OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include <stdlib.h> |
| 29 #include <cstdarg> |
| 30 #include "v8.h" |
| 31 |
| 32 #include "disasm.h" |
| 33 #include "assembler.h" |
| 34 #include "globals.h" // Need the bit_cast |
| 35 #include "mips/constants-mips.h" |
| 36 #include "mips/simulator-mips.h" |
| 37 |
| 38 namespace v8i = v8::internal; |
| 39 |
| 40 #if !defined(__mips) |
| 41 |
| 42 // Only build the simulator if not compiling for real MIPS hardware. |
| 43 namespace assembler { |
| 44 namespace mips { |
| 45 |
| 46 using ::v8::internal::Object; |
| 47 using ::v8::internal::PrintF; |
| 48 using ::v8::internal::OS; |
| 49 using ::v8::internal::ReadLine; |
| 50 using ::v8::internal::DeleteArray; |
| 51 |
| 52 // Utils functions |
| 53 bool HaveSameSign(int32_t a, int32_t b) { |
| 54 return ((a ^ b) > 0); |
| 55 } |
| 56 |
| 57 |
| 58 // This macro provides a platform independent use of sscanf. The reason for |
| 59 // SScanF not being implemented in a platform independent was through |
| 60 // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time |
| 61 // Library does not provide vsscanf. |
| 62 #define SScanF sscanf // NOLINT |
| 63 |
| 64 // The Debugger class is used by the simulator while debugging simulated MIPS |
| 65 // code. |
| 66 class Debugger { |
| 67 public: |
| 68 explicit Debugger(Simulator* sim); |
| 69 ~Debugger(); |
| 70 |
| 71 void Stop(Instruction* instr); |
| 72 void Debug(); |
| 73 |
| 74 private: |
| 75 // We set the breakpoint code to 0xfffff to easily recognize it. |
| 76 static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6; |
| 77 static const Instr kNopInstr = 0x0; |
| 78 |
| 79 Simulator* sim_; |
| 80 |
| 81 int32_t GetRegisterValue(int regnum); |
| 82 bool GetValue(const char* desc, int32_t* value); |
| 83 |
| 84 // Set or delete a breakpoint. Returns true if successful. |
| 85 bool SetBreakpoint(Instruction* breakpc); |
| 86 bool DeleteBreakpoint(Instruction* breakpc); |
| 87 |
| 88 // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| 89 // execution to skip past breakpoints when run from the debugger. |
| 90 void UndoBreakpoints(); |
| 91 void RedoBreakpoints(); |
| 92 |
| 93 // Print all registers with a nice formatting. |
| 94 void PrintAllRegs(); |
| 95 }; |
| 96 |
| 97 Debugger::Debugger(Simulator* sim) { |
| 98 sim_ = sim; |
| 99 } |
| 100 |
| 101 Debugger::~Debugger() { |
| 102 } |
| 103 |
| 104 #ifdef GENERATED_CODE_COVERAGE |
| 105 static FILE* coverage_log = NULL; |
| 106 |
| 107 |
| 108 static void InitializeCoverage() { |
| 109 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); |
| 110 if (file_name != NULL) { |
| 111 coverage_log = fopen(file_name, "aw+"); |
| 112 } |
| 113 } |
| 114 |
| 115 |
| 116 void Debugger::Stop(Instruction* instr) { |
| 117 UNIMPLEMENTED_MIPS(); |
| 118 char* str = reinterpret_cast<char*>(instr->InstructionBits()); |
| 119 if (strlen(str) > 0) { |
| 120 if (coverage_log != NULL) { |
| 121 fprintf(coverage_log, "%s\n", str); |
| 122 fflush(coverage_log); |
| 123 } |
| 124 instr->SetInstructionBits(0x0); // Overwrite with nop. |
| 125 } |
| 126 sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
| 127 } |
| 128 |
| 129 #else // ndef GENERATED_CODE_COVERAGE |
| 130 |
| 131 #define UNSUPPORTED() printf("Unsupported instruction.\n"); |
| 132 |
| 133 static void InitializeCoverage() {} |
| 134 |
| 135 |
| 136 void Debugger::Stop(Instruction* instr) { |
| 137 const char* str = reinterpret_cast<char*>(instr->InstructionBits()); |
| 138 PrintF("Simulator hit %s\n", str); |
| 139 sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
| 140 Debug(); |
| 141 } |
| 142 #endif // def GENERATED_CODE_COVERAGE |
| 143 |
| 144 |
| 145 int32_t Debugger::GetRegisterValue(int regnum) { |
| 146 if (regnum == kNumSimuRegisters) { |
| 147 return sim_->get_pc(); |
| 148 } else { |
| 149 return sim_->get_register(regnum); |
| 150 } |
| 151 } |
| 152 |
| 153 |
| 154 bool Debugger::GetValue(const char* desc, int32_t* value) { |
| 155 int regnum = Registers::Number(desc); |
| 156 if (regnum != kInvalidRegister) { |
| 157 *value = GetRegisterValue(regnum); |
| 158 return true; |
| 159 } else { |
| 160 return SScanF(desc, "%i", value) == 1; |
| 161 } |
| 162 return false; |
| 163 } |
| 164 |
| 165 |
| 166 bool Debugger::SetBreakpoint(Instruction* breakpc) { |
| 167 // Check if a breakpoint can be set. If not return without any side-effects. |
| 168 if (sim_->break_pc_ != NULL) { |
| 169 return false; |
| 170 } |
| 171 |
| 172 // Set the breakpoint. |
| 173 sim_->break_pc_ = breakpc; |
| 174 sim_->break_instr_ = breakpc->InstructionBits(); |
| 175 // Not setting the breakpoint instruction in the code itself. It will be set |
| 176 // when the debugger shell continues. |
| 177 return true; |
| 178 } |
| 179 |
| 180 |
| 181 bool Debugger::DeleteBreakpoint(Instruction* breakpc) { |
| 182 if (sim_->break_pc_ != NULL) { |
| 183 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| 184 } |
| 185 |
| 186 sim_->break_pc_ = NULL; |
| 187 sim_->break_instr_ = 0; |
| 188 return true; |
| 189 } |
| 190 |
| 191 |
| 192 void Debugger::UndoBreakpoints() { |
| 193 if (sim_->break_pc_ != NULL) { |
| 194 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| 195 } |
| 196 } |
| 197 |
| 198 |
| 199 void Debugger::RedoBreakpoints() { |
| 200 if (sim_->break_pc_ != NULL) { |
| 201 sim_->break_pc_->SetInstructionBits(kBreakpointInstr); |
| 202 } |
| 203 } |
| 204 |
| 205 void Debugger::PrintAllRegs() { |
| 206 #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) |
| 207 |
| 208 PrintF("\n"); |
| 209 // at, v0, a0 |
| 210 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| 211 REG_INFO(1), REG_INFO(2), REG_INFO(4)); |
| 212 // v1, a1 |
| 213 PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| 214 "", REG_INFO(3), REG_INFO(5)); |
| 215 // a2 |
| 216 PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6)); |
| 217 // a3 |
| 218 PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7)); |
| 219 PrintF("\n"); |
| 220 // t0-t7, s0-s7 |
| 221 for (int i = 0; i < 8; i++) { |
| 222 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| 223 REG_INFO(8+i), REG_INFO(16+i)); |
| 224 } |
| 225 PrintF("\n"); |
| 226 // t8, k0, LO |
| 227 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| 228 REG_INFO(24), REG_INFO(26), REG_INFO(32)); |
| 229 // t9, k1, HI |
| 230 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| 231 REG_INFO(25), REG_INFO(27), REG_INFO(33)); |
| 232 // sp, fp, gp |
| 233 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| 234 REG_INFO(29), REG_INFO(30), REG_INFO(28)); |
