 0); |
- DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); |
- DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); |
- memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0])); |
-} |
- |
-// Line processor: H no-op, S no-op, L decrease. |
-void LineProcHnopSnopLdec(color_utils::HSL hsl_shift, const SkPMColor* in, |
- SkPMColor* out, int width) { |
- const uint32_t den = 65536; |
- |
- DCHECK(hsl_shift.h < 0); |
- DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); |
- DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0); |
- |
- uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den); |
- for (int x = 0; x < width; x++) { |
- uint32_t a = SkGetPackedA32(in[x]); |
- uint32_t r = SkGetPackedR32(in[x]); |
- uint32_t g = SkGetPackedG32(in[x]); |
- uint32_t b = SkGetPackedB32(in[x]); |
- r = r * ldec_num / den; |
- g = g * ldec_num / den; |
- b = b * ldec_num / den; |
- out[x] = SkPackARGB32(a, r, g, b); |
- } |
-} |
- |
-// Line processor: H no-op, S no-op, L increase. |
-void LineProcHnopSnopLinc(color_utils::HSL hsl_shift, const SkPMColor* in, |
- SkPMColor* out, int width) { |
- const uint32_t den = 65536; |
- |
- DCHECK(hsl_shift.h < 0); |
- DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); |
- DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); |
- |
- uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den); |
- for (int x = 0; x < width; x++) { |
- uint32_t a = SkGetPackedA32(in[x]); |
- uint32_t r = SkGetPackedR32(in[x]); |
- uint32_t g = SkGetPackedG32(in[x]); |
- uint32_t b = SkGetPackedB32(in[x]); |
- r += (a - r) * linc_num / den; |
- g += (a - g) * linc_num / den; |
- b += (a - b) * linc_num / den; |
- out[x] = SkPackARGB32(a, r, g, b); |
- } |
-} |
- |
-// Saturation changes modifications in RGB |
-// |
-// (Note that as a further complication, the values we deal in are |
-// premultiplied, so R/G/B values must be in the range 0..A. For mathematical |
-// purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of |
-// generality, assume that R/G/B values are in the range 0..1.) |
-// |
-// Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L = |
-// (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant. |
-// |
-// For H to remain constant, first, the (numerical) order of R/G/B (from |
-// smallest to largest) must remain the same. Second, all the ratios |
-// (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of |
-// course, if Max = Min, then S = 0 and no saturation change is well-defined, |
-// since H is not well-defined). |
-// |
-// Let C_max be a colour with value Max, C_min be one with value Min, and C_med |
-// the remaining colour. Increasing saturation (to the maximum) is accomplished |
-// by increasing the value of C_max while simultaneously decreasing C_min and |
-// changing C_med so that the ratios are maintained; for the latter, it suffices |
-// to keep (C_med-C_min)/(C_max-C_min) constant (and equal to |
-// (Med-Min)/(Max-Min)). |
- |
-// Line processor: H no-op, S decrease, L no-op. |
-void LineProcHnopSdecLnop(color_utils::HSL hsl_shift, const SkPMColor* in, |
- SkPMColor* out, int width) { |
- DCHECK(hsl_shift.h < 0); |
- DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); |
- DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); |
- |
- const int32_t denom = 65536; |
- int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); |
- for (int x = 0; x < width; x++) { |
- int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); |
- int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); |
- int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); |
- int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); |
- |
- int32_t vmax, vmin; |
- if (r > g) { // This uses 3 compares rather than 4. |
