Index: test/cctest/test-double.cc |
=================================================================== |
--- test/cctest/test-double.cc (revision 0) |
+++ test/cctest/test-double.cc (revision 0) |
@@ -0,0 +1,200 @@ |
+// Copyright 2006-2008 the V8 project authors. All rights reserved. |
+ |
+#include <stdlib.h> |
+ |
+#include "v8.h" |
+ |
+#include "platform.h" |
+#include "cctest.h" |
+#include "diy_fp.h" |
+#include "double.h" |
+ |
+using namespace v8::internal; |
+ |
+ |
+TEST(Uint64Conversions) { |
+ // Start by checking the byte-order. |
+ uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); |
+ CHECK_EQ(3512700564088504e-318, Double(ordered).value()); |
+ |
+ uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
+ CHECK_EQ(5e-324, Double(min_double64).value()); |
+ |
+ uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); |
+ CHECK_EQ(1.7976931348623157e308, Double(max_double64).value()); |
+} |
+ |
+TEST(AsDiyFp) { |
+ uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); |
+ DiyFp diy_fp = Double(ordered).AsDiyFp(); |
+ CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e()); |
+ // The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64. |
+ CHECK(V8_2PART_UINT64_C(0x00134567, 89ABCDEF) == diy_fp.f()); |
+ |
+ uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
+ diy_fp = Double(min_double64).AsDiyFp(); |
+ CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e()); |
+ // This is a denormal; so no hidden bit. |
+ CHECK(1 == diy_fp.f()); |
+ |
+ uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); |
+ diy_fp = Double(max_double64).AsDiyFp(); |
+ CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e()); |
+ CHECK(V8_2PART_UINT64_C(0x001fffff, ffffffff) == diy_fp.f()); |
+} |
+ |
+ |
+TEST(AsNormalizedDiyFp) { |
+ uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); |
+ DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp(); |
+ CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e()); |
+ CHECK((V8_2PART_UINT64_C(0x00134567, 89ABCDEF) << 11) == diy_fp.f()); |
+ |
+ uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
+ diy_fp = Double(min_double64).AsNormalizedDiyFp(); |
+ CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e()); |
+ // This is a denormal; so no hidden bit. |
+ CHECK(V8_2PART_UINT64_C(0x80000000, 00000000) == diy_fp.f()); |
+ |
+ uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); |
+ diy_fp = Double(max_double64).AsNormalizedDiyFp(); |
+ CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e()); |
+ CHECK((V8_2PART_UINT64_C(0x001fffff, ffffffff) << 11) == diy_fp.f()); |
+} |
+ |
+ |
+TEST(IsDenormal) { |
+ uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
+ CHECK(Double(min_double64).IsDenormal()); |
+ uint64_t bits = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); |
+ CHECK(Double(bits).IsDenormal()); |
+ bits = V8_2PART_UINT64_C(0x00100000, 00000000); |
+ CHECK(!Double(bits).IsDenormal()); |
+} |
+ |
+ |
+TEST(IsSpecial) { |
+ CHECK(Double(V8_INFINITY).IsSpecial()); |
+ CHECK(Double(-V8_INFINITY).IsSpecial()); |
+ CHECK(Double(OS::nan_value()).IsSpecial()); |
+ uint64_t bits = V8_2PART_UINT64_C(0xFFF12345, 00000000); |
+ CHECK(Double(bits).IsSpecial()); |
+ // Denormals are not special: |
+ CHECK(!Double(5e-324).IsSpecial()); |
+ CHECK(!Double(-5e-324).IsSpecial()); |
+ // And some random numbers: |
+ CHECK(!Double(0.0).IsSpecial()); |
+ CHECK(!Double(-0.0).IsSpecial()); |
+ CHECK(!Double(1.0).IsSpecial()); |
+ CHECK(!Double(-1.0).IsSpecial()); |
+ CHECK(!Double(1000000.0).IsSpecial()); |
+ CHECK(!Double(-1000000.0).IsSpecial()); |
+ CHECK(!Double(1e23).IsSpecial()); |
+ CHECK(!Double(-1e23).IsSpecial()); |
+ CHECK(!Double(1.7976931348623157e308).IsSpecial()); |
+ CHECK(!Double(-1.7976931348623157e308).IsSpecial()); |
+} |
+ |
+ |
+TEST(IsInfinite) { |
+ CHECK(Double(V8_INFINITY).IsInfinite()); |
+ CHECK(Double(-V8_INFINITY).IsInfinite()); |
+ CHECK(!Double(OS::nan_value()).IsInfinite()); |
+ CHECK(!Double(0.0).IsInfinite()); |
+ CHECK(!Double(-0.0).IsInfinite()); |
+ CHECK(!Double(1.0).IsInfinite()); |
+ CHECK(!Double(-1.0).IsInfinite()); |
+ uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
