Index: src/mips/simulator-mips.cc |
=================================================================== |
--- src/mips/simulator-mips.cc (revision 0) |
+++ src/mips/simulator-mips.cc (revision 0) |
@@ -0,0 +1,1648 @@ |
+// Copyright 2010 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include <stdlib.h> |
+#include <cstdarg> |
+#include "v8.h" |
+ |
+#include "disasm.h" |
+#include "assembler.h" |
+#include "globals.h" // Need the bit_cast |
+#include "mips/constants-mips.h" |
+#include "mips/simulator-mips.h" |
+ |
+namespace v8i = v8::internal; |
+ |
+#if !defined(__mips) |
+ |
+// Only build the simulator if not compiling for real MIPS hardware. |
+namespace assembler { |
+namespace mips { |
+ |
+using ::v8::internal::Object; |
+using ::v8::internal::PrintF; |
+using ::v8::internal::OS; |
+using ::v8::internal::ReadLine; |
+using ::v8::internal::DeleteArray; |
+ |
+// Utils functions |
+bool HaveSameSign(int32_t a, int32_t b) { |
+ return ((a ^ b) > 0); |
+} |
+ |
+ |
+// This macro provides a platform independent use of sscanf. The reason for |
+// SScanF not being implemented in a platform independent was through |
+// ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time |
+// Library does not provide vsscanf. |
+#define SScanF sscanf // NOLINT |
+ |
+// The Debugger class is used by the simulator while debugging simulated MIPS |
+// code. |
+class Debugger { |
+ public: |
+ explicit Debugger(Simulator* sim); |
+ ~Debugger(); |
+ |
+ void Stop(Instruction* instr); |
+ void Debug(); |
+ |
+ private: |
+ // We set the breakpoint code to 0xfffff to easily recognize it. |
+ static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6; |
+ static const Instr kNopInstr = 0x0; |
+ |
+ Simulator* sim_; |
+ |
+ int32_t GetRegisterValue(int regnum); |
+ bool GetValue(const char* desc, int32_t* value); |
+ |
+ // Set or delete a breakpoint. Returns true if successful. |
+ bool SetBreakpoint(Instruction* breakpc); |
+ bool DeleteBreakpoint(Instruction* breakpc); |
+ |
+ // Undo and redo all breakpoints. This is needed to bracket disassembly and |
+ // execution to skip past breakpoints when run from the debugger. |
+ void UndoBreakpoints(); |
+ void RedoBreakpoints(); |
+ |
+ // Print all registers with a nice formatting. |
+ void PrintAllRegs(); |
+}; |
+ |
+Debugger::Debugger(Simulator* sim) { |
+ sim_ = sim; |
+} |
+ |
+Debugger::~Debugger() { |
+} |
+ |
+#ifdef GENERATED_CODE_COVERAGE |
+static FILE* coverage_log = NULL; |
+ |
+ |
+static void InitializeCoverage() { |
+ char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); |
+ if (file_name != NULL) { |
+ coverage_log = fopen(file_name, "aw+"); |
+ } |
+} |
+ |
+ |
+void Debugger::Stop(Instruction* instr) { |
+ UNIMPLEMENTED_MIPS(); |
+ char* str = reinterpret_cast<char*>(instr->InstructionBits()); |
+ if (strlen(str) > 0) { |
+ if (coverage_log != NULL) { |
+ fprintf(coverage_log, "%s\n", str); |
+ fflush(coverage_log); |
+ } |
+ instr->SetInstructionBits(0x0); // Overwrite with nop. |
+ } |
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
+} |
+ |
+#else // ndef GENERATED_CODE_COVERAGE |
+ |
+#define UNSUPPORTED() printf("Unsupported instruction.\n"); |
+ |
+static void InitializeCoverage() {} |
+ |
+ |
+void Debugger::Stop(Instruction* instr) { |
+ const char* str = reinterpret_cast<char*>(instr->InstructionBits()); |
+ PrintF("Simulator hit %s\n", str); |
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
+ Debug(); |
+} |
+#endif // def GENERATED_CODE_COVERAGE |
+ |
+ |
+int32_t Debugger::GetRegisterValue(int regnum) { |
+ if (regnum == kNumSimuRegisters) { |
+ return sim_->get_pc(); |
+ } else { |
+ return sim_->get_register(regnum); |
+ } |
+} |
+ |
+ |
+bool Debugger::GetValue(const char* desc, int32_t* value) { |
+ int regnum = Registers::Number(desc); |
+ if (regnum != kInvalidRegister) { |
+ *value = GetRegisterValue(regnum); |
+ return true; |
+ } else { |
+ return SScanF(desc, "%i", value) == 1; |
+ } |
+ return false; |
+} |
+ |
+ |
+bool Debugger::SetBreakpoint(Instruction* breakpc) { |
+ // Check if a breakpoint can be set. If not return without any side-effects. |
+ if (sim_->break_pc_ != NULL) { |
+ return false; |
+ } |
+ |
+ // Set the breakpoint. |
+ sim_->break_pc_ = breakpc; |
+ sim_->break_instr_ = breakpc->InstructionBits(); |
+ // Not setting the breakpoint instruction in the code itself. It will be set |
+ // when the debugger shell continues. |
+ return true; |
+} |
+ |
+ |
+bool Debugger::DeleteBreakpoint(Instruction* breakpc) { |
+ if (sim_->break_pc_ != NULL) { |
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
+ } |
+ |
+ sim_->break_pc_ = NULL; |
+ sim_->break_instr_ = 0; |
+ return true; |
+} |
+ |
+ |
+void Debugger::UndoBreakpoints() { |
+ if (sim_->break_pc_ != NULL) { |
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
+ } |
+} |
+ |
+ |
+void Debugger::RedoBreakpoints() { |
+ if (sim_->break_pc_ != NULL) { |
+ sim_->break_pc_->SetInstructionBits(kBreakpointInstr); |
+ } |
+} |
+ |
+void Debugger::PrintAllRegs() { |
+#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) |
+ |
+ PrintF("\n"); |
+ // at, v0, a0 |
+ PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
+ REG_INFO(1), REG_INFO(2), REG_INFO(4)); |
+ // v1, a1 |
+ PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
+ "", REG_INFO(3), REG_INFO(5)); |
+ // a2 |
+ PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6)); |
+ // a3 |
+ PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7)); |
+ PrintF("\n"); |
+ // t0-t7, s0-s7 |
+ for (int i = 0; i < 8; i++) { |
+ PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
+ REG_INFO(8+i), REG_INFO(16+i)); |
+ } |
+ PrintF("\n"); |
+ // t8, k0, LO |
+ PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
+ REG_INFO(24), REG_INFO(26), REG_INFO(32)); |
+ // t9, k1, HI |
+ PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
