OLD | NEW |
| (Empty) |
1 // Copyright (c) 2009 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "gfx/skbitmap_operations.h" | |
6 | |
7 #include <algorithm> | |
8 #include <string.h> | |
9 | |
10 #include "base/logging.h" | |
11 #include "third_party/skia/include/core/SkBitmap.h" | |
12 #include "third_party/skia/include/core/SkCanvas.h" | |
13 #include "third_party/skia/include/core/SkColorPriv.h" | |
14 #include "third_party/skia/include/core/SkUnPreMultiply.h" | |
15 | |
16 // static | |
17 SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) { | |
18 DCHECK(image.config() == SkBitmap::kARGB_8888_Config); | |
19 | |
20 SkAutoLockPixels lock_image(image); | |
21 | |
22 SkBitmap inverted; | |
23 inverted.setConfig(SkBitmap::kARGB_8888_Config, image.width(), image.height(), | |
24 0); | |
25 inverted.allocPixels(); | |
26 inverted.eraseARGB(0, 0, 0, 0); | |
27 | |
28 for (int y = 0; y < image.height(); ++y) { | |
29 uint32* image_row = image.getAddr32(0, y); | |
30 uint32* dst_row = inverted.getAddr32(0, y); | |
31 | |
32 for (int x = 0; x < image.width(); ++x) { | |
33 uint32 image_pixel = image_row[x]; | |
34 dst_row[x] = (image_pixel & 0xFF000000) | | |
35 (0x00FFFFFF - (image_pixel & 0x00FFFFFF)); | |
36 } | |
37 } | |
38 | |
39 return inverted; | |
40 } | |
41 | |
42 // static | |
43 SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first, | |
44 const SkBitmap& second) { | |
45 DCHECK(first.width() == second.width()); | |
46 DCHECK(first.height() == second.height()); | |
47 DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); | |
48 DCHECK(first.config() == SkBitmap::kARGB_8888_Config); | |
49 | |
50 SkAutoLockPixels lock_first(first); | |
51 SkAutoLockPixels lock_second(second); | |
52 | |
53 SkBitmap superimposed; | |
54 superimposed.setConfig(SkBitmap::kARGB_8888_Config, | |
55 first.width(), first.height()); | |
56 superimposed.allocPixels(); | |
57 superimposed.eraseARGB(0, 0, 0, 0); | |
58 | |
59 SkCanvas canvas(superimposed); | |
60 | |
61 SkRect rect; | |
62 rect.fLeft = 0; | |
63 rect.fTop = 0; | |
64 rect.fRight = SkIntToScalar(first.width()); | |
65 rect.fBottom = SkIntToScalar(first.height()); | |
66 | |
67 canvas.drawBitmapRect(first, NULL, rect); | |
68 canvas.drawBitmapRect(second, NULL, rect); | |
69 | |
70 return superimposed; | |
71 } | |
72 | |
73 // static | |
74 SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first, | |
75 const SkBitmap& second, | |
76 double alpha) { | |
77 DCHECK((alpha >= 0) && (alpha <= 1)); | |
78 DCHECK(first.width() == second.width()); | |
79 DCHECK(first.height() == second.height()); | |
80 DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); | |
81 DCHECK(first.config() == SkBitmap::kARGB_8888_Config); | |
82 | |
83 // Optimize for case where we won't need to blend anything. | |
84 static const double alpha_min = 1.0 / 255; | |
85 static const double alpha_max = 254.0 / 255; | |
86 if (alpha < alpha_min) | |
87 return first; | |
88 else if (alpha > alpha_max) | |
89 return second; | |
90 | |
91 SkAutoLockPixels lock_first(first); | |
92 SkAutoLockPixels lock_second(second); | |
93 | |
94 SkBitmap blended; | |
95 blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(), | |
96 0); | |
97 blended.allocPixels(); | |
98 blended.eraseARGB(0, 0, 0, 0); | |
99 | |
100 double first_alpha = 1 - alpha; | |
101 | |
102 for (int y = 0; y < first.height(); ++y) { | |
103 uint32* first_row = first.getAddr32(0, y); | |
104 uint32* second_row = second.getAddr32(0, y); | |
105 uint32* dst_row = blended.getAddr32(0, y); | |
106 | |
107 for (int x = 0; x < first.width(); ++x) { | |
108 uint32 first_pixel = first_row[x]; | |
109 uint32 second_pixel = second_row[x]; | |
110 | |
111 int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) + | |
112 (SkColorGetA(second_pixel) * alpha)); | |
113 int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) + | |
114 (SkColorGetR(second_pixel) * alpha)); | |
115 int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) + | |
