OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 // This defines a set of argument wrappers and related factory methods that |
| 6 // can be used specify the refcounting and reference semantics of arguments |
| 7 // that are bound by the Bind() function in base/bind.h. |
| 8 // |
| 9 // The public functions are base::Unretained() and base::ConstRef(). |
| 10 // Unretained() allows Bind() to bind a non-refcounted class. |
| 11 // ConstRef() allows binding a constant reference to an argument rather |
| 12 // than a copy. |
| 13 // |
| 14 // |
| 15 // EXAMPLE OF Unretained(): |
| 16 // |
| 17 // class Foo { |
| 18 // public: |
| 19 // void func() { cout << "Foo:f" << endl; |
| 20 // }; |
| 21 // |
| 22 // // In some function somewhere. |
| 23 // Foo foo; |
| 24 // Callback<void(void)> foo_callback = |
| 25 // Bind(&Foo::func, Unretained(&foo)); |
| 26 // foo_callback.Run(); // Prints "Foo:f". |
| 27 // |
| 28 // Without the Unretained() wrapper on |&foo|, the above call would fail |
| 29 // to compile because Foo does not support the AddRef() and Release() methods. |
| 30 // |
| 31 // |
| 32 // EXAMPLE OF ConstRef(); |
| 33 // void foo(int arg) { cout << arg << endl } |
| 34 // |
| 35 // int n = 1; |
| 36 // Callback<void(void)> no_ref = Bind(&foo, n); |
| 37 // Callback<void(void)> has_ref = Bind(&foo, ConstRef(n)); |
| 38 // |
| 39 // no_ref.Run(); // Prints "1" |
| 40 // has_ref.Run(); // Prints "1" |
| 41 // |
| 42 // n = 2; |
| 43 // no_ref.Run(); // Prints "1" |
| 44 // has_ref.Run(); // Prints "2" |
| 45 // |
| 46 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all |
| 47 // its bound callbacks. |
| 48 // |
| 49 |
| 50 #ifndef BASE_BIND_HELPERS_H_ |
| 51 #define BASE_BIND_HELPERS_H_ |
| 52 #pragma once |
| 53 |
| 54 #include "base/basictypes.h" |
| 55 #include "base/template_util.h" |
| 56 |
| 57 namespace base { |
| 58 namespace internal { |
| 59 |
| 60 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T |
| 61 // for the existence of AddRef() and Release() functions of the correct |
| 62 // signature. |
| 63 // |
| 64 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error |
| 65 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-templat
e-to-check-for-a-functions-existence |
| 66 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison |
| 67 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-memb
er-functions |
| 68 // |
| 69 // The last link in particular show the method used below. |
| 70 // |
| 71 // For SFINAE to work with inherited methods, we need to pull some extra tricks |
| 72 // with multiple inheritance. In the more standard formulation, the overloads |
| 73 // of Check would be: |
| 74 // |
| 75 // template <typename C> |
| 76 // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*); |
| 77 // |
| 78 // template <typename C> |
| 79 // No NotTheCheckWeWant(...); |
| 80 // |
| 81 // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes); |
| 82 // |
| 83 // The problem here is that template resolution will not match |
| 84 // C::TargetFunc if TargetFunc does not exist directly in C. That is, if |
| 85 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match, |
| 86 // |value| will be false. This formulation only checks for whether or |
| 87 // not TargetFunc exist directly in the class being introspected. |
| 88 // |
| 89 // To get around this, we play a dirty trick with multiple inheritance. |
| 90 // First, We create a class BaseMixin that declares each function that we |
| 91 // want to probe for. Then we create a class Base that inherits from both T |
| 92 // (the class we wish to probe) and BaseMixin. Note that the function |
| 93 // signature in BaseMixin does not need to match the signature of the function |
| 94 // we are probing for; thus it's easiest to just use void(void). |
| 95 // |
| 96 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an |
| 97 // ambiguous resolution between BaseMixin and T. This lets us write the |
| 98 // following: |
| 99 // |
| 100 // template <typename C> |
| 101 // No GoodCheck(Helper<&C::TargetFunc>*); |
| 102 // |
| 103 // template <typename C> |
| 104 // Yes GoodCheck(...); |
| 105 // |
| 106 // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes); |
| 107 // |
| 108 // Notice here that the variadic version of GoodCheck() returns Yes here |
| 109 // instead of No like the previous one. Also notice that we calculate |value| |
| 110 // by specializing GoodCheck() on Base instead of T. |
| 111 // |
| 112 // We've reversed the roles of the variadic, and Helper overloads. |
| 113 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid |
| 114 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve |
| 115 // to the variadic version if T has TargetFunc. If T::TargetFunc does not |
| 116 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution |
| 117 // will prefer GoodCheck(Helper<&C::TargetFunc>*). |
| 118 // |
| 119 // This method of SFINAE will correctly probe for inherited names, but it cannot |
| 120 // typecheck those names. It's still a good enough sanity check though. |
| 121 // |
| 122 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008. |
| 123 // |
| 124 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted |
| 125 // this works well. |
| 126 template <typename T> |
| 127 class SupportsAddRefAndRelease { |