- vmax = std::max(r, b); |
- vmin = std::min(g, b); |
- } else { |
- vmax = std::max(g, b); |
- vmin = std::min(r, b); |
- } |
- |
- // Use denom * L to avoid rounding. |
- int32_t denom_l = (vmax + vmin) * (denom / 2); |
- int32_t s_numer_l = (vmax + vmin) * s_numer / 2; |
- |
- r = (denom_l + r * s_numer - s_numer_l) / denom; |
- g = (denom_l + g * s_numer - s_numer_l) / denom; |
- b = (denom_l + b * s_numer - s_numer_l) / denom; |
- out[x] = SkPackARGB32(a, r, g, b); |
- } |
-} |
- |
-// Line processor: H no-op, S decrease, L decrease. |
-void LineProcHnopSdecLdec(color_utils::HSL hsl_shift, const SkPMColor* in, |
- SkPMColor* out, int width) { |
- DCHECK(hsl_shift.h < 0); |
- DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); |
- DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon); |
- |
- // Can't be too big since we need room for denom*denom and a bit for sign. |
- const int32_t denom = 1024; |
- int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom); |
- int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); |
- for (int x = 0; x < width; x++) { |
- int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); |
- int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); |
- int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); |
- int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); |
- |
- int32_t vmax, vmin; |
- if (r > g) { // This uses 3 compares rather than 4. |
- vmax = std::max(r, b); |
- vmin = std::min(g, b); |
- } else { |
- vmax = std::max(g, b); |
- vmin = std::min(r, b); |
- } |
- |
- // Use denom * L to avoid rounding. |
- int32_t denom_l = (vmax + vmin) * (denom / 2); |
- int32_t s_numer_l = (vmax + vmin) * s_numer / 2; |
- |
- r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom); |
- g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom); |
- b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom); |
- out[x] = SkPackARGB32(a, r, g, b); |
- } |
-} |
- |
-// Line processor: H no-op, S decrease, L increase. |
-void LineProcHnopSdecLinc(color_utils::HSL hsl_shift, const SkPMColor* in, |
- SkPMColor* out, int width) { |
- DCHECK(hsl_shift.h < 0); |
- DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); |
- DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); |
- |
- // Can't be too big since we need room for denom*denom and a bit for sign. |
- const int32_t denom = 1024; |
- int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom); |
- int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); |
- for (int x = 0; x < width; x++) { |
- int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); |
- int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); |
- int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); |
- int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); |
- |
- int32_t vmax, vmin; |
- if (r > g) { // This uses 3 compares rather than 4. |
- vmax = std::max(r, b); |
- vmin = std::min(g, b); |
- } else { |
- vmax = std::max(g, b); |
- vmin = std::min(r, b); |
- } |
- |
- // Use denom * L to avoid rounding. |
- int32_t denom_l = (vmax + vmin) * (denom / 2); |
- int32_t s_numer_l = (vmax + vmin) * s_numer / 2; |
- |
- r = denom_l + r * s_numer - s_numer_l; |
- g = denom_l + g * s_numer - s_numer_l; |
- b = denom_l + b * s_numer - s_numer_l; |
- |
- r = (r * denom + (a * denom - r) * l_numer) / (denom * denom); |
- g = (g * denom + (a * denom - g) * l_numer) / (denom * denom); |
- b = (b * denom + (a * denom - b) * l_numer) / (denom * denom); |
- out[x] = SkPackARGB32(a, r, g, b); |
- } |
-} |
- |
-const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = { |
- { // H: kOpHNone |
- { // S: kOpSNone |
- LineProcCopy, // L: kOpLNone |
- LineProcHnopSnopLdec, // L: kOpLDec |
- LineProcHnopSnopLinc // L: kOpLInc |