116 (SkColorGetG(second_pixel) * alpha)); | |
117 int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) + | |
118 (SkColorGetB(second_pixel) * alpha)); | |
119 | |
120 dst_row[x] = SkColorSetARGB(a, r, g, b); | |
121 } | |
122 } | |
123 | |
124 return blended; | |
125 } | |
126 | |
127 // static | |
128 SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb, | |
129 const SkBitmap& alpha) { | |
130 DCHECK(rgb.width() == alpha.width()); | |
131 DCHECK(rgb.height() == alpha.height()); | |
132 DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel()); | |
133 DCHECK(rgb.config() == SkBitmap::kARGB_8888_Config); | |
134 DCHECK(alpha.config() == SkBitmap::kARGB_8888_Config); | |
135 | |
136 SkBitmap masked; | |
137 masked.setConfig(SkBitmap::kARGB_8888_Config, rgb.width(), rgb.height(), 0); | |
138 masked.allocPixels(); | |
139 masked.eraseARGB(0, 0, 0, 0); | |
140 | |
141 SkAutoLockPixels lock_rgb(rgb); | |
142 SkAutoLockPixels lock_alpha(alpha); | |
143 SkAutoLockPixels lock_masked(masked); | |
144 | |
145 for (int y = 0; y < masked.height(); ++y) { | |
146 uint32* rgb_row = rgb.getAddr32(0, y); | |
147 uint32* alpha_row = alpha.getAddr32(0, y); | |
148 uint32* dst_row = masked.getAddr32(0, y); | |
149 | |
150 for (int x = 0; x < masked.width(); ++x) { | |
151 SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]); | |
152 int alpha = SkAlphaMul(SkColorGetA(rgb_pixel), SkColorGetA(alpha_row[x])); | |
153 dst_row[x] = SkColorSetARGB(alpha, | |
154 SkAlphaMul(SkColorGetR(rgb_pixel), alpha), | |
155 SkAlphaMul(SkColorGetG(rgb_pixel), alpha), | |
156 SkAlphaMul(SkColorGetB(rgb_pixel), alpha)); | |
157 } | |
158 } | |
159 | |
160 return masked; | |
161 } | |
162 | |
163 // static | |
164 SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color, | |
165 const SkBitmap& image, | |
166 const SkBitmap& mask) { | |
167 DCHECK(image.config() == SkBitmap::kARGB_8888_Config); | |
168 DCHECK(mask.config() == SkBitmap::kARGB_8888_Config); | |
169 | |
170 SkBitmap background; | |
171 background.setConfig( | |
172 SkBitmap::kARGB_8888_Config, mask.width(), mask.height(), 0); | |
173 background.allocPixels(); | |
174 | |
175 double bg_a = SkColorGetA(color); | |
176 double bg_r = SkColorGetR(color); | |
177 double bg_g = SkColorGetG(color); | |
178 double bg_b = SkColorGetB(color); | |
179 | |
180 SkAutoLockPixels lock_mask(mask); | |
181 SkAutoLockPixels lock_image(image); | |
182 SkAutoLockPixels lock_background(background); | |
183 | |
184 for (int y = 0; y < mask.height(); ++y) { | |
185 uint32* dst_row = background.getAddr32(0, y); | |
186 uint32* image_row = image.getAddr32(0, y % image.height()); | |
187 uint32* mask_row = mask.getAddr32(0, y); | |
188 | |
189 for (int x = 0; x < mask.width(); ++x) { | |
190 uint32 image_pixel = image_row[x % image.width()]; | |
191 | |
192 double img_a = SkColorGetA(image_pixel); | |
193 double img_r = SkColorGetR(image_pixel); | |
194 double img_g = SkColorGetG(image_pixel); | |
195 double img_b = SkColorGetB(image_pixel); | |
196 | |
197 double img_alpha = static_cast<double>(img_a) / 255.0; | |
198 double img_inv = 1 - img_alpha; | |
199 | |
200 double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0; | |
201 | |
202 dst_row[x] = SkColorSetARGB( | |
203 static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a), | |
204 static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a), | |
205 static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a), | |
206 static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a)); | |
207 } | |
208 } | |
209 | |
210 return background; | |
211 } | |
212 | |
213 namespace { | |
214 namespace HSLShift { | |
215 | |
216 // TODO(viettrungluu): Some things have yet to be optimized at all. | |
217 | |
218 // Notes on and conventions used in the following code | |
219 // | |
220 // Conventions: | |
221 // - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below) | |
222 // - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below) | |