| 235 // pc |
| 236 PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| 237 REG_INFO(31), REG_INFO(34)); |
| 238 #undef REG_INFO |
| 239 } |
| 240 |
| 241 void Debugger::Debug() { |
| 242 intptr_t last_pc = -1; |
| 243 bool done = false; |
| 244 |
| 245 #define COMMAND_SIZE 63 |
| 246 #define ARG_SIZE 255 |
| 247 |
| 248 #define STR(a) #a |
| 249 #define XSTR(a) STR(a) |
| 250 |
| 251 char cmd[COMMAND_SIZE + 1]; |
| 252 char arg1[ARG_SIZE + 1]; |
| 253 char arg2[ARG_SIZE + 1]; |
| 254 |
| 255 // make sure to have a proper terminating character if reaching the limit |
| 256 cmd[COMMAND_SIZE] = 0; |
| 257 arg1[ARG_SIZE] = 0; |
| 258 arg2[ARG_SIZE] = 0; |
| 259 |
| 260 // Undo all set breakpoints while running in the debugger shell. This will |
| 261 // make them invisible to all commands. |
| 262 UndoBreakpoints(); |
| 263 |
| 264 while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { |
| 265 if (last_pc != sim_->get_pc()) { |
| 266 disasm::NameConverter converter; |
| 267 disasm::Disassembler dasm(converter); |
| 268 // use a reasonably large buffer |
| 269 v8::internal::EmbeddedVector<char, 256> buffer; |
| 270 dasm.InstructionDecode(buffer, |
| 271 reinterpret_cast<byte_*>(sim_->get_pc())); |
| 272 PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); |
| 273 last_pc = sim_->get_pc(); |
| 274 } |
| 275 char* line = ReadLine("sim> "); |
| 276 if (line == NULL) { |
| 277 break; |
| 278 } else { |
| 279 // Use sscanf to parse the individual parts of the command line. At the |
| 280 // moment no command expects more than two parameters. |
| 281 int args = SScanF(line, |
| 282 "%" XSTR(COMMAND_SIZE) "s " |
| 283 "%" XSTR(ARG_SIZE) "s " |
| 284 "%" XSTR(ARG_SIZE) "s", |
| 285 cmd, arg1, arg2); |
| 286 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| 287 if (!(reinterpret_cast<Instruction*>(sim_->get_pc())->IsTrap())) { |
| 288 sim_->InstructionDecode( |
| 289 reinterpret_cast<Instruction*>(sim_->get_pc())); |
| 290 } else { |
| 291 // Allow si to jump over generated breakpoints. |
| 292 PrintF("/!\\ Jumping over generated breakpoint.\n"); |
| 293 sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
| 294 } |
| 295 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| 296 // Execute the one instruction we broke at with breakpoints disabled. |
| 297 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); |
| 298 // Leave the debugger shell. |
| 299 done = true; |
| 300 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| 301 if (args == 2) { |
| 302 int32_t value; |
| 303 if (strcmp(arg1, "all") == 0) { |
| 304 PrintAllRegs(); |
| 305 } else { |
| 306 if (GetValue(arg1, &value)) { |
| 307 PrintF("%s: 0x%08x %d \n", arg1, value, value); |
| 308 } else { |
| 309 PrintF("%s unrecognized\n", arg1); |
| 310 } |
| 311 } |
| 312 } else { |
| 313 PrintF("print <register>\n"); |
| 314 } |
| 315 } else if ((strcmp(cmd, "po") == 0) |
| 316 || (strcmp(cmd, "printobject") == 0)) { |
| 317 if (args == 2) { |
| 318 int32_t value; |
| 319 if (GetValue(arg1, &value)) { |
| 320 Object* obj = reinterpret_cast<Object*>(value); |
| 321 PrintF("%s: \n", arg1); |
| 322 #ifdef DEBUG |
| 323 obj->PrintLn(); |
| 324 #else |
| 325 obj->ShortPrint(); |
| 326 PrintF("\n"); |
| 327 #endif |
| 328 } else { |
| 329 PrintF("%s unrecognized\n", arg1); |
| 330 } |
| 331 } else { |
| 332 PrintF("printobject <value>\n"); |
| 333 } |
| 334 } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0)) { |
| 335 disasm::NameConverter converter; |
| 336 disasm::Disassembler dasm(converter); |
| 337 // use a reasonably large buffer |
| 338 v8::internal::EmbeddedVector<char, 256> buffer; |
| 339 |
| 340 byte_* cur = NULL; |
| 341 byte_* end = NULL; |
| 342 |
| 343 if (args == 1) { |
| 344 cur = reinterpret_cast<byte_*>(sim_->get_pc()); |
| 345 end = cur + (10 * Instruction::kInstructionSize); |
| 346 } else if (args == 2) { |
| 347 int32_t value; |
| 348 if (GetValue(arg1, &value)) { |
| 349 cur = reinterpret_cast<byte_*>(value); |
| 350 // no length parameter passed, assume 10 instructions |
| 351 end = cur + (10 * Instruction::kInstructionSize); |
| 352 } |
| 353 } else { |
| 354 int32_t value1; |
| 355 int32_t value2; |
| 356 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| 357 cur = reinterpret_cast<byte_*>(value1); |
| 358 end = cur + (value2 * Instruction::kInstructionSize); |
| 359 } |
| 360 } |
| 361 |
| 362 while (cur < end) { |
| 363 dasm.InstructionDecode(buffer, cur); |
| 364 PrintF(" 0x%08x %s\n", cur, buffer.start()); |
| 365 cur += Instruction::kInstructionSize; |
| 366 } |
| 367 } else if (strcmp(cmd, "gdb") == 0) { |
| 368 PrintF("relinquishing control to gdb\n"); |
| 369 v8::internal::OS::DebugBreak(); |
| 370 PrintF("regaining control from gdb\n"); |
| 371 } else if (strcmp(cmd, "break") == 0) { |
| 372 if (args == 2) { |
| 373 int32_t value; |
| 374 if (GetValue(arg1, &value)) { |
| 375 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { |
| 376 PrintF("setting breakpoint failed\n"); |
| 377 } |
| 378 } else { |
| 379 PrintF("%s unrecognized\n", arg1); |
| 380 } |
| 381 } else { |
| 382 PrintF("break <address>\n"); |
| 383 } |
| 384 } else if (strcmp(cmd, "del") == 0) { |
| 385 if (!DeleteBreakpoint(NULL)) { |
| 386 PrintF("deleting breakpoint failed\n"); |
| 387 } |
| 388 } else if (strcmp(cmd, "flags") == 0) { |
| 389 PrintF("No flags on MIPS !\n"); |
| 390 } else if (strcmp(cmd, "unstop") == 0) { |
| 391 PrintF("Unstop command not implemented on MIPS."); |
| 392 } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { |
| 393 // Print registers and disassemble |
| 394 PrintAllRegs(); |
| 395 PrintF("\n"); |
| 396 |
| 397 disasm::NameConverter converter; |
| 398 disasm::Disassembler dasm(converter); |
| 399 // use a reasonably large buffer |
| 400 v8::internal::EmbeddedVector<char, 256> buffer; |
| 401 |
| 402 byte_* cur = NULL; |
| 403 byte_* end = NULL; |
| 404 |
| 405 if (args == 1) { |
| 406 cur = reinterpret_cast<byte_*>(sim_->get_pc()); |
| 407 end = cur + (10 * Instruction::kInstructionSize); |
| 408 } else if (args == 2) { |
| 409 int32_t value; |
| 410 if (GetValue(arg1, &value)) { |
| 411 cur = reinterpret_cast<byte_*>(value); |
| 412 // no length parameter passed, assume 10 instructions |
| 413 end = cur + (10 * Instruction::kInstructionSize); |
| 414 } |
| 415 } else { |
| 416 int32_t value1; |
| 417 int32_t value2; |
| 418 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| 419 cur = reinterpret_cast<byte_*>(value1); |
| 420 end = cur + (value2 * Instruction::kInstructionSize); |
| 421 } |
| 422 } |
| 423 |
| 424 while (cur < end) { |