| 128 typedef char Yes[1]; |
| 129 typedef char No[2]; |
| 130 |
| 131 struct BaseMixin { |
| 132 void AddRef(); |
| 133 void Release(); |
| 134 }; |
| 135 |
| 136 struct Base : public T, public BaseMixin { |
| 137 }; |
| 138 |
| 139 template <void(BaseMixin::*)(void)> struct Helper {}; |
| 140 |
| 141 template <typename C> |
| 142 static No& Check(Helper<&C::AddRef>*, Helper<&C::Release>*); |
| 143 |
| 144 template <typename > |
| 145 static Yes& Check(...); |
| 146 |
| 147 public: |
| 148 static const bool value = sizeof(Check<Base>(0,0)) == sizeof(Yes); |
| 149 }; |
| 150 |
| 151 |
| 152 // Helpers to assert that arguments of a recounted type are bound with a |
| 153 // scoped_refptr. |
| 154 template <bool IsClasstype, typename T> |
| 155 struct UnsafeBindtoRefCountedArgHelper : false_type { |
| 156 }; |
| 157 |
| 158 template <typename T> |
| 159 struct UnsafeBindtoRefCountedArgHelper<true, T> |
| 160 : integral_constant<bool, SupportsAddRefAndRelease<T>::value> { |
| 161 }; |
| 162 |
| 163 template <typename T> |
| 164 struct UnsafeBindtoRefCountedArg |
| 165 : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> { |
| 166 }; |
| 167 |
| 168 |
| 169 template <typename T> |
| 170 class UnretainedWrapper { |
| 171 public: |
| 172 explicit UnretainedWrapper(T* o) : obj_(o) {} |
| 173 T* get() { return obj_; } |
| 174 private: |
| 175 T* obj_; |
| 176 }; |
| 177 |
| 178 template <typename T> |
| 179 class ConstRefWrapper { |
| 180 public: |
| 181 explicit ConstRefWrapper(const T& o) : ptr_(&o) {} |
| 182 const T& get() { return *ptr_; } |
| 183 private: |
| 184 const T* ptr_; |
| 185 }; |
| 186 |
| 187 |
| 188 // Unwrap the stored parameters for the wrappers above. |
| 189 template <typename T> |
| 190 T Unwrap(T o) { return o; } |
| 191 |
| 192 template <typename T> |
| 193 T* Unwrap(UnretainedWrapper<T> unretained) { return unretained.get(); } |
| 194 |
| 195 template <typename T> |
| 196 const T& Unwrap(ConstRefWrapper<T> const_ref) { |
| 197 return const_ref.get(); |
| 198 } |
| 199 |
| 200 |
| 201 // Utility for handling different refcounting semantics in the Bind() |
| 202 // function. |
| 203 template <typename ref, typename T> |
| 204 struct MaybeRefcount; |
| 205 |
| 206 template <typename T> |
| 207 struct MaybeRefcount<base::false_type, T> { |
| 208 static void AddRef(const T&) {} |
| 209 static void Release(const T&) {} |
| 210 }; |
| 211 |
| 212 template <typename T, size_t n> |
| 213 struct MaybeRefcount<base::false_type, T[n]> { |
| 214 static void AddRef(const T*) {} |
| 215 static void Release(const T*) {} |
| 216 }; |
| 217 |
| 218 template <typename T> |
| 219 struct MaybeRefcount<base::true_type, UnretainedWrapper<T> > { |
| 220 static void AddRef(const UnretainedWrapper<T>&) {} |
| 221 static void Release(const UnretainedWrapper<T>&) {} |
| 222 }; |
| 223 |
| 224 template <typename T> |
| 225 struct MaybeRefcount<base::true_type, T*> { |
| 226 static void AddRef(T* o) { o->AddRef(); } |
| 227 static void Release(T* o) { o->Release(); } |
| 228 }; |
| 229 |
| 230 template <typename T> |
| 231 struct MaybeRefcount<base::true_type, const T*> { |
| 232 static void AddRef(const T* o) { o->AddRef(); } |
| 233 static void Release(const T* o) { o->Release(); } |
| 234 }; |
| 235 |
| 236 |
| 237 // This is a typetraits object that's used to convert an argument type into a |
| 238 // type suitable for storage. In particular, it strips off references, and |
| 239 // converts arrays to pointers. |
| 240 // |
| 241 // This array type becomes an issue because we are passing bound parameters by |
| 242 // const reference. In this case, we end up passing an actual array type in the |
| 243 // initializer list which C++ does not allow. This will break passing of |
| 244 // C-string literals. |
| 245 template <typename T> |
| 246 struct BindType { |
| 247 typedef T StorageType; |
| 248 }; |
| 249 |
| 250 // This should almost be impossible to trigger unless someone manually |
| 251 // specifies type of the bind parameters. However, in case they do, |
| 252 // this will guard against us accidentally storing a reference parameter. |
| 253 template <typename T> |
| 254 struct BindType<T&> { |
| 255 typedef T StorageType; |
| 256 }; |
| 257 |
| 258 // Note that for array types, we implicitly add a const in the conversion. This |
| 259 // means that it is not possible to bind array arguments to functions that take |
| 260 // a non-const pointer. Trying to specialize the template based on a "const |
| 261 // T[n]" does not seem to match correctly, so we are stuck with this |
| 262 // restriction. |
| 263 template <typename T, size_t n> |
| 264 struct BindType<T[n]> { |
| 265 typedef const T* StorageType; |
| 266 }; |
| 267 |
| 268 template <typename T> |
| 269 struct BindType<T[]> { |
| 270 typedef const T* StorageType; |
| 271 }; |
| 272 |
| 273 } // namespace internal |
| 274 |
| 275 template <typename T> |
| 276 inline internal::UnretainedWrapper<T> Unretained(T* o) { |
| 277 return internal::UnretainedWrapper<T>(o); |
| 278 } |
| 279 |
| 280 template <typename T> |
| 281 inline internal::ConstRefWrapper<T> ConstRef(const T& o) { |
| 282 return internal::ConstRefWrapper<T>(o); |
| 283 } |
| 284 |
| 285 } // namespace base |
| 286 |
| 287 #endif // BASE_BIND_HELPERS_H_ |
OLD | NEW |