+ REG_INFO(25), REG_INFO(27), REG_INFO(33)); |
+ // sp, fp, gp |
+ PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
+ REG_INFO(29), REG_INFO(30), REG_INFO(28)); |
+ // pc |
+ PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
+ REG_INFO(31), REG_INFO(34)); |
+#undef REG_INFO |
+} |
+ |
+void Debugger::Debug() { |
+ intptr_t last_pc = -1; |
+ bool done = false; |
+ |
+#define COMMAND_SIZE 63 |
+#define ARG_SIZE 255 |
+ |
+#define STR(a) #a |
+#define XSTR(a) STR(a) |
+ |
+ char cmd[COMMAND_SIZE + 1]; |
+ char arg1[ARG_SIZE + 1]; |
+ char arg2[ARG_SIZE + 1]; |
+ |
+ // make sure to have a proper terminating character if reaching the limit |
+ cmd[COMMAND_SIZE] = 0; |
+ arg1[ARG_SIZE] = 0; |
+ arg2[ARG_SIZE] = 0; |
+ |
+ // Undo all set breakpoints while running in the debugger shell. This will |
+ // make them invisible to all commands. |
+ UndoBreakpoints(); |
+ |
+ while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { |
+ if (last_pc != sim_->get_pc()) { |
+ disasm::NameConverter converter; |
+ disasm::Disassembler dasm(converter); |
+ // use a reasonably large buffer |
+ v8::internal::EmbeddedVector<char, 256> buffer; |
+ dasm.InstructionDecode(buffer, |
+ reinterpret_cast<byte_*>(sim_->get_pc())); |
+ PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); |
+ last_pc = sim_->get_pc(); |
+ } |
+ char* line = ReadLine("sim> "); |
+ if (line == NULL) { |
+ break; |
+ } else { |
+ // Use sscanf to parse the individual parts of the command line. At the |
+ // moment no command expects more than two parameters. |
+ int args = SScanF(line, |
+ "%" XSTR(COMMAND_SIZE) "s " |
+ "%" XSTR(ARG_SIZE) "s " |
+ "%" XSTR(ARG_SIZE) "s", |
+ cmd, arg1, arg2); |
+ if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
+ if (!(reinterpret_cast<Instruction*>(sim_->get_pc())->IsTrap())) { |
+ sim_->InstructionDecode( |
+ reinterpret_cast<Instruction*>(sim_->get_pc())); |
+ } else { |
+ // Allow si to jump over generated breakpoints. |
+ PrintF("/!\\ Jumping over generated breakpoint.\n"); |
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
+ } |
+ } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
+ // Execute the one instruction we broke at with breakpoints disabled. |
+ sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); |
+ // Leave the debugger shell. |
+ done = true; |
+ } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
+ if (args == 2) { |
+ int32_t value; |
+ if (strcmp(arg1, "all") == 0) { |
+ PrintAllRegs(); |
+ } else { |
+ if (GetValue(arg1, &value)) { |
+ PrintF("%s: 0x%08x %d \n", arg1, value, value); |
+ } else { |
+ PrintF("%s unrecognized\n", arg1); |
+ } |
+ } |
+ } else { |
+ PrintF("print <register>\n"); |
+ } |
+ } else if ((strcmp(cmd, "po") == 0) |
+ || (strcmp(cmd, "printobject") == 0)) { |
+ if (args == 2) { |
+ int32_t value; |
+ if (GetValue(arg1, &value)) { |
+ Object* obj = reinterpret_cast<Object*>(value); |
+ PrintF("%s: \n", arg1); |
+#ifdef DEBUG |
+ obj->PrintLn(); |
+#else |
+ obj->ShortPrint(); |
+ PrintF("\n"); |
+#endif |
+ } else { |
+ PrintF("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ PrintF("printobject <value>\n"); |
+ } |
+ } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0)) { |
+ disasm::NameConverter converter; |
+ disasm::Disassembler dasm(converter); |
+ // use a reasonably large buffer |
+ v8::internal::EmbeddedVector<char, 256> buffer; |
+ |
+ byte_* cur = NULL; |
+ byte_* end = NULL; |
+ |
+ if (args == 1) { |
+ cur = reinterpret_cast<byte_*>(sim_->get_pc()); |
+ end = cur + (10 * Instruction::kInstructionSize); |
+ } else if (args == 2) { |
+ int32_t value; |
+ if (GetValue(arg1, &value)) { |
+ cur = reinterpret_cast<byte_*>(value); |
+ // no length parameter passed, assume 10 instructions |
+ end = cur + (10 * Instruction::kInstructionSize); |
+ } |
+ } else { |
+ int32_t value1; |
+ int32_t value2; |
+ if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
+ cur = reinterpret_cast<byte_*>(value1); |
+ end = cur + (value2 * Instruction::kInstructionSize); |
+ } |
+ } |
+ |
+ while (cur < end) { |
+ dasm.InstructionDecode(buffer, cur); |
+ PrintF(" 0x%08x %s\n", cur, buffer.start()); |
+ cur += Instruction::kInstructionSize; |
+ } |
+ } else if (strcmp(cmd, "gdb") == 0) { |
+ PrintF("relinquishing control to gdb\n"); |
+ v8::internal::OS::DebugBreak(); |
+ PrintF("regaining control from gdb\n"); |
+ } else if (strcmp(cmd, "break") == 0) { |
+ if (args == 2) { |
+ int32_t value; |
+ if (GetValue(arg1, &value)) { |
+ if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { |
+ PrintF("setting breakpoint failed\n"); |
+ } |
+ } else { |
+ PrintF("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ PrintF("break <address>\n"); |
+ } |
+ } else if (strcmp(cmd, "del") == 0) { |
+ if (!DeleteBreakpoint(NULL)) { |
+ PrintF("deleting breakpoint failed\n"); |
+ } |
+ } else if (strcmp(cmd, "flags") == 0) { |
+ PrintF("No flags on MIPS !\n"); |
+ } else if (strcmp(cmd, "unstop") == 0) { |
+ PrintF("Unstop command not implemented on MIPS."); |
+ } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { |
+ // Print registers and disassemble |
+ PrintAllRegs(); |
+ PrintF("\n"); |
+ |
+ disasm::NameConverter converter; |
+ disasm::Disassembler dasm(converter); |
+ // use a reasonably large buffer |
+ v8::internal::EmbeddedVector<char, 256> buffer; |
+ |
+ byte_* cur = NULL; |
+ byte_* end = NULL; |
+ |
+ if (args == 1) { |
+ cur = reinterpret_cast<byte_*>(sim_->get_pc()); |
+ end = cur + (10 * Instruction::kInstructionSize); |
+ } else if (args == 2) { |
+ int32_t value; |
+ if (GetValue(arg1, &value)) { |
+ cur = reinterpret_cast<byte_*>(value); |
+ // no length parameter passed, assume 10 instructions |
+ end = cur + (10 * Instruction::kInstructionSize); |
+ } |
+ } else { |
+ int32_t value1; |
+ int32_t value2; |
+ if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
+ cur = reinterpret_cast<byte_*>(value1); |
