Index: src/double.h |
=================================================================== |
--- src/double.h (revision 0) |
+++ src/double.h (revision 0) |
@@ -0,0 +1,166 @@ |
+// Copyright 2010 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#ifndef V8_DOUBLE_H_ |
+#define V8_DOUBLE_H_ |
+ |
+#include "diy_fp.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+// We assume that doubles and uint64_t have the same endianness. |
+static uint64_t double_to_uint64(double d) { return bit_cast<uint64_t>(d); } |
+static double uint64_to_double(uint64_t d64) { return bit_cast<double>(d64); } |
+ |
+// Helper functions for doubles. |
+class Double { |
+ public: |
+ static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000); |
+ static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000); |
+ static const uint64_t kSignificandMask = |
+ V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); |
+ static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000); |
+ |
+ Double() : d64_(0.0) {} |
+ explicit Double(double d) : d64_(double_to_uint64(d)) {} |
+ explicit Double(uint64_t d64) : d64_(d64) {} |
+ |
+ DiyFp AsDiyFp() const { |
+ ASSERT(!IsSpecial()); |
+ return DiyFp(Significand(), Exponent()); |
+ } |
+ |
+ DiyFp AsNormalizedDiyFp() const { |
+ uint64_t f = Significand(); |
+ int e = Exponent(); |
+ |
+ // The current double could be a denormal. |
+ while ((f & kHiddenBit) == 0) { |
+ f <<= 1; |
+ e--; |
+ } |
+ // Do the final shifts in one go. Don't forget the hidden bit (the '-1'). |
+ f <<= DiyFp::kSignificandSize - kSignificandSize - 1; |
+ e -= DiyFp::kSignificandSize - kSignificandSize - 1; |
+ return DiyFp(f, e); |
+ } |
+ |
+ // Returns the double's bit as uint64. |
+ uint64_t AsUint64() const { |
+ return d64_; |
+ } |
+ |
+ int Exponent() const { |
+ if (IsDenormal()) return kDenormalExponent; |
+ |
+ uint64_t d64 = AsUint64(); |
+ int biased_e = (d64 & kExponentMask) >> kSignificandSize; |
+ return biased_e - kExponentBias; |
+ } |
+ |
+ uint64_t Significand() const { |
+ uint64_t d64 = AsUint64(); |
+ uint64_t significand = d64 & kSignificandMask; |
+ if (!IsDenormal()) { |
+ return significand + kHiddenBit; |
+ } else { |
+ return significand; |
+ } |
+ } |
+ |
+ // Returns true if the double is a denormal. |
+ bool IsDenormal() const { |
+ uint64_t d64 = AsUint64(); |
+ return (d64 & kExponentMask) == 0; |
+ } |
+ |
+ // We consider denormals not to be special. |
+ // Hence only Infinity and NaN are special. |
+ bool IsSpecial() const { |
+ uint64_t d64 = AsUint64(); |
+ return (d64 & kExponentMask) == kExponentMask; |
+ } |
+ |
+ bool IsNan() const { |
+ uint64_t d64 = AsUint64(); |
+ return ((d64 & kExponentMask) == kExponentMask) && |
+ ((d64 & kSignificandMask) != 0); |
+ } |
+ |
+ |
+ bool IsInfinite() const { |
+ uint64_t d64 = AsUint64(); |
+ return ((d64 & kExponentMask) == kExponentMask) && |
+ ((d64 & kSignificandMask) == 0); |
+ } |
+ |
+ |
+ int Sign() const { |
+ uint64_t d64 = AsUint64(); |
+ return (d64 & kSignMask) == 0? 1: -1; |
+ } |
+ |
+ |
+ // Returns the two boundaries of this. |
+ // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
+ // exponent as m_plus. |
+ void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
+ DiyFp v = this->AsDiyFp(); |
+ bool significand_is_zero = (v.f() == kHiddenBit); |
+ DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); |
+ DiyFp m_minus; |
+ if (significand_is_zero && v.e() != kDenormalExponent) { |
+ // The boundary is closer. Think of v = 1000e10 and v- = 9999e9. |
+ // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
+ // at a distance of 1e8. |
+ // The only exception is for the smallest normal: the largest denormal is |
+ // at the same distance as its successor. |
+ // Note: denormals have the same exponent as the smallest normals. |
+ m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
+ } else { |
+ m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
+ } |
+ m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
+ m_minus.set_e(m_plus.e()); |
+ *out_m_plus = m_plus; |
+ *out_m_minus = m_minus; |
+ } |
+ |
+ double value() const { return uint64_to_double(d64_); } |
+ |
+ private: |
+ static const int kSignificandSize = 52; // Excludes the hidden bit. |
+ static const int kExponentBias = 0x3FF + kSignificandSize; |
+ static const int kDenormalExponent = -kExponentBias + 1; |
+ |
+ uint64_t d64_; |
+}; |
+ |
+} } // namespace v8::internal |
+ |
+#endif // V8_DOUBLE_H_ |