223 // - variables derived from S, L shift parameters: |sdec| and |sinc| for S | |
224 // increase and decrease factors, |ldec| and |linc| for L (see also below) | |
225 // | |
226 // To try to optimize HSL shifts, we do several things: | |
227 // - Avoid unpremultiplying (then processing) then premultiplying. This means | |
228 // that R, G, B values (and also L, but not H and S) should be treated as | |
229 // having a range of 0..A (where A is alpha). | |
230 // - Do things in integer/fixed-point. This avoids costly conversions between | |
231 // floating-point and integer, though I should study the tradeoff more | |
232 // carefully (presumably, at some point of processing complexity, converting | |
233 // and processing using simpler floating-point code will begin to win in | |
234 // performance). Also to be studied is the speed/type of floating point | |
235 // conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>. | |
236 // | |
237 // Conventions for fixed-point arithmetic | |
238 // - Each function has a constant denominator (called |den|, which should be a | |
239 // power of 2), appropriate for the computations done in that function. | |
240 // - A value |x| is then typically represented by a numerator, named |x_num|, | |
241 // so that its actual value is |x_num / den| (casting to floating-point | |
242 // before division). | |
243 // - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x * | |
244 // den| (casting appropriately). | |
245 // - When necessary, a value |x| may also be represented as a numerator over | |
246 // the denominator squared (set |den2 = den * den|). In such a case, the | |
247 // corresponding variable is called |x_num2| (so that its actual value is | |
248 // |x_num^2 / den2|. | |
249 // - The representation of the product of |x| and |y| is be called |x_y_num| if | |
250 // |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In | |
251 // the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|. | |
252 | |
253 // Routine used to process a line; typically specialized for specific kinds of | |
254 // HSL shifts (to optimize). | |
255 typedef void (*LineProcessor)(color_utils::HSL, | |
256 const SkPMColor*, | |
257 SkPMColor*, | |
258 int width); | |
259 | |
260 enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps }; | |
261 enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps }; | |
262 enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps }; | |
263 | |
264 // Epsilon used to judge when shift values are close enough to various critical | |
265 // values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should | |
266 // be small enough, but let's play it safe> | |
267 const double epsilon = 0.0005; | |
268 | |
269 // Line processor: default/universal (i.e., old-school). | |
270 void LineProcDefault(color_utils::HSL hsl_shift, const SkPMColor* in, | |
271 SkPMColor* out, int width) { | |
272 for (int x = 0; x < width; x++) { | |
273 out[x] = SkPreMultiplyColor(color_utils::HSLShift( | |
274 SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift)); | |
275 } | |
276 } | |
277 | |
278 // Line processor: no-op (i.e., copy). | |
279 void LineProcCopy(color_utils::HSL hsl_shift, const SkPMColor* in, | |
280 SkPMColor* out, int width) { | |
281 DCHECK(hsl_shift.h < 0); | |
282 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); | |
283 DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); | |
284 memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0])); | |
285 } | |
286 | |
287 // Line processor: H no-op, S no-op, L decrease. | |
288 void LineProcHnopSnopLdec(color_utils::HSL hsl_shift, const SkPMColor* in, | |
289 SkPMColor* out, int width) { | |
290 const uint32_t den = 65536; | |
291 | |
292 DCHECK(hsl_shift.h < 0); | |
293 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); | |
294 DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0); | |
295 | |
296 uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den); | |
297 for (int x = 0; x < width; x++) { | |
298 uint32_t a = SkGetPackedA32(in[x]); | |