+ end = cur + (value2 * Instruction::kInstructionSize); |
+ } |
+ } |
+ |
+ while (cur < end) { |
+ dasm.InstructionDecode(buffer, cur); |
+ PrintF(" 0x%08x %s\n", cur, buffer.start()); |
+ cur += Instruction::kInstructionSize; |
+ } |
+ } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
+ PrintF("cont\n"); |
+ PrintF(" continue execution (alias 'c')\n"); |
+ PrintF("stepi\n"); |
+ PrintF(" step one instruction (alias 'si')\n"); |
+ PrintF("print <register>\n"); |
+ PrintF(" print register content (alias 'p')\n"); |
+ PrintF(" use register name 'all' to print all registers\n"); |
+ PrintF("printobject <register>\n"); |
+ PrintF(" print an object from a register (alias 'po')\n"); |
+ PrintF("flags\n"); |
+ PrintF(" print flags\n"); |
+ PrintF("disasm [<instructions>]\n"); |
+ PrintF("disasm [[<address>] <instructions>]\n"); |
+ PrintF(" disassemble code, default is 10 instructions from pc\n"); |
+ PrintF("gdb\n"); |
+ PrintF(" enter gdb\n"); |
+ PrintF("break <address>\n"); |
+ PrintF(" set a break point on the address\n"); |
+ PrintF("del\n"); |
+ PrintF(" delete the breakpoint\n"); |
+ PrintF("unstop\n"); |
+ PrintF(" ignore the stop instruction at the current location"); |
+ PrintF(" from now on\n"); |
+ } else { |
+ PrintF("Unknown command: %s\n", cmd); |
+ } |
+ } |
+ DeleteArray(line); |
+ } |
+ |
+ // Add all the breakpoints back to stop execution and enter the debugger |
+ // shell when hit. |
+ RedoBreakpoints(); |
+ |
+#undef COMMAND_SIZE |
+#undef ARG_SIZE |
+ |
+#undef STR |
+#undef XSTR |
+} |
+ |
+ |
+// Create one simulator per thread and keep it in thread local storage. |
+static v8::internal::Thread::LocalStorageKey simulator_key; |
+ |
+ |
+bool Simulator::initialized_ = false; |
+ |
+ |
+void Simulator::Initialize() { |
+ if (initialized_) return; |
+ simulator_key = v8::internal::Thread::CreateThreadLocalKey(); |
+ initialized_ = true; |
+ ::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference); |
+} |
+ |
+ |
+Simulator::Simulator() { |
+ Initialize(); |
+ // Setup simulator support first. Some of this information is needed to |
+ // setup the architecture state. |
+ size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack |
+ stack_ = reinterpret_cast<char*>(malloc(stack_size)); |
+ pc_modified_ = false; |
+ icount_ = 0; |
+ break_pc_ = NULL; |
+ break_instr_ = 0; |
+ |
+ // Setup architecture state. |
+ // All registers are initialized to zero to start with. |
+ for (int i = 0; i < kNumSimuRegisters; i++) { |
+ registers_[i] = 0; |
+ } |
+ |
+ // The sp is initialized to point to the bottom (high address) of the |
+ // allocated stack area. To be safe in potential stack underflows we leave |
+ // some buffer below. |
+ registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; |
+ // The ra and pc are initialized to a known bad value that will cause an |
+ // access violation if the simulator ever tries to execute it. |
+ registers_[pc] = bad_ra; |
+ registers_[ra] = bad_ra; |
+ InitializeCoverage(); |
+} |
+ |
+ |
+// When the generated code calls an external reference we need to catch that in |
+// the simulator. The external reference will be a function compiled for the |
+// host architecture. We need to call that function instead of trying to |
+// execute it with the simulator. We do that by redirecting the external |
+// reference to a swi (software-interrupt) instruction that is handled by |
+// the simulator. We write the original destination of the jump just at a known |
+// offset from the swi instruction so the simulator knows what to call. |
+class Redirection { |
+ public: |
+ Redirection(void* external_function, bool fp_return) |
+ : external_function_(external_function), |
+ swi_instruction_(rtCallRedirInstr), |
+ fp_return_(fp_return), |
+ next_(list_) { |
+ list_ = this; |
+ } |
+ |
+ void* address_of_swi_instruction() { |
+ return reinterpret_cast<void*>(&swi_instruction_); |
+ } |
+ |
+ void* external_function() { return external_function_; } |
+ bool fp_return() { return fp_return_; } |
+ |
+ static Redirection* Get(void* external_function, bool fp_return) { |
+ Redirection* current; |
+ for (current = list_; current != NULL; current = current->next_) { |
+ if (current->external_function_ == external_function) return current; |
+ } |
+ return new Redirection(external_function, fp_return); |
+ } |
+ |
+ static Redirection* FromSwiInstruction(Instruction* swi_instruction) { |
+ char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); |
+ char* addr_of_redirection = |
+ addr_of_swi - OFFSET_OF(Redirection, swi_instruction_); |
+ return reinterpret_cast<Redirection*>(addr_of_redirection); |
+ } |
+ |
+ private: |
+ void* external_function_; |
+ uint32_t swi_instruction_; |
+ bool fp_return_; |
+ Redirection* next_; |
+ static Redirection* list_; |
+}; |
+ |
+ |
+Redirection* Redirection::list_ = NULL; |
+ |
+ |
+void* Simulator::RedirectExternalReference(void* external_function, |
+ bool fp_return) { |
+ Redirection* redirection = Redirection::Get(external_function, fp_return); |
+ return redirection->address_of_swi_instruction(); |
+} |
+ |
+ |
+// Get the active Simulator for the current thread. |
+Simulator* Simulator::current() { |
+ Initialize(); |
+ Simulator* sim = reinterpret_cast<Simulator*>( |
+ v8::internal::Thread::GetThreadLocal(simulator_key)); |
+ if (sim == NULL) { |
+ // TODO(146): delete the simulator object when a thread goes away. |
+ sim = new Simulator(); |
+ v8::internal::Thread::SetThreadLocal(simulator_key, sim); |
+ } |
+ return sim; |
+} |
+ |
+ |
+// Sets the register in the architecture state. It will also deal with updating |
+// Simulator internal state for special registers such as PC. |
+void Simulator::set_register(int reg, int32_t value) { |
+ ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); |
+ if (reg == pc) { |
+ pc_modified_ = true; |
+ } |
+ |
+ // zero register always hold 0. |