+ CHECK(!Double(min_double64).IsInfinite()); |
+} |
+ |
+ |
+TEST(IsNan) { |
+ CHECK(Double(OS::nan_value()).IsNan()); |
+ uint64_t other_nan = V8_2PART_UINT64_C(0xFFFFFFFF, 00000001); |
+ CHECK(Double(other_nan).IsNan()); |
+ CHECK(!Double(V8_INFINITY).IsNan()); |
+ CHECK(!Double(-V8_INFINITY).IsNan()); |
+ CHECK(!Double(0.0).IsNan()); |
+ CHECK(!Double(-0.0).IsNan()); |
+ CHECK(!Double(1.0).IsNan()); |
+ CHECK(!Double(-1.0).IsNan()); |
+ uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
+ CHECK(!Double(min_double64).IsNan()); |
+} |
+ |
+ |
+TEST(Sign) { |
+ CHECK_EQ(1, Double(1.0).Sign()); |
+ CHECK_EQ(1, Double(V8_INFINITY).Sign()); |
+ CHECK_EQ(-1, Double(-V8_INFINITY).Sign()); |
+ CHECK_EQ(1, Double(0.0).Sign()); |
+ CHECK_EQ(-1, Double(-0.0).Sign()); |
+ uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
+ CHECK_EQ(1, Double(min_double64).Sign()); |
+} |
+ |
+ |
+TEST(NormalizedBoundaries) { |
+ DiyFp boundary_plus; |
+ DiyFp boundary_minus; |
+ DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp(); |
+ Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
+ CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
+ CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
+ // 1.5 does not have a significand of the form 2^p (for some p). |
+ // Therefore its boundaries are at the same distance. |
+ CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
+ CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); |
+ |
+ diy_fp = Double(1.0).AsNormalizedDiyFp(); |
+ Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
+ CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
+ CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
+ // 1.0 does have a significand of the form 2^p (for some p). |
+ // Therefore its lower boundary is twice as close as the upper boundary. |
+ CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f()); |
+ CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); |
+ CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); |
+ |
+ uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
+ diy_fp = Double(min_double64).AsNormalizedDiyFp(); |
+ Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
+ CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
+ CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
+ // min-value does not have a significand of the form 2^p (for some p). |
+ // Therefore its boundaries are at the same distance. |
+ CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
+ // Denormals have their boundaries much closer. |
+ CHECK((static_cast<uint64_t>(1) << 62) == diy_fp.f() - boundary_minus.f()); |
+ |
+ uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000); |
+ diy_fp = Double(smallest_normal64).AsNormalizedDiyFp(); |
+ Double(smallest_normal64).NormalizedBoundaries(&boundary_minus, |
+ &boundary_plus); |
+ CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
+ CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
+ // Even though the significand is of the form 2^p (for some p), its boundaries |
+ // are at the same distance. (This is the only exception). |
+ CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
+ CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); |
+ |
+ uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); |
+ diy_fp = Double(largest_denormal64).AsNormalizedDiyFp(); |
+ Double(largest_denormal64).NormalizedBoundaries(&boundary_minus, |
+ &boundary_plus); |
+ CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
+ CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
+ CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
+ CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); |
+ |
+ uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); |
+ diy_fp = Double(max_double64).AsNormalizedDiyFp(); |
+ Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
+ CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
+ CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
+ // max-value does not have a significand of the form 2^p (for some p). |
+ // Therefore its boundaries are at the same distance. |
+ CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
+ CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); |
+} |