| 425 dasm.InstructionDecode(buffer, cur); |
| 426 PrintF(" 0x%08x %s\n", cur, buffer.start()); |
| 427 cur += Instruction::kInstructionSize; |
| 428 } |
| 429 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| 430 PrintF("cont\n"); |
| 431 PrintF(" continue execution (alias 'c')\n"); |
| 432 PrintF("stepi\n"); |
| 433 PrintF(" step one instruction (alias 'si')\n"); |
| 434 PrintF("print <register>\n"); |
| 435 PrintF(" print register content (alias 'p')\n"); |
| 436 PrintF(" use register name 'all' to print all registers\n"); |
| 437 PrintF("printobject <register>\n"); |
| 438 PrintF(" print an object from a register (alias 'po')\n"); |
| 439 PrintF("flags\n"); |
| 440 PrintF(" print flags\n"); |
| 441 PrintF("disasm [<instructions>]\n"); |
| 442 PrintF("disasm [[<address>] <instructions>]\n"); |
| 443 PrintF(" disassemble code, default is 10 instructions from pc\n"); |
| 444 PrintF("gdb\n"); |
| 445 PrintF(" enter gdb\n"); |
| 446 PrintF("break <address>\n"); |
| 447 PrintF(" set a break point on the address\n"); |
| 448 PrintF("del\n"); |
| 449 PrintF(" delete the breakpoint\n"); |
| 450 PrintF("unstop\n"); |
| 451 PrintF(" ignore the stop instruction at the current location"); |
| 452 PrintF(" from now on\n"); |
| 453 } else { |
| 454 PrintF("Unknown command: %s\n", cmd); |
| 455 } |
| 456 } |
| 457 DeleteArray(line); |
| 458 } |
| 459 |
| 460 // Add all the breakpoints back to stop execution and enter the debugger |
| 461 // shell when hit. |
| 462 RedoBreakpoints(); |
| 463 |
| 464 #undef COMMAND_SIZE |
| 465 #undef ARG_SIZE |
| 466 |
| 467 #undef STR |
| 468 #undef XSTR |
| 469 } |
| 470 |
| 471 |
| 472 // Create one simulator per thread and keep it in thread local storage. |
| 473 static v8::internal::Thread::LocalStorageKey simulator_key; |
| 474 |
| 475 |
| 476 bool Simulator::initialized_ = false; |
| 477 |
| 478 |
| 479 void Simulator::Initialize() { |
| 480 if (initialized_) return; |
| 481 simulator_key = v8::internal::Thread::CreateThreadLocalKey(); |
| 482 initialized_ = true; |
| 483 ::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference); |
| 484 } |
| 485 |
| 486 |
| 487 Simulator::Simulator() { |
| 488 Initialize(); |
| 489 // Setup simulator support first. Some of this information is needed to |
| 490 // setup the architecture state. |
| 491 size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack |
| 492 stack_ = reinterpret_cast<char*>(malloc(stack_size)); |
| 493 pc_modified_ = false; |
| 494 icount_ = 0; |
| 495 break_pc_ = NULL; |
| 496 break_instr_ = 0; |
| 497 |
| 498 // Setup architecture state. |
| 499 // All registers are initialized to zero to start with. |
| 500 for (int i = 0; i < kNumSimuRegisters; i++) { |
| 501 registers_[i] = 0; |
| 502 } |
| 503 |
| 504 // The sp is initialized to point to the bottom (high address) of the |
| 505 // allocated stack area. To be safe in potential stack underflows we leave |
| 506 // some buffer below. |
| 507 registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; |
| 508 // The ra and pc are initialized to a known bad value that will cause an |
| 509 // access violation if the simulator ever tries to execute it. |
| 510 registers_[pc] = bad_ra; |
| 511 registers_[ra] = bad_ra; |
| 512 InitializeCoverage(); |
| 513 } |
| 514 |
| 515 |
| 516 // When the generated code calls an external reference we need to catch that in |
| 517 // the simulator. The external reference will be a function compiled for the |
| 518 // host architecture. We need to call that function instead of trying to |
| 519 // execute it with the simulator. We do that by redirecting the external |
| 520 // reference to a swi (software-interrupt) instruction that is handled by |
| 521 // the simulator. We write the original destination of the jump just at a known |
| 522 // offset from the swi instruction so the simulator knows what to call. |
| 523 class Redirection { |
| 524 public: |
| 525 Redirection(void* external_function, bool fp_return) |
| 526 : external_function_(external_function), |
| 527 swi_instruction_(rtCallRedirInstr), |
| 528 fp_return_(fp_return), |
| 529 next_(list_) { |
| 530 list_ = this; |
| 531 } |
| 532 |
| 533 void* address_of_swi_instruction() { |
| 534 return reinterpret_cast<void*>(&swi_instruction_); |
| 535 } |
| 536 |
| 537 void* external_function() { return external_function_; } |
| 538 bool fp_return() { return fp_return_; } |
| 539 |
| 540 static Redirection* Get(void* external_function, bool fp_return) { |
| 541 Redirection* current; |
| 542 for (current = list_; current != NULL; current = current->next_) { |
| 543 if (current->external_function_ == external_function) return current; |
| 544 } |
| 545 return new Redirection(external_function, fp_return); |
| 546 } |
| 547 |
| 548 static Redirection* FromSwiInstruction(Instruction* swi_instruction) { |
| 549 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); |
| 550 char* addr_of_redirection = |
| 551 addr_of_swi - OFFSET_OF(Redirection, swi_instruction_); |
| 552 return reinterpret_cast<Redirection*>(addr_of_redirection); |
| 553 } |
| 554 |
| 555 private: |
| 556 void* external_function_; |
| 557 uint32_t swi_instruction_; |
| 558 bool fp_return_; |
| 559 Redirection* next_; |
| 560 static Redirection* list_; |
| 561 }; |
| 562 |
| 563 |
| 564 Redirection* Redirection::list_ = NULL; |
| 565 |
| 566 |
| 567 void* Simulator::RedirectExternalReference(void* external_function, |
| 568 bool fp_return) { |
| 569 Redirection* redirection = Redirection::Get(external_function, fp_return); |
| 570 return redirection->address_of_swi_instruction(); |
| 571 } |
| 572 |
| 573 |
| 574 // Get the active Simulator for the current thread. |
| 575 Simulator* Simulator::current() { |
| 576 Initialize(); |
| 577 Simulator* sim = reinterpret_cast<Simulator*>( |
| 578 v8::internal::Thread::GetThreadLocal(simulator_key)); |
| 579 if (sim == NULL) { |
| 580 // TODO(146): delete the simulator object when a thread goes away. |
| 581 sim = new Simulator(); |
| 582 v8::internal::Thread::SetThreadLocal(simulator_key, sim); |
| 583 } |
| 584 return sim; |
| 585 } |
| 586 |
| 587 |
| 588 // Sets the register in the architecture state. It will also deal with updating |
| 589 // Simulator internal state for special registers such as PC. |
| 590 void Simulator::set_register(int reg, int32_t value) { |
| 591 ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); |
| 592 if (reg == pc) { |
| 593 pc_modified_ = true; |
| 594 } |
| 595 |
| 596 // zero register always hold 0. |
| 597 registers_[reg] = (reg == 0) ? 0 : value; |