+ registers_[reg] = (reg == 0) ? 0 : value; |
+} |
+ |
+void Simulator::set_fpu_register(int fpureg, int32_t value) { |
+ ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
+ FPUregisters_[fpureg] = value; |
+} |
+ |
+void Simulator::set_fpu_register_double(int fpureg, double value) { |
+ ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
+ *v8i::bit_cast<double*, int32_t*>(&FPUregisters_[fpureg]) = value; |
+} |
+ |
+ |
+// Get the register from the architecture state. This function does handle |
+// the special case of accessing the PC register. |
+int32_t Simulator::get_register(int reg) const { |
+ ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); |
+ if (reg == 0) |
+ return 0; |
+ else |
+ return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); |
+} |
+ |
+int32_t Simulator::get_fpu_register(int fpureg) const { |
+ ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
+ return FPUregisters_[fpureg]; |
+} |
+ |
+double Simulator::get_fpu_register_double(int fpureg) const { |
+ ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
+ return *v8i::bit_cast<double*, int32_t*>( |
+ const_cast<int32_t*>(&FPUregisters_[fpureg])); |
+} |
+ |
+// Raw access to the PC register. |
+void Simulator::set_pc(int32_t value) { |
+ pc_modified_ = true; |
+ registers_[pc] = value; |
+} |
+ |
+// Raw access to the PC register without the special adjustment when reading. |
+int32_t Simulator::get_pc() const { |
+ return registers_[pc]; |
+} |
+ |
+ |
+// The MIPS cannot do unaligned reads and writes. On some MIPS platforms an |
+// interrupt is caused. On others it does a funky rotation thing. For now we |
+// simply disallow unaligned reads, but at some point we may want to move to |
+// emulating the rotate behaviour. Note that simulator runs have the runtime |
+// system running directly on the host system and only generated code is |
+// executed in the simulator. Since the host is typically IA32 we will not |
+// get the correct MIPS-like behaviour on unaligned accesses. |
+ |
+int Simulator::ReadW(int32_t addr, Instruction* instr) { |
+ if ((addr & v8i::kPointerAlignmentMask) == 0) { |
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
+ return *ptr; |
+ } |
+ PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr); |
+ OS::Abort(); |
+ return 0; |
+} |
+ |
+ |
+void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { |
+ if ((addr & v8i::kPointerAlignmentMask) == 0) { |
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
+ *ptr = value; |
+ return; |
+ } |
+ PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
+ OS::Abort(); |
+} |
+ |
+ |
+double Simulator::ReadD(int32_t addr, Instruction* instr) { |
+ if ((addr & kDoubleAlignmentMask) == 0) { |
+ double* ptr = reinterpret_cast<double*>(addr); |
+ return *ptr; |
+ } |
+ PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr); |
+ OS::Abort(); |
+ return 0; |
+} |
+ |
+ |
+void Simulator::WriteD(int32_t addr, double value, Instruction* instr) { |
+ if ((addr & kDoubleAlignmentMask) == 0) { |
+ double* ptr = reinterpret_cast<double*>(addr); |
+ *ptr = value; |
+ return; |
+ } |
+ PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
+ OS::Abort(); |
+} |
+ |
+ |
+uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { |
+ if ((addr & 1) == 0) { |
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
+ return *ptr; |
+ } |
+ PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr); |
+ OS::Abort(); |
+ return 0; |
+} |
+ |
+ |
+int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { |
+ if ((addr & 1) == 0) { |
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
+ return *ptr; |
+ } |
+ PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr, instr); |
+ OS::Abort(); |
+ return 0; |
+} |
+ |
+ |
+void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { |
+ if ((addr & 1) == 0) { |
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
+ *ptr = value; |
+ return; |
+ } |
+ PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr); |
+ OS::Abort(); |
+} |
+ |
+ |
+void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { |
+ if ((addr & 1) == 0) { |
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
+ *ptr = value; |
+ return; |
+ } |
+ PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr); |
+ OS::Abort(); |
+} |
+ |
+ |
+uint32_t Simulator::ReadBU(int32_t addr) { |
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
+ return *ptr & 0xff; |
+} |
+ |
+ |
+int32_t Simulator::ReadB(int32_t addr) { |
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
+ return ((*ptr << 24) >> 24) & 0xff; |
+} |
+ |
+ |
+void Simulator::WriteB(int32_t addr, uint8_t value) { |
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
+ *ptr = value; |
+} |
+ |
+ |
+void Simulator::WriteB(int32_t addr, int8_t value) { |
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
+ *ptr = value; |
+} |
+ |
+ |
+// Returns the limit of the stack area to enable checking for stack overflows. |
+uintptr_t Simulator::StackLimit() const { |
+ // Leave a safety margin of 256 bytes to prevent overrunning the stack when |
+ // pushing values. |
+ return reinterpret_cast<uintptr_t>(stack_) + 256; |
+} |
+ |
+ |
+// Unsupported instructions use Format to print an error and stop execution. |
+void Simulator::Format(Instruction* instr, const char* format) { |
+ PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n", |
+ instr, format); |
+ UNIMPLEMENTED_MIPS(); |
+} |
+ |
+ |
+// Calls into the V8 runtime are based on this very simple interface. |
+// Note: To be able to return two values from some calls the code in runtime.cc |
+// uses the ObjectPair which is essentially two 32-bit values stuffed into a |
+// 64-bit value. With the code below we assume that all runtime calls return |
+// 64 bits of result. If they don't, the r1 result register contains a bogus |
+// value, which is fine because it is caller-saved. |
+typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, |
+ int32_t arg1, |
+ int32_t arg2, |
+ int32_t arg3); |
+typedef double (*SimulatorRuntimeFPCall)(double fparg0, |
+ double fparg1); |
+ |
+ |
+// Software interrupt instructions are used by the simulator to call into the |
+// C-based V8 runtime. |
+void Simulator::SoftwareInterrupt(Instruction* instr) { |
+ // We first check if we met a call_rt_redirected. |
+ if (instr->InstructionBits() == rtCallRedirInstr) { |
+ Redirection* redirection = Redirection::FromSwiInstruction(instr); |
+ int32_t arg0 = get_register(a0); |
+ int32_t arg1 = get_register(a1); |
+ int32_t arg2 = get_register(a2); |
+ int32_t arg3 = get_register(a3); |
+ // fp args are (not always) in f12 and f14. |
+ // See MIPS conventions for more details. |
+ double fparg0 = get_fpu_register_double(f12); |
+ double fparg1 = get_fpu_register_double(f14); |
+ // This is dodgy but it works because the C entry stubs are never moved. |
+ // See comment in codegen-arm.cc and bug 1242173. |
+ int32_t saved_ra = get_register(ra); |
+ if (redirection->fp_return()) { |
+ intptr_t external = |
+ reinterpret_cast<intptr_t>(redirection->external_function()); |
+ SimulatorRuntimeFPCall target = |
+ reinterpret_cast<SimulatorRuntimeFPCall>(external); |
+ if (::v8::internal::FLAG_trace_sim) { |
+ PrintF("Call to host function at %p with args %f, %f\n", |
+ FUNCTION_ADDR(target), fparg0, fparg1); |
+ } |
+ double result = target(fparg0, fparg1); |
+ set_fpu_register_double(f0, result); |
+ } else { |
+ intptr_t external = |
+ reinterpret_cast<int32_t>(redirection->external_function()); |
+ SimulatorRuntimeCall target = |
+ reinterpret_cast<SimulatorRuntimeCall>(external); |
+ if (::v8::internal::FLAG_trace_sim) { |
+ PrintF( |
+ "Call to host function at %p with args %08x, %08x, %08x, %08x\n", |
+ FUNCTION_ADDR(target), |
+ arg0, |
+ arg1, |
+ arg2, |
+ arg3); |
+ } |
+ int64_t result = target(arg0, arg1, arg2, arg3); |
+ int32_t lo_res = static_cast<int32_t>(result); |
+ int32_t hi_res = static_cast<int32_t>(result >> 32); |
+ if (::v8::internal::FLAG_trace_sim) { |
+ PrintF("Returned %08x\n", lo_res); |
+ } |
+ set_register(v0, lo_res); |
+ set_register(v1, hi_res); |
+ } |
+ set_register(ra, saved_ra); |
+ set_pc(get_register(ra)); |
+ } else { |
+ Debugger dbg(this); |
+ dbg.Debug(); |
+ } |
+} |
+ |
+void Simulator::SignalExceptions() { |
+ for (int i = 1; i < kNumExceptions; i++) { |
+ if (exceptions[i] != 0) { |
+ V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", i); |
+ } |
+ } |
+} |
+ |
+// Handle execution based on instruction types. |
+void Simulator::DecodeTypeRegister(Instruction* instr) { |
+ // Instruction fields |
+ Opcode op = instr->OpcodeFieldRaw(); |
+ int32_t rs_reg = instr->RsField(); |
+ int32_t rs = get_register(rs_reg); |
+ uint32_t rs_u = static_cast<uint32_t>(rs); |
+ int32_t rt_reg = instr->RtField(); |
+ int32_t rt = get_register(rt_reg); |
+ uint32_t rt_u = static_cast<uint32_t>(rt); |
+ int32_t rd_reg = instr->RdField(); |
+ uint32_t sa = instr->SaField(); |
+ |
+ int32_t fs_reg= instr->FsField(); |
+ |
+ // ALU output |
+ // It should not be used as is. Instructions using it should always initialize |
+ // it first. |
+ int32_t alu_out = 0x12345678; |
+ // Output or temporary for floating point. |
+ double fp_out = 0.0; |
+ |
+ // For break and trap instructions. |
+ bool do_interrupt = false; |
+ |
+ // For jr and jalr |
+ // Get current pc. |
+ int32_t current_pc = get_pc(); |
+ // Next pc |
+ int32_t next_pc = 0; |
+ |
+ // ---------- Configuration |
+ switch (op) { |
+ case COP1: // Coprocessor instructions |
+ switch (instr->RsFieldRaw()) { |
+ case BC1: // branch on coprocessor condition |
+ UNREACHABLE(); |
+ break; |
+ case MFC1: |
+ alu_out = get_fpu_register(fs_reg); |
+ break; |
+ case MFHC1: |
+ fp_out = get_fpu_register_double(fs_reg); |
+ alu_out = *v8i::bit_cast<int32_t*, double*>(&fp_out); |
+ break; |
+ case MTC1: |
+ case MTHC1: |
+ // Do the store in the execution step. |
+ break; |
+ case S: |
+ case D: |
+ case W: |
+ case L: |
+ case PS: |
+ // Do everything in the execution step. |
+ break; |
+ default: |
+ UNIMPLEMENTED_MIPS(); |
+ }; |
+ break; |
+ case SPECIAL: |
+ switch (instr->FunctionFieldRaw()) { |
+ case JR: |
+ case JALR: |
+ next_pc = get_register(instr->RsField()); |
+ break; |
+ case SLL: |
+ alu_out = rt << sa; |
+ break; |
+ case SRL: |
+ alu_out = rt_u >> sa; |
+ break; |
+ case SRA: |
+ alu_out = rt >> sa; |
+ break; |
+ case SLLV: |
+ alu_out = rt << rs; |
+ break; |
+ case SRLV: |
+ alu_out = rt_u >> rs; |
+ break; |
+ case SRAV: |
+ alu_out = rt >> rs; |
+ break; |
+ case MFHI: |
+ alu_out = get_register(HI); |
+ break; |
+ case MFLO: |
+ alu_out = get_register(LO); |
+ break; |
+ case MULT: |
+ UNIMPLEMENTED_MIPS(); |
+ break; |
+ case MULTU: |
+ UNIMPLEMENTED_MIPS(); |
+ break; |
+ case DIV: |
+ case DIVU: |
+ exceptions[kDivideByZero] = rt == 0; |
+ break; |
+ case ADD: |
+ if (HaveSameSign(rs, rt)) { |
+ if (rs > 0) { |
+ exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - rt); |
+ } else if (rs < 0) { |
+ exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - rt); |
+ } |
+ } |
+ alu_out = rs + rt; |
+ break; |
+ case ADDU: |
+ alu_out = rs + rt; |
+ break; |
+ case SUB: |
+ if (!HaveSameSign(rs, rt)) { |
+ if (rs > 0) { |
+ exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue + rt); |
+ } else if (rs < 0) { |
+ exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue + rt); |
+ } |
+ } |
+ alu_out = rs - rt; |
+ break; |
+ case SUBU: |
+ alu_out = rs - rt; |
+ break; |
+ case AND: |
+ alu_out = rs & rt; |
+ break; |
+ case OR: |
+ alu_out = rs | rt; |
+ break; |
+ case XOR: |
+ alu_out = rs ^ rt; |
+ break; |
+ case NOR: |
+ alu_out = ~(rs | rt); |
+ break; |
+ case SLT: |
+ alu_out = rs < rt ? 1 : 0; |
+ break; |
+ case SLTU: |
+ alu_out = rs_u < rt_u ? 1 : 0; |
+ break; |