299 uint32_t r = SkGetPackedR32(in[x]); | |
300 uint32_t g = SkGetPackedG32(in[x]); | |
301 uint32_t b = SkGetPackedB32(in[x]); | |
302 r = r * ldec_num / den; | |
303 g = g * ldec_num / den; | |
304 b = b * ldec_num / den; | |
305 out[x] = SkPackARGB32(a, r, g, b); | |
306 } | |
307 } | |
308 | |
309 // Line processor: H no-op, S no-op, L increase. | |
310 void LineProcHnopSnopLinc(color_utils::HSL hsl_shift, const SkPMColor* in, | |
311 SkPMColor* out, int width) { | |
312 const uint32_t den = 65536; | |
313 | |
314 DCHECK(hsl_shift.h < 0); | |
315 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); | |
316 DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); | |
317 | |
318 uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den); | |
319 for (int x = 0; x < width; x++) { | |
320 uint32_t a = SkGetPackedA32(in[x]); | |
321 uint32_t r = SkGetPackedR32(in[x]); | |
322 uint32_t g = SkGetPackedG32(in[x]); | |
323 uint32_t b = SkGetPackedB32(in[x]); | |
324 r += (a - r) * linc_num / den; | |
325 g += (a - g) * linc_num / den; | |
326 b += (a - b) * linc_num / den; | |
327 out[x] = SkPackARGB32(a, r, g, b); | |
328 } | |
329 } | |
330 | |
331 // Saturation changes modifications in RGB | |
332 // | |
333 // (Note that as a further complication, the values we deal in are | |
334 // premultiplied, so R/G/B values must be in the range 0..A. For mathematical | |
335 // purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of | |
336 // generality, assume that R/G/B values are in the range 0..1.) | |
337 // | |
338 // Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L = | |
339 // (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant. | |
340 // | |
341 // For H to remain constant, first, the (numerical) order of R/G/B (from | |
342 // smallest to largest) must remain the same. Second, all the ratios | |
343 // (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of | |
344 // course, if Max = Min, then S = 0 and no saturation change is well-defined, | |
345 // since H is not well-defined). | |
346 // | |
347 // Let C_max be a colour with value Max, C_min be one with value Min, and C_med | |
348 // the remaining colour. Increasing saturation (to the maximum) is accomplished | |
349 // by increasing the value of C_max while simultaneously decreasing C_min and | |
350 // changing C_med so that the ratios are maintained; for the latter, it suffices | |
351 // to keep (C_med-C_min)/(C_max-C_min) constant (and equal to | |
352 // (Med-Min)/(Max-Min)). | |
353 | |
354 // Line processor: H no-op, S decrease, L no-op. | |
355 void LineProcHnopSdecLnop(color_utils::HSL hsl_shift, const SkPMColor* in, | |
356 SkPMColor* out, int width) { | |
357 DCHECK(hsl_shift.h < 0); | |
358 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); | |
359 DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); | |
360 | |
361 const int32_t denom = 65536; | |
362 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); | |
363 for (int x = 0; x < width; x++) { | |
364 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); | |
365 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); | |
366 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); | |
367 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); | |
368 | |
369 int32_t vmax, vmin; | |
370 if (r > g) { // This uses 3 compares rather than 4. | |
371 vmax = std::max(r, b); | |
372 vmin = std::min(g, b); | |
373 } else { | |
374 vmax = std::max(g, b); | |
375 vmin = std::min(r, b); | |
376 } | |
377 | |
378 // Use denom * L to avoid rounding. | |
379 int32_t denom_l = (vmax + vmin) * (denom / 2); | |
380 int32_t s_numer_l = (vmax + vmin) * s_numer / 2; | |
381 | |
382 r = (denom_l + r * s_numer - s_numer_l) / denom; | |
383 g = (denom_l + g * s_numer - s_numer_l) / denom; | |
384 b = (denom_l + b * s_numer - s_numer_l) / denom; | |
385 out[x] = SkPackARGB32(a, r, g, b); | |
386 } | |
387 } | |
388 | |
389 // Line processor: H no-op, S decrease, L decrease. | |