| 598 } |
| 599 |
| 600 void Simulator::set_fpu_register(int fpureg, int32_t value) { |
| 601 ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| 602 FPUregisters_[fpureg] = value; |
| 603 } |
| 604 |
| 605 void Simulator::set_fpu_register_double(int fpureg, double value) { |
| 606 ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
| 607 *v8i::bit_cast<double*, int32_t*>(&FPUregisters_[fpureg]) = value; |
| 608 } |
| 609 |
| 610 |
| 611 // Get the register from the architecture state. This function does handle |
| 612 // the special case of accessing the PC register. |
| 613 int32_t Simulator::get_register(int reg) const { |
| 614 ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); |
| 615 if (reg == 0) |
| 616 return 0; |
| 617 else |
| 618 return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); |
| 619 } |
| 620 |
| 621 int32_t Simulator::get_fpu_register(int fpureg) const { |
| 622 ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| 623 return FPUregisters_[fpureg]; |
| 624 } |
| 625 |
| 626 double Simulator::get_fpu_register_double(int fpureg) const { |
| 627 ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
| 628 return *v8i::bit_cast<double*, int32_t*>( |
| 629 const_cast<int32_t*>(&FPUregisters_[fpureg])); |
| 630 } |
| 631 |
| 632 // Raw access to the PC register. |
| 633 void Simulator::set_pc(int32_t value) { |
| 634 pc_modified_ = true; |
| 635 registers_[pc] = value; |
| 636 } |
| 637 |
| 638 // Raw access to the PC register without the special adjustment when reading. |
| 639 int32_t Simulator::get_pc() const { |
| 640 return registers_[pc]; |
| 641 } |
| 642 |
| 643 |
| 644 // The MIPS cannot do unaligned reads and writes. On some MIPS platforms an |
| 645 // interrupt is caused. On others it does a funky rotation thing. For now we |
| 646 // simply disallow unaligned reads, but at some point we may want to move to |
| 647 // emulating the rotate behaviour. Note that simulator runs have the runtime |
| 648 // system running directly on the host system and only generated code is |
| 649 // executed in the simulator. Since the host is typically IA32 we will not |
| 650 // get the correct MIPS-like behaviour on unaligned accesses. |
| 651 |
| 652 int Simulator::ReadW(int32_t addr, Instruction* instr) { |
| 653 if ((addr & v8i::kPointerAlignmentMask) == 0) { |
| 654 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| 655 return *ptr; |
| 656 } |
| 657 PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr); |
| 658 OS::Abort(); |
| 659 return 0; |
| 660 } |
| 661 |
| 662 |
| 663 void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { |
| 664 if ((addr & v8i::kPointerAlignmentMask) == 0) { |
| 665 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| 666 *ptr = value; |
| 667 return; |
| 668 } |
| 669 PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
| 670 OS::Abort(); |
| 671 } |
| 672 |
| 673 |
| 674 double Simulator::ReadD(int32_t addr, Instruction* instr) { |
| 675 if ((addr & kDoubleAlignmentMask) == 0) { |
| 676 double* ptr = reinterpret_cast<double*>(addr); |
| 677 return *ptr; |
| 678 } |
| 679 PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr); |
| 680 OS::Abort(); |
| 681 return 0; |
| 682 } |
| 683 |
| 684 |
| 685 void Simulator::WriteD(int32_t addr, double value, Instruction* instr) { |
| 686 if ((addr & kDoubleAlignmentMask) == 0) { |
| 687 double* ptr = reinterpret_cast<double*>(addr); |
| 688 *ptr = value; |
| 689 return; |
| 690 } |
| 691 PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
| 692 OS::Abort(); |
| 693 } |
| 694 |
| 695 |
| 696 uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { |
| 697 if ((addr & 1) == 0) { |
| 698 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| 699 return *ptr; |
| 700 } |
| 701 PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr); |
| 702 OS::Abort(); |
| 703 return 0; |
| 704 } |
| 705 |
| 706 |
| 707 int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { |
| 708 if ((addr & 1) == 0) { |
| 709 int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| 710 return *ptr; |
| 711 } |
| 712 PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr, instr); |
| 713 OS::Abort(); |
| 714 return 0; |
| 715 } |
| 716 |
| 717 |
| 718 void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { |
| 719 if ((addr & 1) == 0) { |
| 720 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| 721 *ptr = value; |
| 722 return; |
| 723 } |
| 724 PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr); |
| 725 OS::Abort(); |
| 726 } |
| 727 |
| 728 |
| 729 void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { |
| 730 if ((addr & 1) == 0) { |
| 731 int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| 732 *ptr = value; |
| 733 return; |
| 734 } |
| 735 PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr); |
| 736 OS::Abort(); |
| 737 } |
| 738 |
| 739 |
| 740 uint32_t Simulator::ReadBU(int32_t addr) { |
| 741 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| 742 return *ptr & 0xff; |
| 743 } |
| 744 |
| 745 |
| 746 int32_t Simulator::ReadB(int32_t addr) { |
| 747 int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| 748 return ((*ptr << 24) >> 24) & 0xff; |
| 749 } |
| 750 |
| 751 |
| 752 void Simulator::WriteB(int32_t addr, uint8_t value) { |
| 753 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| 754 *ptr = value; |
| 755 } |
| 756 |
| 757 |
| 758 void Simulator::WriteB(int32_t addr, int8_t value) { |
| 759 int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| 760 *ptr = value; |
| 761 } |
| 762 |
| 763 |
| 764 // Returns the limit of the stack area to enable checking for stack overflows. |
| 765 uintptr_t Simulator::StackLimit() const { |
| 766 // Leave a safety margin of 256 bytes to prevent overrunning the stack when |
| 767 // pushing values. |
| 768 return reinterpret_cast<uintptr_t>(stack_) + 256; |
| 769 } |
| 770 |
| 771 |
| 772 // Unsupported instructions use Format to print an error and stop execution. |
| 773 void Simulator::Format(Instruction* instr, const char* format) { |
| 774 PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n", |
| 775 instr, format); |
| 776 UNIMPLEMENTED_MIPS(); |
| 777 } |
| 778 |
| 779 |
| 780 // Calls into the V8 runtime are based on this very simple interface. |
| 781 // Note: To be able to return two values from some calls the code in runtime.cc |
| 782 // uses the ObjectPair which is essentially two 32-bit values stuffed into a |
| 783 // 64-bit value. With the code below we assume that all runtime calls return |
| 784 // 64 bits of result. If they don't, the r1 result register contains a bogus |
