OLD | NEW |
(Empty) | |
| 1 // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| 2 |
| 3 #include <stdlib.h> |
| 4 |
| 5 #include "v8.h" |
| 6 |
| 7 #include "platform.h" |
| 8 #include "cctest.h" |
| 9 #include "diy_fp.h" |
| 10 #include "double.h" |
| 11 |
| 12 using namespace v8::internal; |
| 13 |
| 14 |
| 15 TEST(Uint64Conversions) { |
| 16 // Start by checking the byte-order. |
| 17 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); |
| 18 CHECK_EQ(3512700564088504e-318, Double(ordered).value()); |
| 19 |
| 20 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
| 21 CHECK_EQ(5e-324, Double(min_double64).value()); |
| 22 |
| 23 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); |
| 24 CHECK_EQ(1.7976931348623157e308, Double(max_double64).value()); |
| 25 } |
| 26 |
| 27 TEST(AsDiyFp) { |
| 28 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); |
| 29 DiyFp diy_fp = Double(ordered).AsDiyFp(); |
| 30 CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e()); |
| 31 // The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64. |
| 32 CHECK(V8_2PART_UINT64_C(0x00134567, 89ABCDEF) == diy_fp.f()); |
| 33 |
| 34 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
| 35 diy_fp = Double(min_double64).AsDiyFp(); |
| 36 CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e()); |
| 37 // This is a denormal; so no hidden bit. |
| 38 CHECK(1 == diy_fp.f()); |
| 39 |
| 40 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); |
| 41 diy_fp = Double(max_double64).AsDiyFp(); |
| 42 CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e()); |
| 43 CHECK(V8_2PART_UINT64_C(0x001fffff, ffffffff) == diy_fp.f()); |
| 44 } |
| 45 |
| 46 |
| 47 TEST(AsNormalizedDiyFp) { |
| 48 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); |
| 49 DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp(); |
| 50 CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e()); |
| 51 CHECK((V8_2PART_UINT64_C(0x00134567, 89ABCDEF) << 11) == diy_fp.f()); |
| 52 |
| 53 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
| 54 diy_fp = Double(min_double64).AsNormalizedDiyFp(); |
| 55 CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e()); |
| 56 // This is a denormal; so no hidden bit. |
| 57 CHECK(V8_2PART_UINT64_C(0x80000000, 00000000) == diy_fp.f()); |
| 58 |
| 59 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); |
| 60 diy_fp = Double(max_double64).AsNormalizedDiyFp(); |
| 61 CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e()); |
| 62 CHECK((V8_2PART_UINT64_C(0x001fffff, ffffffff) << 11) == diy_fp.f()); |
| 63 } |
| 64 |
| 65 |
| 66 TEST(IsDenormal) { |
| 67 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
| 68 CHECK(Double(min_double64).IsDenormal()); |
| 69 uint64_t bits = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); |
| 70 CHECK(Double(bits).IsDenormal()); |
| 71 bits = V8_2PART_UINT64_C(0x00100000, 00000000); |
| 72 CHECK(!Double(bits).IsDenormal()); |
| 73 } |
| 74 |
| 75 |
| 76 TEST(IsSpecial) { |
| 77 CHECK(Double(V8_INFINITY).IsSpecial()); |
| 78 CHECK(Double(-V8_INFINITY).IsSpecial()); |
| 79 CHECK(Double(OS::nan_value()).IsSpecial()); |
| 80 uint64_t bits = V8_2PART_UINT64_C(0xFFF12345, 00000000); |
| 81 CHECK(Double(bits).IsSpecial()); |
| 82 // Denormals are not special: |
| 83 CHECK(!Double(5e-324).IsSpecial()); |
| 84 CHECK(!Double(-5e-324).IsSpecial()); |
| 85 // And some random numbers: |
| 86 CHECK(!Double(0.0).IsSpecial()); |
| 87 CHECK(!Double(-0.0).IsSpecial()); |
| 88 CHECK(!Double(1.0).IsSpecial()); |
| 89 CHECK(!Double(-1.0).IsSpecial()); |
| 90 CHECK(!Double(1000000.0).IsSpecial()); |
| 91 CHECK(!Double(-1000000.0).IsSpecial()); |
| 92 CHECK(!Double(1e23).IsSpecial()); |
| 93 CHECK(!Double(-1e23).IsSpecial()); |
| 94 CHECK(!Double(1.7976931348623157e308).IsSpecial()); |
| 95 CHECK(!Double(-1.7976931348623157e308).IsSpecial()); |
| 96 } |
| 97 |
| 98 |
| 99 TEST(IsInfinite) { |
| 100 CHECK(Double(V8_INFINITY).IsInfinite()); |
| 101 CHECK(Double(-V8_INFINITY).IsInfinite()); |
| 102 CHECK(!Double(OS::nan_value()).IsInfinite()); |
| 103 CHECK(!Double(0.0).IsInfinite()); |
| 104 CHECK(!Double(-0.0).IsInfinite()); |
| 105 CHECK(!Double(1.0).IsInfinite()); |
| 106 CHECK(!Double(-1.0).IsInfinite()); |
| 107 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
| 108 CHECK(!Double(min_double64).IsInfinite()); |
| 109 } |
| 110 |
| 111 |
| 112 TEST(IsNan) { |
| 113 CHECK(Double(OS::nan_value()).IsNan()); |
