Index: base/bind_helpers.h |
diff --git a/base/bind_helpers.h b/base/bind_helpers.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..c1ca3d793c13671dabc0a1e07af728a6232118d0 |
--- /dev/null |
+++ b/base/bind_helpers.h |
@@ -0,0 +1,287 @@ |
+// Copyright (c) 2011 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+// This defines a set of argument wrappers and related factory methods that |
+// can be used specify the refcounting and reference semantics of arguments |
+// that are bound by the Bind() function in base/bind.h. |
+// |
+// The public functions are base::Unretained() and base::ConstRef(). |
+// Unretained() allows Bind() to bind a non-refcounted class. |
+// ConstRef() allows binding a constant reference to an argument rather |
+// than a copy. |
+// |
+// |
+// EXAMPLE OF Unretained(): |
+// |
+// class Foo { |
+// public: |
+// void func() { cout << "Foo:f" << endl; |
+// }; |
+// |
+// // In some function somewhere. |
+// Foo foo; |
+// Callback<void(void)> foo_callback = |
+// Bind(&Foo::func, Unretained(&foo)); |
+// foo_callback.Run(); // Prints "Foo:f". |
+// |
+// Without the Unretained() wrapper on |&foo|, the above call would fail |
+// to compile because Foo does not support the AddRef() and Release() methods. |
+// |
+// |
+// EXAMPLE OF ConstRef(); |
+// void foo(int arg) { cout << arg << endl } |
+// |
+// int n = 1; |
+// Callback<void(void)> no_ref = Bind(&foo, n); |
+// Callback<void(void)> has_ref = Bind(&foo, ConstRef(n)); |
+// |
+// no_ref.Run(); // Prints "1" |
+// has_ref.Run(); // Prints "1" |
+// |
+// n = 2; |
+// no_ref.Run(); // Prints "1" |
+// has_ref.Run(); // Prints "2" |
+// |
+// Note that because ConstRef() takes a reference on |n|, |n| must outlive all |
+// its bound callbacks. |
+// |
+ |
+#ifndef BASE_BIND_HELPERS_H_ |
+#define BASE_BIND_HELPERS_H_ |
+#pragma once |
+ |
+#include "base/basictypes.h" |
+#include "base/template_util.h" |
+ |
+namespace base { |
+namespace internal { |
+ |
+// Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T |
+// for the existence of AddRef() and Release() functions of the correct |
+// signature. |
+// |
+// http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error |
+// http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence |
+// http://stackoverflow.com/questions/4358584/sfinae-approach-comparison |
+// http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions |
+// |
+// The last link in particular show the method used below. |
+// |
+// For SFINAE to work with inherited methods, we need to pull some extra tricks |
+// with multiple inheritance. In the more standard formulation, the overloads |
+// of Check would be: |
+// |
+// template <typename C> |
+// Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*); |
+// |
+// template <typename C> |
+// No NotTheCheckWeWant(...); |
+// |
+// static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes); |
+// |
+// The problem here is that template resolution will not match |
+// C::TargetFunc if TargetFunc does not exist directly in C. That is, if |
+// TargetFunc in inherited from an ancestor, &C::TargetFunc will not match, |
+// |value| will be false. This formulation only checks for whether or |
+// not TargetFunc exist directly in the class being introspected. |
+// |
+// To get around this, we play a dirty trick with multiple inheritance. |
+// First, We create a class BaseMixin that declares each function that we |
+// want to probe for. Then we create a class Base that inherits from both T |
+// (the class we wish to probe) and BaseMixin. Note that the function |
+// signature in BaseMixin does not need to match the signature of the function |
+// we are probing for; thus it's easiest to just use void(void). |
+// |
+// Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an |
+// ambiguous resolution between BaseMixin and T. This lets us write the |
+// following: |
+// |
+// template <typename C> |
+// No GoodCheck(Helper<&C::TargetFunc>*); |
+// |
+// template <typename C> |
+// Yes GoodCheck(...); |
+// |
+// static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes); |
+// |
+// Notice here that the variadic version of GoodCheck() returns Yes here |
+// instead of No like the previous one. Also notice that we calculate |value| |
+// by specializing GoodCheck() on Base instead of T. |
+// |
+// We've reversed the roles of the variadic, and Helper overloads. |
+// GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid |
+// substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve |
+// to the variadic version if T has TargetFunc. If T::TargetFunc does not |
+// exist, then &C::TargetFunc is not ambiguous, and the overload resolution |
+// will prefer GoodCheck(Helper<&C::TargetFunc>*). |
+// |
+// This method of SFINAE will correctly probe for inherited names, but it cannot |