| 785 // value, which is fine because it is caller-saved. |
| 786 typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, |
| 787 int32_t arg1, |
| 788 int32_t arg2, |
| 789 int32_t arg3); |
| 790 typedef double (*SimulatorRuntimeFPCall)(double fparg0, |
| 791 double fparg1); |
| 792 |
| 793 |
| 794 // Software interrupt instructions are used by the simulator to call into the |
| 795 // C-based V8 runtime. |
| 796 void Simulator::SoftwareInterrupt(Instruction* instr) { |
| 797 // We first check if we met a call_rt_redirected. |
| 798 if (instr->InstructionBits() == rtCallRedirInstr) { |
| 799 Redirection* redirection = Redirection::FromSwiInstruction(instr); |
| 800 int32_t arg0 = get_register(a0); |
| 801 int32_t arg1 = get_register(a1); |
| 802 int32_t arg2 = get_register(a2); |
| 803 int32_t arg3 = get_register(a3); |
| 804 // fp args are (not always) in f12 and f14. |
| 805 // See MIPS conventions for more details. |
| 806 double fparg0 = get_fpu_register_double(f12); |
| 807 double fparg1 = get_fpu_register_double(f14); |
| 808 // This is dodgy but it works because the C entry stubs are never moved. |
| 809 // See comment in codegen-arm.cc and bug 1242173. |
| 810 int32_t saved_ra = get_register(ra); |
| 811 if (redirection->fp_return()) { |
| 812 intptr_t external = |
| 813 reinterpret_cast<intptr_t>(redirection->external_function()); |
| 814 SimulatorRuntimeFPCall target = |
| 815 reinterpret_cast<SimulatorRuntimeFPCall>(external); |
| 816 if (::v8::internal::FLAG_trace_sim) { |
| 817 PrintF("Call to host function at %p with args %f, %f\n", |
| 818 FUNCTION_ADDR(target), fparg0, fparg1); |
| 819 } |
| 820 double result = target(fparg0, fparg1); |
| 821 set_fpu_register_double(f0, result); |
| 822 } else { |
| 823 intptr_t external = |
| 824 reinterpret_cast<int32_t>(redirection->external_function()); |
| 825 SimulatorRuntimeCall target = |
| 826 reinterpret_cast<SimulatorRuntimeCall>(external); |
| 827 if (::v8::internal::FLAG_trace_sim) { |
| 828 PrintF( |
| 829 "Call to host function at %p with args %08x, %08x, %08x, %08x\n", |
| 830 FUNCTION_ADDR(target), |
| 831 arg0, |
| 832 arg1, |
| 833 arg2, |
| 834 arg3); |
| 835 } |
| 836 int64_t result = target(arg0, arg1, arg2, arg3); |
| 837 int32_t lo_res = static_cast<int32_t>(result); |
| 838 int32_t hi_res = static_cast<int32_t>(result >> 32); |
| 839 if (::v8::internal::FLAG_trace_sim) { |
| 840 PrintF("Returned %08x\n", lo_res); |
| 841 } |
| 842 set_register(v0, lo_res); |
| 843 set_register(v1, hi_res); |
| 844 } |
| 845 set_register(ra, saved_ra); |
| 846 set_pc(get_register(ra)); |
| 847 } else { |
| 848 Debugger dbg(this); |
| 849 dbg.Debug(); |
| 850 } |
| 851 } |
| 852 |
| 853 void Simulator::SignalExceptions() { |
| 854 for (int i = 1; i < kNumExceptions; i++) { |
| 855 if (exceptions[i] != 0) { |
| 856 V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", i); |
| 857 } |
| 858 } |
| 859 } |
| 860 |
| 861 // Handle execution based on instruction types. |
| 862 void Simulator::DecodeTypeRegister(Instruction* instr) { |
| 863 // Instruction fields |
| 864 Opcode op = instr->OpcodeFieldRaw(); |
| 865 int32_t rs_reg = instr->RsField(); |
| 866 int32_t rs = get_register(rs_reg); |
| 867 uint32_t rs_u = static_cast<uint32_t>(rs); |
| 868 int32_t rt_reg = instr->RtField(); |
| 869 int32_t rt = get_register(rt_reg); |
| 870 uint32_t rt_u = static_cast<uint32_t>(rt); |
| 871 int32_t rd_reg = instr->RdField(); |
| 872 uint32_t sa = instr->SaField(); |
| 873 |
| 874 int32_t fs_reg= instr->FsField(); |
| 875 |
| 876 // ALU output |
| 877 // It should not be used as is. Instructions using it should always initialize |
| 878 // it first. |
| 879 int32_t alu_out = 0x12345678; |
| 880 // Output or temporary for floating point. |
| 881 double fp_out = 0.0; |
| 882 |
| 883 // For break and trap instructions. |
| 884 bool do_interrupt = false; |
| 885 |
| 886 // For jr and jalr |
| 887 // Get current pc. |
| 888 int32_t current_pc = get_pc(); |
| 889 // Next pc |
| 890 int32_t next_pc = 0; |
| 891 |
| 892 // ---------- Configuration |
| 893 switch (op) { |
| 894 case COP1: // Coprocessor instructions |
| 895 switch (instr->RsFieldRaw()) { |
| 896 case BC1: // branch on coprocessor condition |
| 897 UNREACHABLE(); |
| 898 break; |
| 899 case MFC1: |
| 900 alu_out = get_fpu_register(fs_reg); |
| 901 break; |
| 902 case MFHC1: |
| 903 fp_out = get_fpu_register_double(fs_reg); |
| 904 alu_out = *v8i::bit_cast<int32_t*, double*>(&fp_out); |
| 905 break; |
| 906 case MTC1: |
| 907 case MTHC1: |
| 908 // Do the store in the execution step. |
| 909 break; |
| 910 case S: |
| 911 case D: |
| 912 case W: |
| 913 case L: |
| 914 case PS: |
| 915 // Do everything in the execution step. |
| 916 break; |
| 917 default: |
| 918 UNIMPLEMENTED_MIPS(); |
| 919 }; |
| 920 break; |
| 921 case SPECIAL: |
| 922 switch (instr->FunctionFieldRaw()) { |
| 923 case JR: |
| 924 case JALR: |
| 925 next_pc = get_register(instr->RsField()); |
| 926 break; |
| 927 case SLL: |
| 928 alu_out = rt << sa; |
| 929 break; |
| 930 case SRL: |
| 931 alu_out = rt_u >> sa; |
| 932 break; |
| 933 case SRA: |
| 934 alu_out = rt >> sa; |
| 935 break; |
| 936 case SLLV: |
| 937 alu_out = rt << rs; |
| 938 break; |
| 939 case SRLV: |
| 940 alu_out = rt_u >> rs; |
| 941 break; |
| 942 case SRAV: |
| 943 alu_out = rt >> rs; |
| 944 break; |
| 945 case MFHI: |
| 946 alu_out = get_register(HI); |
| 947 break; |
| 948 case MFLO: |
| 949 alu_out = get_register(LO); |
| 950 break; |
| 951 case MULT: |
| 952 UNIMPLEMENTED_MIPS(); |
| 953 break; |
| 954 case MULTU: |
| 955 UNIMPLEMENTED_MIPS(); |
| 956 break; |
| 957 case DIV: |
| 958 case DIVU: |
| 959 exceptions[kDivideByZero] = rt == 0; |
| 960 break; |
| 961 case ADD: |
| 962 if (HaveSameSign(rs, rt)) { |
| 963 if (rs > 0) { |
| 964 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - rt); |
| 965 } else if (rs < 0) { |
| 966 exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - rt); |
| 967 } |
| 968 } |
| 969 alu_out = rs + rt; |
| 970 break; |
| 971 case ADDU: |
| 972 alu_out = rs + rt; |
| 973 break; |
| 974 case SUB: |
| 975 if (!HaveSameSign(rs, rt)) { |
| 976 if (rs > 0) { |
| 977 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue + rt); |
| 978 } else if (rs < 0) { |
| 979 exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue + rt); |
| 980 } |
| 981 } |
| 982 alu_out = rs - rt; |
| 983 break; |
| 984 case SUBU: |
| 985 alu_out = rs - rt; |
| 986 break; |
| 987 case AND: |
| 988 alu_out = rs & rt; |
| 989 break; |
| 990 case OR: |
| 991 alu_out = rs | rt; |