- }, |
- { // S: kOpSDec |
- LineProcHnopSdecLnop, // L: kOpLNone |
- LineProcHnopSdecLdec, // L: kOpLDec |
- LineProcHnopSdecLinc // L: kOpLInc |
- }, |
- { // S: kOpSInc |
- LineProcDefault, // L: kOpLNone |
- LineProcDefault, // L: kOpLDec |
- LineProcDefault // L: kOpLInc |
- } |
- }, |
- { // H: kOpHShift |
- { // S: kOpSNone |
- LineProcDefault, // L: kOpLNone |
- LineProcDefault, // L: kOpLDec |
- LineProcDefault // L: kOpLInc |
- }, |
- { // S: kOpSDec |
- LineProcDefault, // L: kOpLNone |
- LineProcDefault, // L: kOpLDec |
- LineProcDefault // L: kOpLInc |
- }, |
- { // S: kOpSInc |
- LineProcDefault, // L: kOpLNone |
- LineProcDefault, // L: kOpLDec |
- LineProcDefault // L: kOpLInc |
- } |
- } |
-}; |
- |
-} // namespace HSLShift |
-} // namespace |
- |
-// static |
-SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap( |
- const SkBitmap& bitmap, |
- color_utils::HSL hsl_shift) { |
- // Default to NOPs. |
- HSLShift::OperationOnH H_op = HSLShift::kOpHNone; |
- HSLShift::OperationOnS S_op = HSLShift::kOpSNone; |
- HSLShift::OperationOnL L_op = HSLShift::kOpLNone; |
- |
- if (hsl_shift.h >= 0 && hsl_shift.h <= 1) |
- H_op = HSLShift::kOpHShift; |
- |
- // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate. |
- if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon)) |
- S_op = HSLShift::kOpSDec; |
- else if (hsl_shift.s >= (0.5 + HSLShift::epsilon)) |
- S_op = HSLShift::kOpSInc; |
- |
- // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white. |
- if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon)) |
- L_op = HSLShift::kOpLDec; |
- else if (hsl_shift.l >= (0.5 + HSLShift::epsilon)) |
- L_op = HSLShift::kOpLInc; |
- |
- HSLShift::LineProcessor line_proc = |
- HSLShift::kLineProcessors[H_op][S_op][L_op]; |
- |
- DCHECK(bitmap.empty() == false); |
- DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config); |
- |
- SkBitmap shifted; |
- shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(), |
- bitmap.height(), 0); |
- shifted.allocPixels(); |
- shifted.eraseARGB(0, 0, 0, 0); |
- shifted.setIsOpaque(false); |
- |
- SkAutoLockPixels lock_bitmap(bitmap); |
- SkAutoLockPixels lock_shifted(shifted); |
- |
- // Loop through the pixels of the original bitmap. |
- for (int y = 0; y < bitmap.height(); ++y) { |
- SkPMColor* pixels = bitmap.getAddr32(0, y); |
- SkPMColor* tinted_pixels = shifted.getAddr32(0, y); |
- |
- (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width()); |
- } |
- |
- return shifted; |
-} |
- |
-// static |
-SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source, |
- int src_x, int src_y, |
- int dst_w, int dst_h) { |
- DCHECK(source.getConfig() == SkBitmap::kARGB_8888_Config); |
- |
- SkBitmap cropped; |
- cropped.setConfig(SkBitmap::kARGB_8888_Config, dst_w, dst_h, 0); |
- cropped.allocPixels(); |
- cropped.eraseARGB(0, 0, 0, 0); |
- |
- SkAutoLockPixels lock_source(source); |
- SkAutoLockPixels lock_cropped(cropped); |
- |
- // Loop through the pixels of the original bitmap. |
- for (int y = 0; y < dst_h; ++y) { |
- int y_pix = (src_y + y) % source.height(); |
- while (y_pix < 0) |
- y_pix += source.height(); |
- |
- uint32* source_row = source.getAddr32(0, y_pix); |
- uint32* dst_row = cropped.getAddr32(0, y); |
- |
- for (int x = 0; x < dst_w; ++x) { |
- int x_pix = (src_x + x) % source.width(); |
- while (x_pix < 0) |
- x_pix += source.width(); |
- |
- dst_row[x] = source_row[x_pix]; |
- } |
- } |
- |
- return cropped; |
-} |
- |
-// static |
-SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap, |
- int min_w, int min_h) { |
- if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) || |
- (min_w < 0) || (min_h < 0)) |
- return bitmap; |
- |
- // Since bitmaps are refcounted, this copy will be fast. |