390 void LineProcHnopSdecLdec(color_utils::HSL hsl_shift, const SkPMColor* in, | |
391 SkPMColor* out, int width) { | |
392 DCHECK(hsl_shift.h < 0); | |
393 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); | |
394 DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon); | |
395 | |
396 // Can't be too big since we need room for denom*denom and a bit for sign. | |
397 const int32_t denom = 1024; | |
398 int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom); | |
399 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); | |
400 for (int x = 0; x < width; x++) { | |
401 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); | |
402 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); | |
403 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); | |
404 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); | |
405 | |
406 int32_t vmax, vmin; | |
407 if (r > g) { // This uses 3 compares rather than 4. | |
408 vmax = std::max(r, b); | |
409 vmin = std::min(g, b); | |
410 } else { | |
411 vmax = std::max(g, b); | |
412 vmin = std::min(r, b); | |
413 } | |
414 | |
415 // Use denom * L to avoid rounding. | |
416 int32_t denom_l = (vmax + vmin) * (denom / 2); | |
417 int32_t s_numer_l = (vmax + vmin) * s_numer / 2; | |
418 | |
419 r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom); | |
420 g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom); | |
421 b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom); | |
422 out[x] = SkPackARGB32(a, r, g, b); | |
423 } | |
424 } | |
425 | |
426 // Line processor: H no-op, S decrease, L increase. | |
427 void LineProcHnopSdecLinc(color_utils::HSL hsl_shift, const SkPMColor* in, | |
428 SkPMColor* out, int width) { | |
429 DCHECK(hsl_shift.h < 0); | |
430 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); | |
431 DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); | |
432 | |
433 // Can't be too big since we need room for denom*denom and a bit for sign. | |
434 const int32_t denom = 1024; | |
435 int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom); | |
436 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); | |
437 for (int x = 0; x < width; x++) { | |
438 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); | |
439 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); | |
440 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); | |
441 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); | |
442 | |
443 int32_t vmax, vmin; | |
444 if (r > g) { // This uses 3 compares rather than 4. | |
445 vmax = std::max(r, b); | |
446 vmin = std::min(g, b); | |
447 } else { | |
448 vmax = std::max(g, b); | |
449 vmin = std::min(r, b); | |
450 } | |
451 | |
452 // Use denom * L to avoid rounding. | |
453 int32_t denom_l = (vmax + vmin) * (denom / 2); | |
454 int32_t s_numer_l = (vmax + vmin) * s_numer / 2; | |
455 | |
456 r = denom_l + r * s_numer - s_numer_l; | |
457 g = denom_l + g * s_numer - s_numer_l; | |
458 b = denom_l + b * s_numer - s_numer_l; | |
459 | |
460 r = (r * denom + (a * denom - r) * l_numer) / (denom * denom); | |
461 g = (g * denom + (a * denom - g) * l_numer) / (denom * denom); | |
462 b = (b * denom + (a * denom - b) * l_numer) / (denom * denom); | |
463 out[x] = SkPackARGB32(a, r, g, b); | |
464 } | |
465 } | |
466 | |
467 const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = { | |
468 { // H: kOpHNone | |
469 { // S: kOpSNone | |
470 LineProcCopy, // L: kOpLNone | |
471 LineProcHnopSnopLdec, // L: kOpLDec | |
472 LineProcHnopSnopLinc // L: kOpLInc | |
473 }, | |
474 { // S: kOpSDec | |
475 LineProcHnopSdecLnop, // L: kOpLNone | |
476 LineProcHnopSdecLdec, // L: kOpLDec | |
477 LineProcHnopSdecLinc // L: kOpLInc | |
478 }, | |
479 { // S: kOpSInc | |
480 LineProcDefault, // L: kOpLNone | |
481 LineProcDefault, // L: kOpLDec | |
482 LineProcDefault // L: kOpLInc | |
483 } | |
484 }, | |
485 { // H: kOpHShift | |
486 { // S: kOpSNone | |
487 LineProcDefault, // L: kOpLNone | |
488 LineProcDefault, // L: kOpLDec | |
489 LineProcDefault // L: kOpLInc | |
490 }, | |