| 992 break; |
| 993 case XOR: |
| 994 alu_out = rs ^ rt; |
| 995 break; |
| 996 case NOR: |
| 997 alu_out = ~(rs | rt); |
| 998 break; |
| 999 case SLT: |
| 1000 alu_out = rs < rt ? 1 : 0; |
| 1001 break; |
| 1002 case SLTU: |
| 1003 alu_out = rs_u < rt_u ? 1 : 0; |
| 1004 break; |
| 1005 // Break and trap instructions |
| 1006 case BREAK: |
| 1007 do_interrupt = true; |
| 1008 break; |
| 1009 case TGE: |
| 1010 do_interrupt = rs >= rt; |
| 1011 break; |
| 1012 case TGEU: |
| 1013 do_interrupt = rs_u >= rt_u; |
| 1014 break; |
| 1015 case TLT: |
| 1016 do_interrupt = rs < rt; |
| 1017 break; |
| 1018 case TLTU: |
| 1019 do_interrupt = rs_u < rt_u; |
| 1020 break; |
| 1021 case TEQ: |
| 1022 do_interrupt = rs == rt; |
| 1023 break; |
| 1024 case TNE: |
| 1025 do_interrupt = rs != rt; |
| 1026 break; |
| 1027 default: |
| 1028 UNREACHABLE(); |
| 1029 }; |
| 1030 break; |
| 1031 case SPECIAL2: |
| 1032 switch (instr->FunctionFieldRaw()) { |
| 1033 case MUL: |
| 1034 alu_out = rs_u * rt_u; // Only the lower 32 bits are kept. |
| 1035 break; |
| 1036 default: |
| 1037 UNREACHABLE(); |
| 1038 } |
| 1039 break; |
| 1040 default: |
| 1041 UNREACHABLE(); |
| 1042 }; |
| 1043 |
| 1044 // ---------- Raise exceptions triggered. |
| 1045 SignalExceptions(); |
| 1046 |
| 1047 // ---------- Execution |
| 1048 switch (op) { |
| 1049 case COP1: |
| 1050 switch (instr->RsFieldRaw()) { |
| 1051 case BC1: // branch on coprocessor condition |
| 1052 UNREACHABLE(); |
| 1053 break; |
| 1054 case MFC1: |
| 1055 case MFHC1: |
| 1056 set_register(rt_reg, alu_out); |
| 1057 break; |
| 1058 case MTC1: |
| 1059 // We don't need to set the higher bits to 0, because MIPS ISA says |
| 1060 // they are in an unpredictable state after executing MTC1. |
| 1061 FPUregisters_[fs_reg] = registers_[rt_reg]; |
| 1062 FPUregisters_[fs_reg+1] = Unpredictable; |
| 1063 break; |
| 1064 case MTHC1: |
| 1065 // Here we need to keep the lower bits unchanged. |
| 1066 FPUregisters_[fs_reg+1] = registers_[rt_reg]; |
| 1067 break; |
| 1068 case S: |
| 1069 switch (instr->FunctionFieldRaw()) { |
| 1070 case CVT_D_S: |
| 1071 case CVT_W_S: |
| 1072 case CVT_L_S: |
| 1073 case CVT_PS_S: |
| 1074 UNIMPLEMENTED_MIPS(); |
| 1075 break; |
| 1076 default: |
| 1077 UNREACHABLE(); |
| 1078 } |
| 1079 break; |
| 1080 case D: |
| 1081 switch (instr->FunctionFieldRaw()) { |
| 1082 case CVT_S_D: |
| 1083 case CVT_W_D: |
| 1084 case CVT_L_D: |
| 1085 UNIMPLEMENTED_MIPS(); |
| 1086 break; |
| 1087 default: |
| 1088 UNREACHABLE(); |
| 1089 } |
| 1090 break; |
| 1091 case W: |
| 1092 switch (instr->FunctionFieldRaw()) { |
| 1093 case CVT_S_W: |
| 1094 UNIMPLEMENTED_MIPS(); |
| 1095 break; |
| 1096 case CVT_D_W: // Convert word to double. |
| 1097 set_fpu_register(rd_reg, static_cast<double>(rs)); |
| 1098 break; |
| 1099 default: |
| 1100 UNREACHABLE(); |
| 1101 }; |
| 1102 break; |
| 1103 case L: |
| 1104 switch (instr->FunctionFieldRaw()) { |
| 1105 case CVT_S_L: |
| 1106 case CVT_D_L: |
| 1107 UNIMPLEMENTED_MIPS(); |
| 1108 break; |
| 1109 default: |
| 1110 UNREACHABLE(); |
| 1111 } |
| 1112 break; |
| 1113 case PS: |
| 1114 break; |
| 1115 default: |
| 1116 UNREACHABLE(); |
| 1117 }; |
| 1118 break; |
| 1119 case SPECIAL: |
| 1120 switch (instr->FunctionFieldRaw()) { |
| 1121 case JR: { |
| 1122 Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( |
| 1123 current_pc+Instruction::kInstructionSize); |
| 1124 BranchDelayInstructionDecode(branch_delay_instr); |
| 1125 set_pc(next_pc); |
| 1126 pc_modified_ = true; |
| 1127 break; |
| 1128 } |
| 1129 case JALR: { |
| 1130 Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( |
| 1131 current_pc+Instruction::kInstructionSize); |
| 1132 BranchDelayInstructionDecode(branch_delay_instr); |
| 1133 set_register(31, current_pc + 2* Instruction::kInstructionSize); |
| 1134 set_pc(next_pc); |
| 1135 pc_modified_ = true; |
| 1136 break; |
| 1137 } |
| 1138 // Instructions using HI and LO registers. |
| 1139 case MULT: |
| 1140 case MULTU: |
| 1141 break; |
| 1142 case DIV: |
| 1143 // Divide by zero was checked in the configuration step. |
| 1144 set_register(LO, rs / rt); |
| 1145 set_register(HI, rs % rt); |
| 1146 break; |
| 1147 case DIVU: |
| 1148 set_register(LO, rs_u / rt_u); |
| 1149 set_register(HI, rs_u % rt_u); |
| 1150 break; |
| 1151 // Break and trap instructions |
| 1152 case BREAK: |
| 1153 case TGE: |
| 1154 case TGEU: |
| 1155 case TLT: |
| 1156 case TLTU: |
| 1157 case TEQ: |
| 1158 case TNE: |
| 1159 if (do_interrupt) { |
| 1160 SoftwareInterrupt(instr); |
| 1161 } |
| 1162 break; |
| 1163 default: // For other special opcodes we do the default operation. |
| 1164 set_register(rd_reg, alu_out); |
| 1165 }; |
| 1166 break; |
| 1167 case SPECIAL2: |
| 1168 switch (instr->FunctionFieldRaw()) { |
| 1169 case MUL: |
| 1170 set_register(rd_reg, alu_out); |
| 1171 // HI and LO are UNPREDICTABLE after the operation. |
| 1172 set_register(LO, Unpredictable); |
| 1173 set_register(HI, Unpredictable); |
| 1174 break; |
| 1175 default: |
| 1176 UNREACHABLE(); |
| 1177 } |
| 1178 break; |
| 1179 // Unimplemented opcodes raised an error in the configuration step before, |
| 1180 // so we can use the default here to set the destination register in common |
| 1181 // cases. |
| 1182 default: |
| 1183 set_register(rd_reg, alu_out); |
| 1184 }; |
| 1185 } |
| 1186 |
| 1187 // Type 2: instructions using a 16 bytes immediate. (eg: addi, beq) |
| 1188 void Simulator::DecodeTypeImmediate(Instruction* instr) { |
| 1189 // Instruction fields |
| 1190 Opcode op = instr->OpcodeFieldRaw(); |
| 1191 int32_t rs = get_register(instr->RsField()); |
| 1192 uint32_t rs_u = static_cast<uint32_t>(rs); |
| 1193 int32_t rt_reg = instr->RtField(); // destination register |
| 1194 int32_t rt = get_register(rt_reg); |
| 1195 int16_t imm16 = instr->Imm16Field(); |
| 1196 |
| 1197 int32_t ft_reg = instr->FtField(); // destination register |
| 1198 int32_t ft = get_register(ft_reg); |
| 1199 |
| 1200 // zero extended immediate |
| 1201 uint32_t oe_imm16 = 0xffff & imm16; |
| 1202 // sign extended immediate |
| 1203 int32_t se_imm16 = imm16; |
| 1204 |
| 1205 // Get current pc. |
| 1206 int32_t current_pc = get_pc(); |
| 1207 // Next pc. |
| 1208 int32_t next_pc = bad_ra; |
| 1209 |
| 1210 // Used for conditional branch instructions |
| 1211 bool do_branch = false; |
| 1212 bool execute_branch_delay_instruction = false; |
| 1213 |
| 1214 // Used for arithmetic instructions |
| 1215 int32_t alu_out = 0; |
| 1216 // Floating point |
| 1217 double fp_out = 0.0; |
| 1218 |
| 1219 // Used for memory instructions |