| 114 uint64_t other_nan = V8_2PART_UINT64_C(0xFFFFFFFF, 00000001); |
| 115 CHECK(Double(other_nan).IsNan()); |
| 116 CHECK(!Double(V8_INFINITY).IsNan()); |
| 117 CHECK(!Double(-V8_INFINITY).IsNan()); |
| 118 CHECK(!Double(0.0).IsNan()); |
| 119 CHECK(!Double(-0.0).IsNan()); |
| 120 CHECK(!Double(1.0).IsNan()); |
| 121 CHECK(!Double(-1.0).IsNan()); |
| 122 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
| 123 CHECK(!Double(min_double64).IsNan()); |
| 124 } |
| 125 |
| 126 |
| 127 TEST(Sign) { |
| 128 CHECK_EQ(1, Double(1.0).Sign()); |
| 129 CHECK_EQ(1, Double(V8_INFINITY).Sign()); |
| 130 CHECK_EQ(-1, Double(-V8_INFINITY).Sign()); |
| 131 CHECK_EQ(1, Double(0.0).Sign()); |
| 132 CHECK_EQ(-1, Double(-0.0).Sign()); |
| 133 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
| 134 CHECK_EQ(1, Double(min_double64).Sign()); |
| 135 } |
| 136 |
| 137 |
| 138 TEST(NormalizedBoundaries) { |
| 139 DiyFp boundary_plus; |
| 140 DiyFp boundary_minus; |
| 141 DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp(); |
| 142 Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| 143 CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| 144 CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| 145 // 1.5 does not have a significand of the form 2^p (for some p). |
| 146 // Therefore its boundaries are at the same distance. |
| 147 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| 148 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); |
| 149 |
| 150 diy_fp = Double(1.0).AsNormalizedDiyFp(); |
| 151 Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| 152 CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| 153 CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| 154 // 1.0 does have a significand of the form 2^p (for some p). |
| 155 // Therefore its lower boundary is twice as close as the upper boundary. |
| 156 CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f()); |
| 157 CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); |
| 158 CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); |
| 159 |
| 160 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
| 161 diy_fp = Double(min_double64).AsNormalizedDiyFp(); |
| 162 Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| 163 CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| 164 CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| 165 // min-value does not have a significand of the form 2^p (for some p). |
| 166 // Therefore its boundaries are at the same distance. |
| 167 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| 168 // Denormals have their boundaries much closer. |
| 169 CHECK((static_cast<uint64_t>(1) << 62) == diy_fp.f() - boundary_minus.f()); |
| 170 |
| 171 uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000); |
| 172 diy_fp = Double(smallest_normal64).AsNormalizedDiyFp(); |
| 173 Double(smallest_normal64).NormalizedBoundaries(&boundary_minus, |
| 174 &boundary_plus); |
| 175 CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| 176 CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| 177 // Even though the significand is of the form 2^p (for some p), its boundaries |
| 178 // are at the same distance. (This is the only exception). |
| 179 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| 180 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); |
| 181 |
| 182 uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); |
| 183 diy_fp = Double(largest_denormal64).AsNormalizedDiyFp(); |
| 184 Double(largest_denormal64).NormalizedBoundaries(&boundary_minus, |
| 185 &boundary_plus); |
| 186 CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| 187 CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| 188 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| 189 CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); |
| 190 |
| 191 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); |
| 192 diy_fp = Double(max_double64).AsNormalizedDiyFp(); |
| 193 Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| 194 CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| 195 CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| 196 // max-value does not have a significand of the form 2^p (for some p). |
| 197 // Therefore its boundaries are at the same distance. |
| 198 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| 199 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); |
| 200 } |
OLD | NEW |