491 { // S: kOpSDec | |
492 LineProcDefault, // L: kOpLNone | |
493 LineProcDefault, // L: kOpLDec | |
494 LineProcDefault // L: kOpLInc | |
495 }, | |
496 { // S: kOpSInc | |
497 LineProcDefault, // L: kOpLNone | |
498 LineProcDefault, // L: kOpLDec | |
499 LineProcDefault // L: kOpLInc | |
500 } | |
501 } | |
502 }; | |
503 | |
504 } // namespace HSLShift | |
505 } // namespace | |
506 | |
507 // static | |
508 SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap( | |
509 const SkBitmap& bitmap, | |
510 color_utils::HSL hsl_shift) { | |
511 // Default to NOPs. | |
512 HSLShift::OperationOnH H_op = HSLShift::kOpHNone; | |
513 HSLShift::OperationOnS S_op = HSLShift::kOpSNone; | |
514 HSLShift::OperationOnL L_op = HSLShift::kOpLNone; | |
515 | |
516 if (hsl_shift.h >= 0 && hsl_shift.h <= 1) | |
517 H_op = HSLShift::kOpHShift; | |
518 | |
519 // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate. | |
520 if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon)) | |
521 S_op = HSLShift::kOpSDec; | |
522 else if (hsl_shift.s >= (0.5 + HSLShift::epsilon)) | |
523 S_op = HSLShift::kOpSInc; | |
524 | |
525 // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white. | |
526 if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon)) | |
527 L_op = HSLShift::kOpLDec; | |
528 else if (hsl_shift.l >= (0.5 + HSLShift::epsilon)) | |
529 L_op = HSLShift::kOpLInc; | |
530 | |
531 HSLShift::LineProcessor line_proc = | |
532 HSLShift::kLineProcessors[H_op][S_op][L_op]; | |
533 | |
534 DCHECK(bitmap.empty() == false); | |
535 DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config); | |
536 | |
537 SkBitmap shifted; | |
538 shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(), | |
539 bitmap.height(), 0); | |
540 shifted.allocPixels(); | |
541 shifted.eraseARGB(0, 0, 0, 0); | |
542 shifted.setIsOpaque(false); | |
543 | |
544 SkAutoLockPixels lock_bitmap(bitmap); | |
545 SkAutoLockPixels lock_shifted(shifted); | |
546 | |
547 // Loop through the pixels of the original bitmap. | |
548 for (int y = 0; y < bitmap.height(); ++y) { | |
549 SkPMColor* pixels = bitmap.getAddr32(0, y); | |
550 SkPMColor* tinted_pixels = shifted.getAddr32(0, y); | |
551 | |
552 (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width()); | |
553 } | |
554 | |
555 return shifted; | |
556 } | |
557 | |
558 // static | |
559 SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source, | |
560 int src_x, int src_y, | |
561 int dst_w, int dst_h) { | |
562 DCHECK(source.getConfig() == SkBitmap::kARGB_8888_Config); | |
563 | |
564 SkBitmap cropped; | |
565 cropped.setConfig(SkBitmap::kARGB_8888_Config, dst_w, dst_h, 0); | |
566 cropped.allocPixels(); | |
567 cropped.eraseARGB(0, 0, 0, 0); | |
568 | |
569 SkAutoLockPixels lock_source(source); | |
570 SkAutoLockPixels lock_cropped(cropped); | |
571 | |
572 // Loop through the pixels of the original bitmap. | |
573 for (int y = 0; y < dst_h; ++y) { | |
574 int y_pix = (src_y + y) % source.height(); | |
575 while (y_pix < 0) | |
576 y_pix += source.height(); | |
577 | |
578 uint32* source_row = source.getAddr32(0, y_pix); | |
579 uint32* dst_row = cropped.getAddr32(0, y); | |
580 | |
581 for (int x = 0; x < dst_w; ++x) { | |
582 int x_pix = (src_x + x) % source.width(); | |
583 while (x_pix < 0) | |
584 x_pix += source.width(); | |
585 | |
586 dst_row[x] = source_row[x_pix]; | |
587 } | |
588 } | |
589 | |
590 return cropped; | |
591 } | |
592 | |
593 // static | |
594 SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap, | |
595 int min_w, int min_h) { | |
596 if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) || | |
597 (min_w < 0) || (min_h < 0)) | |
598 return bitmap; | |
599 | |
600 // Since bitmaps are refcounted, this copy will be fast. | |
601 SkBitmap current = bitmap; | |
602 while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) && | |
603 (current.width() > 1) && (current.height() > 1)) | |
604 current = DownsampleByTwo(current); | |
605 return current; | |
606 } | |
607 | |
608 // static | |