| 1220 int32_t addr = 0x0; |
| 1221 |
| 1222 // ---------- Configuration (and execution for REGIMM) |
| 1223 switch (op) { |
| 1224 // ------------- COP1. Coprocessor instructions |
| 1225 case COP1: |
| 1226 switch (instr->RsFieldRaw()) { |
| 1227 case BC1: // branch on coprocessor condition |
| 1228 UNIMPLEMENTED_MIPS(); |
| 1229 break; |
| 1230 default: |
| 1231 UNREACHABLE(); |
| 1232 }; |
| 1233 break; |
| 1234 // ------------- REGIMM class |
| 1235 case REGIMM: |
| 1236 switch (instr->RtFieldRaw()) { |
| 1237 case BLTZ: |
| 1238 do_branch = (rs < 0); |
| 1239 break; |
| 1240 case BLTZAL: |
| 1241 do_branch = rs < 0; |
| 1242 break; |
| 1243 case BGEZ: |
| 1244 do_branch = rs >= 0; |
| 1245 break; |
| 1246 case BGEZAL: |
| 1247 do_branch = rs >= 0; |
| 1248 break; |
| 1249 default: |
| 1250 UNREACHABLE(); |
| 1251 }; |
| 1252 switch (instr->RtFieldRaw()) { |
| 1253 case BLTZ: |
| 1254 case BLTZAL: |
| 1255 case BGEZ: |
| 1256 case BGEZAL: |
| 1257 // Branch instructions common part. |
| 1258 execute_branch_delay_instruction = true; |
| 1259 // Set next_pc |
| 1260 if (do_branch) { |
| 1261 next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize; |
| 1262 if (instr->IsLinkingInstruction()) { |
| 1263 set_register(31, current_pc + kBranchReturnOffset); |
| 1264 } |
| 1265 } else { |
| 1266 next_pc = current_pc + kBranchReturnOffset; |
| 1267 } |
| 1268 default: |
| 1269 break; |
| 1270 }; |
| 1271 break; // case REGIMM |
| 1272 // ------------- Branch instructions |
| 1273 // When comparing to zero, the encoding of rt field is always 0, so we don't |
| 1274 // need to replace rt with zero. |
| 1275 case BEQ: |
| 1276 do_branch = (rs == rt); |
| 1277 break; |
| 1278 case BNE: |
| 1279 do_branch = rs != rt; |
| 1280 break; |
| 1281 case BLEZ: |
| 1282 do_branch = rs <= 0; |
| 1283 break; |
| 1284 case BGTZ: |
| 1285 do_branch = rs > 0; |
| 1286 break; |
| 1287 // ------------- Arithmetic instructions |
| 1288 case ADDI: |
| 1289 if (HaveSameSign(rs, se_imm16)) { |
| 1290 if (rs > 0) { |
| 1291 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - se_imm16); |
| 1292 } else if (rs < 0) { |
| 1293 exceptions[kIntegerUnderflow] = |
| 1294 rs < (Registers::kMinValue - se_imm16); |
| 1295 } |
| 1296 } |
| 1297 alu_out = rs + se_imm16; |
| 1298 break; |
| 1299 case ADDIU: |
| 1300 alu_out = rs + se_imm16; |
| 1301 break; |
| 1302 case SLTI: |
| 1303 alu_out = (rs < se_imm16) ? 1 : 0; |
| 1304 break; |
| 1305 case SLTIU: |
| 1306 alu_out = (rs_u < static_cast<uint32_t>(se_imm16)) ? 1 : 0; |
| 1307 break; |
| 1308 case ANDI: |
| 1309 alu_out = rs & oe_imm16; |
| 1310 break; |
| 1311 case ORI: |
| 1312 alu_out = rs | oe_imm16; |
| 1313 break; |
| 1314 case XORI: |
| 1315 alu_out = rs ^ oe_imm16; |
| 1316 break; |
| 1317 case LUI: |
| 1318 alu_out = (oe_imm16 << 16); |
| 1319 break; |
| 1320 // ------------- Memory instructions |
| 1321 case LB: |
| 1322 addr = rs + se_imm16; |
| 1323 alu_out = ReadB(addr); |
| 1324 break; |
| 1325 case LW: |
| 1326 addr = rs + se_imm16; |
| 1327 alu_out = ReadW(addr, instr); |
| 1328 break; |
| 1329 case LBU: |
| 1330 addr = rs + se_imm16; |
| 1331 alu_out = ReadBU(addr); |
| 1332 break; |
| 1333 case SB: |
| 1334 addr = rs + se_imm16; |
| 1335 break; |
| 1336 case SW: |
| 1337 addr = rs + se_imm16; |
| 1338 break; |
| 1339 case LWC1: |
| 1340 addr = rs + se_imm16; |
| 1341 alu_out = ReadW(addr, instr); |
| 1342 break; |
| 1343 case LDC1: |
| 1344 addr = rs + se_imm16; |
| 1345 fp_out = ReadD(addr, instr); |
| 1346 break; |
| 1347 case SWC1: |
| 1348 case SDC1: |
| 1349 addr = rs + se_imm16; |
| 1350 break; |
| 1351 default: |
| 1352 UNREACHABLE(); |
| 1353 }; |
| 1354 |
| 1355 // ---------- Raise exceptions triggered. |
| 1356 SignalExceptions(); |
| 1357 |
| 1358 // ---------- Execution |
| 1359 switch (op) { |
| 1360 // ------------- Branch instructions |
| 1361 case BEQ: |
| 1362 case BNE: |
| 1363 case BLEZ: |
| 1364 case BGTZ: |
| 1365 // Branch instructions common part. |
| 1366 execute_branch_delay_instruction = true; |
| 1367 // Set next_pc |
| 1368 if (do_branch) { |
| 1369 next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize; |
| 1370 if (instr->IsLinkingInstruction()) { |
| 1371 set_register(31, current_pc + 2* Instruction::kInstructionSize); |
| 1372 } |
| 1373 } else { |
| 1374 next_pc = current_pc + 2 * Instruction::kInstructionSize; |
| 1375 } |
| 1376 break; |
| 1377 // ------------- Arithmetic instructions |
| 1378 case ADDI: |
| 1379 case ADDIU: |
| 1380 case SLTI: |
| 1381 case SLTIU: |
| 1382 case ANDI: |
| 1383 case ORI: |
| 1384 case XORI: |
| 1385 case LUI: |
| 1386 set_register(rt_reg, alu_out); |
| 1387 break; |
| 1388 // ------------- Memory instructions |
| 1389 case LB: |
| 1390 case LW: |
| 1391 case LBU: |
| 1392 set_register(rt_reg, alu_out); |
| 1393 break; |
| 1394 case SB: |
| 1395 WriteB(addr, static_cast<int8_t>(rt)); |
| 1396 break; |
| 1397 case SW: |
| 1398 WriteW(addr, rt, instr); |
| 1399 break; |
| 1400 case LWC1: |
| 1401 set_fpu_register(ft_reg, alu_out); |
| 1402 break; |
| 1403 case LDC1: |
| 1404 set_fpu_register_double(ft_reg, fp_out); |
| 1405 break; |
| 1406 case SWC1: |
| 1407 addr = rs + se_imm16; |
| 1408 WriteW(addr, get_fpu_register(ft_reg), instr); |
| 1409 break; |
| 1410 case SDC1: |
| 1411 addr = rs + se_imm16; |
| 1412 WriteD(addr, ft, instr); |
| 1413 break; |
| 1414 default: |
| 1415 break; |
| 1416 }; |
| 1417 |
| 1418 |
| 1419 if (execute_branch_delay_instruction) { |
| 1420 // Execute branch delay slot |
| 1421 // We don't check for end_sim_pc. First it should not be met as the current |
| 1422 // pc is valid. Secondly a jump should always execute its branch delay slot. |
| 1423 Instruction* branch_delay_instr = |
| 1424 reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize); |
| 1425 BranchDelayInstructionDecode(branch_delay_instr); |
| 1426 } |
| 1427 |
| 1428 // If needed update pc after the branch delay execution. |
| 1429 if (next_pc != bad_ra) { |
| 1430 set_pc(next_pc); |
| 1431 } |
| 1432 } |
| 1433 |
| 1434 // Type 3: instructions using a 26 bytes immediate. (eg: j, jal) |
| 1435 void Simulator::DecodeTypeJump(Instruction* instr) { |
| 1436 // Get current pc. |
| 1437 int32_t current_pc = get_pc(); |
| 1438 // Get unchanged bits of pc. |
| 1439 int32_t pc_high_bits = current_pc & 0xf0000000; |
| 1440 // Next pc |
| 1441 int32_t next_pc = pc_high_bits | (instr->Imm26Field() << 2); |
| 1442 |
| 1443 // Execute branch delay slot |
| 1444 // We don't check for end_sim_pc. First it should not be met as the current pc |