+ // Break and trap instructions |
+ case BREAK: |
+ do_interrupt = true; |
+ break; |
+ case TGE: |
+ do_interrupt = rs >= rt; |
+ break; |
+ case TGEU: |
+ do_interrupt = rs_u >= rt_u; |
+ break; |
+ case TLT: |
+ do_interrupt = rs < rt; |
+ break; |
+ case TLTU: |
+ do_interrupt = rs_u < rt_u; |
+ break; |
+ case TEQ: |
+ do_interrupt = rs == rt; |
+ break; |
+ case TNE: |
+ do_interrupt = rs != rt; |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ }; |
+ break; |
+ case SPECIAL2: |
+ switch (instr->FunctionFieldRaw()) { |
+ case MUL: |
+ alu_out = rs_u * rt_u; // Only the lower 32 bits are kept. |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ }; |
+ |
+ // ---------- Raise exceptions triggered. |
+ SignalExceptions(); |
+ |
+ // ---------- Execution |
+ switch (op) { |
+ case COP1: |
+ switch (instr->RsFieldRaw()) { |
+ case BC1: // branch on coprocessor condition |
+ UNREACHABLE(); |
+ break; |
+ case MFC1: |
+ case MFHC1: |
+ set_register(rt_reg, alu_out); |
+ break; |
+ case MTC1: |
+ // We don't need to set the higher bits to 0, because MIPS ISA says |
+ // they are in an unpredictable state after executing MTC1. |
+ FPUregisters_[fs_reg] = registers_[rt_reg]; |
+ FPUregisters_[fs_reg+1] = Unpredictable; |
+ break; |
+ case MTHC1: |
+ // Here we need to keep the lower bits unchanged. |
+ FPUregisters_[fs_reg+1] = registers_[rt_reg]; |
+ break; |
+ case S: |
+ switch (instr->FunctionFieldRaw()) { |
+ case CVT_D_S: |
+ case CVT_W_S: |
+ case CVT_L_S: |
+ case CVT_PS_S: |
+ UNIMPLEMENTED_MIPS(); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ break; |
+ case D: |
+ switch (instr->FunctionFieldRaw()) { |
+ case CVT_S_D: |
+ case CVT_W_D: |
+ case CVT_L_D: |
+ UNIMPLEMENTED_MIPS(); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ break; |
+ case W: |
+ switch (instr->FunctionFieldRaw()) { |
+ case CVT_S_W: |
+ UNIMPLEMENTED_MIPS(); |
+ break; |
+ case CVT_D_W: // Convert word to double. |
+ set_fpu_register(rd_reg, static_cast<double>(rs)); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ }; |
+ break; |
+ case L: |
+ switch (instr->FunctionFieldRaw()) { |
+ case CVT_S_L: |
+ case CVT_D_L: |
+ UNIMPLEMENTED_MIPS(); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ break; |
+ case PS: |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ }; |
+ break; |
+ case SPECIAL: |
+ switch (instr->FunctionFieldRaw()) { |
+ case JR: { |
+ Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( |
+ current_pc+Instruction::kInstructionSize); |
+ BranchDelayInstructionDecode(branch_delay_instr); |
+ set_pc(next_pc); |
+ pc_modified_ = true; |
+ break; |
+ } |
+ case JALR: { |
+ Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( |
+ current_pc+Instruction::kInstructionSize); |
+ BranchDelayInstructionDecode(branch_delay_instr); |
+ set_register(31, current_pc + 2* Instruction::kInstructionSize); |
+ set_pc(next_pc); |
+ pc_modified_ = true; |
+ break; |
+ } |
+ // Instructions using HI and LO registers. |
+ case MULT: |
+ case MULTU: |
+ break; |
+ case DIV: |
+ // Divide by zero was checked in the configuration step. |
+ set_register(LO, rs / rt); |
+ set_register(HI, rs % rt); |
+ break; |
+ case DIVU: |
+ set_register(LO, rs_u / rt_u); |
+ set_register(HI, rs_u % rt_u); |
+ break; |
+ // Break and trap instructions |
+ case BREAK: |
+ case TGE: |
+ case TGEU: |
+ case TLT: |
+ case TLTU: |
+ case TEQ: |
+ case TNE: |
+ if (do_interrupt) { |
+ SoftwareInterrupt(instr); |
+ } |
+ break; |
+ default: // For other special opcodes we do the default operation. |
+ set_register(rd_reg, alu_out); |
+ }; |
+ break; |
+ case SPECIAL2: |
+ switch (instr->FunctionFieldRaw()) { |
+ case MUL: |
+ set_register(rd_reg, alu_out); |
+ // HI and LO are UNPREDICTABLE after the operation. |
+ set_register(LO, Unpredictable); |
+ set_register(HI, Unpredictable); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ break; |
+ // Unimplemented opcodes raised an error in the configuration step before, |
+ // so we can use the default here to set the destination register in common |
+ // cases. |
+ default: |
+ set_register(rd_reg, alu_out); |
+ }; |
+} |
+ |
+// Type 2: instructions using a 16 bytes immediate. (eg: addi, beq) |
+void Simulator::DecodeTypeImmediate(Instruction* instr) { |
+ // Instruction fields |
+ Opcode op = instr->OpcodeFieldRaw(); |
+ int32_t rs = get_register(instr->RsField()); |
+ uint32_t rs_u = static_cast<uint32_t>(rs); |
+ int32_t rt_reg = instr->RtField(); // destination register |
+ int32_t rt = get_register(rt_reg); |
+ int16_t imm16 = instr->Imm16Field(); |
+ |
+ int32_t ft_reg = instr->FtField(); // destination register |
+ int32_t ft = get_register(ft_reg); |
+ |
+ // zero extended immediate |
+ uint32_t oe_imm16 = 0xffff & imm16; |
+ // sign extended immediate |
+ int32_t se_imm16 = imm16; |
+ |
+ // Get current pc. |
+ int32_t current_pc = get_pc(); |
+ // Next pc. |
+ int32_t next_pc = bad_ra; |
+ |
+ // Used for conditional branch instructions |
+ bool do_branch = false; |
+ bool execute_branch_delay_instruction = false; |
+ |
+ // Used for arithmetic instructions |
+ int32_t alu_out = 0; |
+ // Floating point |
+ double fp_out = 0.0; |
+ |
+ // Used for memory instructions |
+ int32_t addr = 0x0; |
+ |
+ // ---------- Configuration (and execution for REGIMM) |
+ switch (op) { |
+ // ------------- COP1. Coprocessor instructions |
+ case COP1: |
+ switch (instr->RsFieldRaw()) { |
+ case BC1: // branch on coprocessor condition |
+ UNIMPLEMENTED_MIPS(); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ }; |
+ break; |
+ // ------------- REGIMM class |
+ case REGIMM: |
+ switch (instr->RtFieldRaw()) { |
+ case BLTZ: |
+ do_branch = (rs < 0); |
+ break; |
+ case BLTZAL: |
+ do_branch = rs < 0; |
+ break; |
+ case BGEZ: |
+ do_branch = rs >= 0; |
+ break; |
+ case BGEZAL: |
+ do_branch = rs >= 0; |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ }; |