609 SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) { | |
610 // Handle the nop case. | |
611 if ((bitmap.width() <= 1) || (bitmap.height() <= 1)) | |
612 return bitmap; | |
613 | |
614 SkBitmap result; | |
615 result.setConfig(SkBitmap::kARGB_8888_Config, | |
616 (bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2); | |
617 result.allocPixels(); | |
618 | |
619 SkAutoLockPixels lock(bitmap); | |
620 for (int dest_y = 0; dest_y < result.height(); ++dest_y) { | |
621 for (int dest_x = 0; dest_x < result.width(); ++dest_x) { | |
622 // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very | |
623 // clever in that it does two channels at once: alpha and green ("ag") | |
624 // and red and blue ("rb"). Each channel gets averaged across 4 pixels | |
625 // to get the result. | |
626 int src_x = dest_x << 1; | |
627 int src_y = dest_y << 1; | |
628 const SkPMColor* cur_src = bitmap.getAddr32(src_x, src_y); | |
629 SkPMColor tmp, ag, rb; | |
630 | |
631 // Top left pixel of the 2x2 block. | |
632 tmp = *cur_src; | |
633 ag = (tmp >> 8) & 0xFF00FF; | |
634 rb = tmp & 0xFF00FF; | |
635 if (src_x < (bitmap.width() - 1)) | |
636 ++cur_src; | |
637 | |
638 // Top right pixel of the 2x2 block. | |
639 tmp = *cur_src; | |
640 ag += (tmp >> 8) & 0xFF00FF; | |
641 rb += tmp & 0xFF00FF; | |
642 if (src_y < (bitmap.height() - 1)) | |
643 cur_src = bitmap.getAddr32(src_x, src_y + 1); | |
644 else | |
645 cur_src = bitmap.getAddr32(src_x, src_y); // Move back to the first. | |
646 | |
647 // Bottom left pixel of the 2x2 block. | |
648 tmp = *cur_src; | |
649 ag += (tmp >> 8) & 0xFF00FF; | |
650 rb += tmp & 0xFF00FF; | |
651 if (src_x < (bitmap.width() - 1)) | |
652 ++cur_src; | |
653 | |
654 // Bottom right pixel of the 2x2 block. | |
655 tmp = *cur_src; | |
656 ag += (tmp >> 8) & 0xFF00FF; | |
657 rb += tmp & 0xFF00FF; | |
658 | |
659 // Put the channels back together, dividing each by 4 to get the average. | |
660 // |ag| has the alpha and green channels shifted right by 8 bits from | |
661 // there they should end up, so shifting left by 6 gives them in the | |
662 // correct position divided by 4. | |
663 *result.getAddr32(dest_x, dest_y) = | |
664 ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00); | |
665 } | |
666 } | |
667 | |
668 return result; | |
669 } | |
670 | |
671 // static | |
672 SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) { | |
673 if (bitmap.isNull()) | |
674 return bitmap; | |
675 if (bitmap.isOpaque()) | |
676 return bitmap; | |
677 | |
678 SkBitmap opaque_bitmap; | |
679 opaque_bitmap.setConfig(bitmap.config(), bitmap.width(), bitmap.height()); | |
680 opaque_bitmap.allocPixels(); | |
681 | |
682 { | |
683 SkAutoLockPixels bitmap_lock(bitmap); | |
684 SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap); | |
685 for (int y = 0; y < opaque_bitmap.height(); y++) { | |
686 for (int x = 0; x < opaque_bitmap.width(); x++) { | |
687 uint32 src_pixel = *bitmap.getAddr32(x, y); | |
688 uint32* dst_pixel = opaque_bitmap.getAddr32(x, y); | |
689 SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel); | |
690 *dst_pixel = unmultiplied; | |
691 } | |
692 } | |
693 } | |
694 | |
695 opaque_bitmap.setIsOpaque(true); | |
696 return opaque_bitmap; | |
697 } | |
698 | |
699 // static | |
700 SkBitmap SkBitmapOperations::CreateTransposedBtmap(const SkBitmap& image) { | |
701 DCHECK(image.config() == SkBitmap::kARGB_8888_Config); | |
702 | |
703 SkAutoLockPixels lock_image(image); | |
704 | |
705 SkBitmap transposed; | |
706 transposed.setConfig( | |
707 SkBitmap::kARGB_8888_Config, image.height(), image.width(), 0); | |
708 transposed.allocPixels(); | |
709 transposed.eraseARGB(0, 0, 0, 0); | |
710 | |
711 for (int y = 0; y < image.height(); ++y) { | |
712 uint32* image_row = image.getAddr32(0, y); | |
713 for (int x = 0; x < image.width(); ++x) { | |
714 uint32* dst = transposed.getAddr32(y, x); | |
715 *dst = image_row[x]; | |
716 } | |
717 } | |
718 | |
719 return transposed; | |
720 } | |
721 | |
OLD | NEW |