+// typecheck those names. It's still a good enough sanity check though. |
+// |
+// Works on gcc-4.2, gcc-4.4, and Visual Studio 2008. |
+// |
+// TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted |
+// this works well. |
+template <typename T> |
+class SupportsAddRefAndRelease { |
+ typedef char Yes[1]; |
+ typedef char No[2]; |
+ |
+ struct BaseMixin { |
+ void AddRef(); |
+ void Release(); |
+ }; |
+ |
+ struct Base : public T, public BaseMixin { |
+ }; |
+ |
+ template <void(BaseMixin::*)(void)> struct Helper {}; |
+ |
+ template <typename C> |
+ static No& Check(Helper<&C::AddRef>*, Helper<&C::Release>*); |
+ |
+ template <typename > |
+ static Yes& Check(...); |
+ |
+ public: |
+ static const bool value = sizeof(Check<Base>(0,0)) == sizeof(Yes); |
+}; |
+ |
+ |
+// Helpers to assert that arguments of a recounted type are bound with a |
+// scoped_refptr. |
+template <bool IsClasstype, typename T> |
+struct UnsafeBindtoRefCountedArgHelper : false_type { |
+}; |
+ |
+template <typename T> |
+struct UnsafeBindtoRefCountedArgHelper<true, T> |
+ : integral_constant<bool, SupportsAddRefAndRelease<T>::value> { |
+}; |
+ |
+template <typename T> |
+struct UnsafeBindtoRefCountedArg |
+ : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> { |
+}; |
+ |
+ |
+template <typename T> |
+class UnretainedWrapper { |
+ public: |
+ explicit UnretainedWrapper(T* o) : obj_(o) {} |
+ T* get() { return obj_; } |
+ private: |
+ T* obj_; |
+}; |
+ |
+template <typename T> |
+class ConstRefWrapper { |
+ public: |
+ explicit ConstRefWrapper(const T& o) : ptr_(&o) {} |
+ const T& get() { return *ptr_; } |
+ private: |
+ const T* ptr_; |
+}; |
+ |
+ |
+// Unwrap the stored parameters for the wrappers above. |
+template <typename T> |
+T Unwrap(T o) { return o; } |
+ |
+template <typename T> |
+T* Unwrap(UnretainedWrapper<T> unretained) { return unretained.get(); } |
+ |
+template <typename T> |
+const T& Unwrap(ConstRefWrapper<T> const_ref) { |
+ return const_ref.get(); |
+} |
+ |
+ |
+// Utility for handling different refcounting semantics in the Bind() |
+// function. |
+template <typename ref, typename T> |
+struct MaybeRefcount; |
+ |
+template <typename T> |
+struct MaybeRefcount<base::false_type, T> { |
+ static void AddRef(const T&) {} |
+ static void Release(const T&) {} |
+}; |
+ |
+template <typename T, size_t n> |
+struct MaybeRefcount<base::false_type, T[n]> { |
+ static void AddRef(const T*) {} |
+ static void Release(const T*) {} |
+}; |
+ |
+template <typename T> |
+struct MaybeRefcount<base::true_type, UnretainedWrapper<T> > { |
+ static void AddRef(const UnretainedWrapper<T>&) {} |
+ static void Release(const UnretainedWrapper<T>&) {} |
+}; |
+ |
+template <typename T> |
+struct MaybeRefcount<base::true_type, T*> { |
+ static void AddRef(T* o) { o->AddRef(); } |
+ static void Release(T* o) { o->Release(); } |
+}; |
+ |
+template <typename T> |
+struct MaybeRefcount<base::true_type, const T*> { |
+ static void AddRef(const T* o) { o->AddRef(); } |
+ static void Release(const T* o) { o->Release(); } |
+}; |
+ |
+ |
+// This is a typetraits object that's used to convert an argument type into a |
+// type suitable for storage. In particular, it strips off references, and |
+// converts arrays to pointers. |
+// |
+// This array type becomes an issue because we are passing bound parameters by |
+// const reference. In this case, we end up passing an actual array type in the |
+// initializer list which C++ does not allow. This will break passing of |
+// C-string literals. |
+template <typename T> |
+struct BindType { |
+ typedef T StorageType; |
+}; |
+ |
+// This should almost be impossible to trigger unless someone manually |
+// specifies type of the bind parameters. However, in case they do, |
+// this will guard against us accidentally storing a reference parameter. |
+template <typename T> |
+struct BindType<T&> { |
+ typedef T StorageType; |
+}; |
+ |
+// Note that for array types, we implicitly add a const in the conversion. This |
+// means that it is not possible to bind array arguments to functions that take |
+// a non-const pointer. Trying to specialize the template based on a "const |
+// T[n]" does not seem to match correctly, so we are stuck with this |
+// restriction. |
+template <typename T, size_t n> |
+struct BindType<T[n]> { |
+ typedef const T* StorageType; |
+}; |
+ |
+template <typename T> |
+struct BindType<T[]> { |
+ typedef const T* StorageType; |
+}; |
+ |
+} // namespace internal |
+ |
+template <typename T> |
+inline internal::UnretainedWrapper<T> Unretained(T* o) { |
+ return internal::UnretainedWrapper<T>(o); |
+} |
+ |
+template <typename T> |
+inline internal::ConstRefWrapper<T> ConstRef(const T& o) { |
+ return internal::ConstRefWrapper<T>(o); |
+} |
+ |
+} // namespace base |
+ |
+#endif // BASE_BIND_HELPERS_H_ |