+ switch (instr->RtFieldRaw()) { |
+ case BLTZ: |
+ case BLTZAL: |
+ case BGEZ: |
+ case BGEZAL: |
+ // Branch instructions common part. |
+ execute_branch_delay_instruction = true; |
+ // Set next_pc |
+ if (do_branch) { |
+ next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize; |
+ if (instr->IsLinkingInstruction()) { |
+ set_register(31, current_pc + kBranchReturnOffset); |
+ } |
+ } else { |
+ next_pc = current_pc + kBranchReturnOffset; |
+ } |
+ default: |
+ break; |
+ }; |
+ break; // case REGIMM |
+ // ------------- Branch instructions |
+ // When comparing to zero, the encoding of rt field is always 0, so we don't |
+ // need to replace rt with zero. |
+ case BEQ: |
+ do_branch = (rs == rt); |
+ break; |
+ case BNE: |
+ do_branch = rs != rt; |
+ break; |
+ case BLEZ: |
+ do_branch = rs <= 0; |
+ break; |
+ case BGTZ: |
+ do_branch = rs > 0; |
+ break; |
+ // ------------- Arithmetic instructions |
+ case ADDI: |
+ if (HaveSameSign(rs, se_imm16)) { |
+ if (rs > 0) { |
+ exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - se_imm16); |
+ } else if (rs < 0) { |
+ exceptions[kIntegerUnderflow] = |
+ rs < (Registers::kMinValue - se_imm16); |
+ } |
+ } |
+ alu_out = rs + se_imm16; |
+ break; |
+ case ADDIU: |
+ alu_out = rs + se_imm16; |
+ break; |
+ case SLTI: |
+ alu_out = (rs < se_imm16) ? 1 : 0; |
+ break; |
+ case SLTIU: |
+ alu_out = (rs_u < static_cast<uint32_t>(se_imm16)) ? 1 : 0; |
+ break; |
+ case ANDI: |
+ alu_out = rs & oe_imm16; |
+ break; |
+ case ORI: |
+ alu_out = rs | oe_imm16; |
+ break; |
+ case XORI: |
+ alu_out = rs ^ oe_imm16; |
+ break; |
+ case LUI: |
+ alu_out = (oe_imm16 << 16); |
+ break; |
+ // ------------- Memory instructions |
+ case LB: |
+ addr = rs + se_imm16; |
+ alu_out = ReadB(addr); |
+ break; |
+ case LW: |
+ addr = rs + se_imm16; |
+ alu_out = ReadW(addr, instr); |
+ break; |
+ case LBU: |
+ addr = rs + se_imm16; |
+ alu_out = ReadBU(addr); |
+ break; |
+ case SB: |
+ addr = rs + se_imm16; |
+ break; |
+ case SW: |
+ addr = rs + se_imm16; |
+ break; |
+ case LWC1: |
+ addr = rs + se_imm16; |
+ alu_out = ReadW(addr, instr); |
+ break; |
+ case LDC1: |
+ addr = rs + se_imm16; |
+ fp_out = ReadD(addr, instr); |
+ break; |
+ case SWC1: |
+ case SDC1: |
+ addr = rs + se_imm16; |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ }; |
+ |
+ // ---------- Raise exceptions triggered. |
+ SignalExceptions(); |
+ |
+ // ---------- Execution |
+ switch (op) { |
+ // ------------- Branch instructions |
+ case BEQ: |
+ case BNE: |
+ case BLEZ: |
+ case BGTZ: |
+ // Branch instructions common part. |
+ execute_branch_delay_instruction = true; |
+ // Set next_pc |
+ if (do_branch) { |
+ next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize; |
+ if (instr->IsLinkingInstruction()) { |
+ set_register(31, current_pc + 2* Instruction::kInstructionSize); |
+ } |
+ } else { |
+ next_pc = current_pc + 2 * Instruction::kInstructionSize; |
+ } |
+ break; |
+ // ------------- Arithmetic instructions |
+ case ADDI: |
+ case ADDIU: |
+ case SLTI: |
+ case SLTIU: |
+ case ANDI: |
+ case ORI: |
+ case XORI: |
+ case LUI: |
+ set_register(rt_reg, alu_out); |
+ break; |
+ // ------------- Memory instructions |
+ case LB: |
+ case LW: |
+ case LBU: |
+ set_register(rt_reg, alu_out); |
+ break; |
+ case SB: |
+ WriteB(addr, static_cast<int8_t>(rt)); |
+ break; |
+ case SW: |
+ WriteW(addr, rt, instr); |
+ break; |
+ case LWC1: |
+ set_fpu_register(ft_reg, alu_out); |
+ break; |
+ case LDC1: |
+ set_fpu_register_double(ft_reg, fp_out); |
+ break; |
+ case SWC1: |
+ addr = rs + se_imm16; |
+ WriteW(addr, get_fpu_register(ft_reg), instr); |
+ break; |
+ case SDC1: |
+ addr = rs + se_imm16; |
+ WriteD(addr, ft, instr); |
+ break; |
+ default: |
+ break; |
+ }; |
+ |
+ |
+ if (execute_branch_delay_instruction) { |
+ // Execute branch delay slot |
+ // We don't check for end_sim_pc. First it should not be met as the current |
+ // pc is valid. Secondly a jump should always execute its branch delay slot. |
+ Instruction* branch_delay_instr = |
+ reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize); |
+ BranchDelayInstructionDecode(branch_delay_instr); |
+ } |
+ |
+ // If needed update pc after the branch delay execution. |
+ if (next_pc != bad_ra) { |
+ set_pc(next_pc); |
+ } |
+} |
+ |
+// Type 3: instructions using a 26 bytes immediate. (eg: j, jal) |
+void Simulator::DecodeTypeJump(Instruction* instr) { |
+ // Get current pc. |
+ int32_t current_pc = get_pc(); |
+ // Get unchanged bits of pc. |
+ int32_t pc_high_bits = current_pc & 0xf0000000; |
+ // Next pc |
+ int32_t next_pc = pc_high_bits | (instr->Imm26Field() << 2); |
+ |
+ // Execute branch delay slot |
+ // We don't check for end_sim_pc. First it should not be met as the current pc |
+ // is valid. Secondly a jump should always execute its branch delay slot. |
+ Instruction* branch_delay_instr = |
+ reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize); |
+ BranchDelayInstructionDecode(branch_delay_instr); |
+ |
+ // Update pc and ra if necessary. |
+ // Do this after the branch delay execution. |
+ if (instr->IsLinkingInstruction()) { |
+ set_register(31, current_pc + 2* Instruction::kInstructionSize); |
+ } |
+ set_pc(next_pc); |
+ pc_modified_ = true; |
+} |
+ |
+// Executes the current instruction. |
+void Simulator::InstructionDecode(Instruction* instr) { |
+ pc_modified_ = false; |
+ if (::v8::internal::FLAG_trace_sim) { |
+ disasm::NameConverter converter; |
+ disasm::Disassembler dasm(converter); |
+ // use a reasonably large buffer |
+ v8::internal::EmbeddedVector<char, 256> buffer; |
+ dasm.InstructionDecode(buffer, |
+ reinterpret_cast<byte_*>(instr)); |
+ PrintF(" 0x%08x %s\n", instr, buffer.start()); |
+ } |
+ |
+ switch (instr->InstructionType()) { |
+ case Instruction::kRegisterType: |
+ DecodeTypeRegister(instr); |
+ break; |
+ case Instruction::kImmediateType: |