- SkBitmap current = bitmap; |
- while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) && |
- (current.width() > 1) && (current.height() > 1)) |
- current = DownsampleByTwo(current); |
- return current; |
-} |
- |
-// static |
-SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) { |
- // Handle the nop case. |
- if ((bitmap.width() <= 1) || (bitmap.height() <= 1)) |
- return bitmap; |
- |
- SkBitmap result; |
- result.setConfig(SkBitmap::kARGB_8888_Config, |
- (bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2); |
- result.allocPixels(); |
- |
- SkAutoLockPixels lock(bitmap); |
- for (int dest_y = 0; dest_y < result.height(); ++dest_y) { |
- for (int dest_x = 0; dest_x < result.width(); ++dest_x) { |
- // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very |
- // clever in that it does two channels at once: alpha and green ("ag") |
- // and red and blue ("rb"). Each channel gets averaged across 4 pixels |
- // to get the result. |
- int src_x = dest_x << 1; |
- int src_y = dest_y << 1; |
- const SkPMColor* cur_src = bitmap.getAddr32(src_x, src_y); |
- SkPMColor tmp, ag, rb; |
- |
- // Top left pixel of the 2x2 block. |
- tmp = *cur_src; |
- ag = (tmp >> 8) & 0xFF00FF; |
- rb = tmp & 0xFF00FF; |
- if (src_x < (bitmap.width() - 1)) |
- ++cur_src; |
- |
- // Top right pixel of the 2x2 block. |
- tmp = *cur_src; |
- ag += (tmp >> 8) & 0xFF00FF; |
- rb += tmp & 0xFF00FF; |
- if (src_y < (bitmap.height() - 1)) |
- cur_src = bitmap.getAddr32(src_x, src_y + 1); |
- else |
- cur_src = bitmap.getAddr32(src_x, src_y); // Move back to the first. |
- |
- // Bottom left pixel of the 2x2 block. |
- tmp = *cur_src; |
- ag += (tmp >> 8) & 0xFF00FF; |
- rb += tmp & 0xFF00FF; |
- if (src_x < (bitmap.width() - 1)) |
- ++cur_src; |
- |
- // Bottom right pixel of the 2x2 block. |
- tmp = *cur_src; |
- ag += (tmp >> 8) & 0xFF00FF; |
- rb += tmp & 0xFF00FF; |
- |
- // Put the channels back together, dividing each by 4 to get the average. |
- // |ag| has the alpha and green channels shifted right by 8 bits from |
- // there they should end up, so shifting left by 6 gives them in the |
- // correct position divided by 4. |
- *result.getAddr32(dest_x, dest_y) = |
- ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00); |
- } |
- } |
- |
- return result; |
-} |
- |
-// static |
-SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) { |
- if (bitmap.isNull()) |
- return bitmap; |
- if (bitmap.isOpaque()) |
- return bitmap; |
- |
- SkBitmap opaque_bitmap; |
- opaque_bitmap.setConfig(bitmap.config(), bitmap.width(), bitmap.height()); |
- opaque_bitmap.allocPixels(); |
- |
- { |
- SkAutoLockPixels bitmap_lock(bitmap); |
- SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap); |
- for (int y = 0; y < opaque_bitmap.height(); y++) { |
- for (int x = 0; x < opaque_bitmap.width(); x++) { |
- uint32 src_pixel = *bitmap.getAddr32(x, y); |
- uint32* dst_pixel = opaque_bitmap.getAddr32(x, y); |
- SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel); |
- *dst_pixel = unmultiplied; |
- } |
- } |
- } |
- |
- opaque_bitmap.setIsOpaque(true); |
- return opaque_bitmap; |
-} |
- |
-// static |
-SkBitmap SkBitmapOperations::CreateTransposedBtmap(const SkBitmap& image) { |
- DCHECK(image.config() == SkBitmap::kARGB_8888_Config); |
- |
- SkAutoLockPixels lock_image(image); |
- |
- SkBitmap transposed; |
- transposed.setConfig( |
- SkBitmap::kARGB_8888_Config, image.height(), image.width(), 0); |
- transposed.allocPixels(); |
- transposed.eraseARGB(0, 0, 0, 0); |
- |
- for (int y = 0; y < image.height(); ++y) { |
- uint32* image_row = image.getAddr32(0, y); |
- for (int x = 0; x < image.width(); ++x) { |
- uint32* dst = transposed.getAddr32(y, x); |
- *dst = image_row[x]; |
- } |
- } |
- |
- return transposed; |
-} |
- |