+ DecodeTypeImmediate(instr); |
+ break; |
+ case Instruction::kJumpType: |
+ DecodeTypeJump(instr); |
+ break; |
+ default: |
+ UNSUPPORTED(); |
+ } |
+ if (!pc_modified_) { |
+ set_register(pc, reinterpret_cast<int32_t>(instr) + |
+ Instruction::kInstructionSize); |
+ } |
+} |
+ |
+ |
+ |
+void Simulator::Execute() { |
+ // Get the PC to simulate. Cannot use the accessor here as we need the |
+ // raw PC value and not the one used as input to arithmetic instructions. |
+ int program_counter = get_pc(); |
+ if (::v8::internal::FLAG_stop_sim_at == 0) { |
+ // Fast version of the dispatch loop without checking whether the simulator |
+ // should be stopping at a particular executed instruction. |
+ while (program_counter != end_sim_pc) { |
+ Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
+ icount_++; |
+ InstructionDecode(instr); |
+ program_counter = get_pc(); |
+ } |
+ } else { |
+ // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
+ // we reach the particular instuction count. |
+ while (program_counter != end_sim_pc) { |
+ Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
+ icount_++; |
+ if (icount_ == ::v8::internal::FLAG_stop_sim_at) { |
+ Debugger dbg(this); |
+ dbg.Debug(); |
+ } else { |
+ InstructionDecode(instr); |
+ } |
+ program_counter = get_pc(); |
+ } |
+ } |
+} |
+ |
+ |
+int32_t Simulator::Call(byte_* entry, int argument_count, ...) { |
+ va_list parameters; |
+ va_start(parameters, argument_count); |
+ // Setup arguments |
+ |
+ // First four arguments passed in registers. |
+ ASSERT(argument_count >= 4); |
+ set_register(a0, va_arg(parameters, int32_t)); |
+ set_register(a1, va_arg(parameters, int32_t)); |
+ set_register(a2, va_arg(parameters, int32_t)); |
+ set_register(a3, va_arg(parameters, int32_t)); |
+ |
+ // Remaining arguments passed on stack. |
+ int original_stack = get_register(sp); |
+ // Compute position of stack on entry to generated code. |
+ int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t) |
+ - kArgsSlotsSize); |
+ if (OS::ActivationFrameAlignment() != 0) { |
+ entry_stack &= -OS::ActivationFrameAlignment(); |
+ } |
+ // Store remaining arguments on stack, from low to high memory. |
+ intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); |
+ for (int i = 4; i < argument_count; i++) { |
+ stack_argument[i - 4 + kArgsSlotsNum] = va_arg(parameters, int32_t); |
+ } |
+ va_end(parameters); |
+ set_register(sp, entry_stack); |
+ |
+ // Prepare to execute the code at entry |
+ set_register(pc, reinterpret_cast<int32_t>(entry)); |
+ // Put down marker for end of simulation. The simulator will stop simulation |
+ // when the PC reaches this value. By saving the "end simulation" value into |
+ // the LR the simulation stops when returning to this call point. |
+ set_register(ra, end_sim_pc); |
+ |
+ // Remember the values of callee-saved registers. |
+ // The code below assumes that r9 is not used as sb (static base) in |
+ // simulator code and therefore is regarded as a callee-saved register. |
+ int32_t s0_val = get_register(s0); |
+ int32_t s1_val = get_register(s1); |
+ int32_t s2_val = get_register(s2); |
+ int32_t s3_val = get_register(s3); |
+ int32_t s4_val = get_register(s4); |
+ int32_t s5_val = get_register(s5); |
+ int32_t s6_val = get_register(s6); |
+ int32_t s7_val = get_register(s7); |
+ int32_t gp_val = get_register(gp); |
+ int32_t sp_val = get_register(sp); |
+ int32_t fp_val = get_register(fp); |
+ |
+ // Setup the callee-saved registers with a known value. To be able to check |
+ // that they are preserved properly across JS execution. |
+ int32_t callee_saved_value = icount_; |
+ set_register(s0, callee_saved_value); |
+ set_register(s1, callee_saved_value); |
+ set_register(s2, callee_saved_value); |
+ set_register(s3, callee_saved_value); |
+ set_register(s4, callee_saved_value); |
+ set_register(s5, callee_saved_value); |
+ set_register(s6, callee_saved_value); |
+ set_register(s7, callee_saved_value); |
+ set_register(gp, callee_saved_value); |
+ set_register(fp, callee_saved_value); |
+ |
+ // Start the simulation |
+ Execute(); |
+ |
+ // Check that the callee-saved registers have been preserved. |
+ CHECK_EQ(callee_saved_value, get_register(s0)); |
+ CHECK_EQ(callee_saved_value, get_register(s1)); |
+ CHECK_EQ(callee_saved_value, get_register(s2)); |
+ CHECK_EQ(callee_saved_value, get_register(s3)); |
+ CHECK_EQ(callee_saved_value, get_register(s4)); |
+ CHECK_EQ(callee_saved_value, get_register(s5)); |
+ CHECK_EQ(callee_saved_value, get_register(s6)); |
+ CHECK_EQ(callee_saved_value, get_register(s7)); |
+ CHECK_EQ(callee_saved_value, get_register(gp)); |
+ CHECK_EQ(callee_saved_value, get_register(fp)); |
+ |
+ // Restore callee-saved registers with the original value. |
+ set_register(s0, s0_val); |
+ set_register(s1, s1_val); |
+ set_register(s2, s2_val); |
+ set_register(s3, s3_val); |
+ set_register(s4, s4_val); |
+ set_register(s5, s5_val); |
+ set_register(s6, s6_val); |
+ set_register(s7, s7_val); |
+ set_register(gp, gp_val); |
+ set_register(sp, sp_val); |
+ set_register(fp, fp_val); |
+ |
+ // Pop stack passed arguments. |
+ CHECK_EQ(entry_stack, get_register(sp)); |
+ set_register(sp, original_stack); |
+ |
+ int32_t result = get_register(v0); |
+ return result; |
+} |
+ |
+ |
+uintptr_t Simulator::PushAddress(uintptr_t address) { |
+ int new_sp = get_register(sp) - sizeof(uintptr_t); |
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); |
+ *stack_slot = address; |
+ set_register(sp, new_sp); |
+ return new_sp; |
+} |
+ |
+ |
+uintptr_t Simulator::PopAddress() { |
+ int current_sp = get_register(sp); |
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); |
+ uintptr_t address = *stack_slot; |
+ set_register(sp, current_sp + sizeof(uintptr_t)); |
+ return address; |
+} |
+ |
+ |
+#undef UNSUPPORTED |
+ |
+} } // namespace assembler::mips |
+ |
+#endif // !defined(__mips) |
+ |