| 1445 // is valid. Secondly a jump should always execute its branch delay slot. |
| 1446 Instruction* branch_delay_instr = |
| 1447 reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize); |
| 1448 BranchDelayInstructionDecode(branch_delay_instr); |
| 1449 |
| 1450 // Update pc and ra if necessary. |
| 1451 // Do this after the branch delay execution. |
| 1452 if (instr->IsLinkingInstruction()) { |
| 1453 set_register(31, current_pc + 2* Instruction::kInstructionSize); |
| 1454 } |
| 1455 set_pc(next_pc); |
| 1456 pc_modified_ = true; |
| 1457 } |
| 1458 |
| 1459 // Executes the current instruction. |
| 1460 void Simulator::InstructionDecode(Instruction* instr) { |
| 1461 pc_modified_ = false; |
| 1462 if (::v8::internal::FLAG_trace_sim) { |
| 1463 disasm::NameConverter converter; |
| 1464 disasm::Disassembler dasm(converter); |
| 1465 // use a reasonably large buffer |
| 1466 v8::internal::EmbeddedVector<char, 256> buffer; |
| 1467 dasm.InstructionDecode(buffer, |
| 1468 reinterpret_cast<byte_*>(instr)); |
| 1469 PrintF(" 0x%08x %s\n", instr, buffer.start()); |
| 1470 } |
| 1471 |
| 1472 switch (instr->InstructionType()) { |
| 1473 case Instruction::kRegisterType: |
| 1474 DecodeTypeRegister(instr); |
| 1475 break; |
| 1476 case Instruction::kImmediateType: |
| 1477 DecodeTypeImmediate(instr); |
| 1478 break; |
| 1479 case Instruction::kJumpType: |
| 1480 DecodeTypeJump(instr); |
| 1481 break; |
| 1482 default: |
| 1483 UNSUPPORTED(); |
| 1484 } |
| 1485 if (!pc_modified_) { |
| 1486 set_register(pc, reinterpret_cast<int32_t>(instr) + |
| 1487 Instruction::kInstructionSize); |
| 1488 } |
| 1489 } |
| 1490 |
| 1491 |
| 1492 |
| 1493 void Simulator::Execute() { |
| 1494 // Get the PC to simulate. Cannot use the accessor here as we need the |
| 1495 // raw PC value and not the one used as input to arithmetic instructions. |
| 1496 int program_counter = get_pc(); |
| 1497 if (::v8::internal::FLAG_stop_sim_at == 0) { |
| 1498 // Fast version of the dispatch loop without checking whether the simulator |
| 1499 // should be stopping at a particular executed instruction. |
| 1500 while (program_counter != end_sim_pc) { |
| 1501 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| 1502 icount_++; |
| 1503 InstructionDecode(instr); |
| 1504 program_counter = get_pc(); |
| 1505 } |
| 1506 } else { |
| 1507 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
| 1508 // we reach the particular instuction count. |
| 1509 while (program_counter != end_sim_pc) { |
| 1510 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| 1511 icount_++; |
| 1512 if (icount_ == ::v8::internal::FLAG_stop_sim_at) { |
| 1513 Debugger dbg(this); |
| 1514 dbg.Debug(); |
| 1515 } else { |
| 1516 InstructionDecode(instr); |
| 1517 } |
| 1518 program_counter = get_pc(); |
| 1519 } |
| 1520 } |
| 1521 } |
| 1522 |
| 1523 |
| 1524 int32_t Simulator::Call(byte_* entry, int argument_count, ...) { |
| 1525 va_list parameters; |
| 1526 va_start(parameters, argument_count); |
| 1527 // Setup arguments |
| 1528 |
| 1529 // First four arguments passed in registers. |
| 1530 ASSERT(argument_count >= 4); |
| 1531 set_register(a0, va_arg(parameters, int32_t)); |
| 1532 set_register(a1, va_arg(parameters, int32_t)); |
| 1533 set_register(a2, va_arg(parameters, int32_t)); |
| 1534 set_register(a3, va_arg(parameters, int32_t)); |
| 1535 |
| 1536 // Remaining arguments passed on stack. |
| 1537 int original_stack = get_register(sp); |
| 1538 // Compute position of stack on entry to generated code. |
| 1539 int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t) |
| 1540 - kArgsSlotsSize); |
| 1541 if (OS::ActivationFrameAlignment() != 0) { |
| 1542 entry_stack &= -OS::ActivationFrameAlignment(); |
| 1543 } |
| 1544 // Store remaining arguments on stack, from low to high memory. |
| 1545 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); |
| 1546 for (int i = 4; i < argument_count; i++) { |
| 1547 stack_argument[i - 4 + kArgsSlotsNum] = va_arg(parameters, int32_t); |
| 1548 } |
| 1549 va_end(parameters); |
| 1550 set_register(sp, entry_stack); |
| 1551 |
| 1552 // Prepare to execute the code at entry |
| 1553 set_register(pc, reinterpret_cast<int32_t>(entry)); |
| 1554 // Put down marker for end of simulation. The simulator will stop simulation |
| 1555 // when the PC reaches this value. By saving the "end simulation" value into |
| 1556 // the LR the simulation stops when returning to this call point. |
| 1557 set_register(ra, end_sim_pc); |
| 1558 |
| 1559 // Remember the values of callee-saved registers. |
| 1560 // The code below assumes that r9 is not used as sb (static base) in |
| 1561 // simulator code and therefore is regarded as a callee-saved register. |
| 1562 int32_t s0_val = get_register(s0); |
| 1563 int32_t s1_val = get_register(s1); |
| 1564 int32_t s2_val = get_register(s2); |
| 1565 int32_t s3_val = get_register(s3); |
| 1566 int32_t s4_val = get_register(s4); |
| 1567 int32_t s5_val = get_register(s5); |
| 1568 int32_t s6_val = get_register(s6); |
| 1569 int32_t s7_val = get_register(s7); |
| 1570 int32_t gp_val = get_register(gp); |
| 1571 int32_t sp_val = get_register(sp); |
| 1572 int32_t fp_val = get_register(fp); |
| 1573 |
| 1574 // Setup the callee-saved registers with a known value. To be able to check |
| 1575 // that they are preserved properly across JS execution. |
| 1576 int32_t callee_saved_value = icount_; |
| 1577 set_register(s0, callee_saved_value); |
| 1578 set_register(s1, callee_saved_value); |
| 1579 set_register(s2, callee_saved_value); |
| 1580 set_register(s3, callee_saved_value); |
| 1581 set_register(s4, callee_saved_value); |
| 1582 set_register(s5, callee_saved_value); |
| 1583 set_register(s6, callee_saved_value); |
| 1584 set_register(s7, callee_saved_value); |
| 1585 set_register(gp, callee_saved_value); |
| 1586 set_register(fp, callee_saved_value); |
| 1587 |
| 1588 // Start the simulation |
| 1589 Execute(); |
| 1590 |
| 1591 // Check that the callee-saved registers have been preserved. |
| 1592 CHECK_EQ(callee_saved_value, get_register(s0)); |
| 1593 CHECK_EQ(callee_saved_value, get_register(s1)); |
| 1594 CHECK_EQ(callee_saved_value, get_register(s2)); |
| 1595 CHECK_EQ(callee_saved_value, get_register(s3)); |
| 1596 CHECK_EQ(callee_saved_value, get_register(s4)); |
| 1597 CHECK_EQ(callee_saved_value, get_register(s5)); |
| 1598 CHECK_EQ(callee_saved_value, get_register(s6)); |
| 1599 CHECK_EQ(callee_saved_value, get_register(s7)); |
| 1600 CHECK_EQ(callee_saved_value, get_register(gp)); |
| 1601 CHECK_EQ(callee_saved_value, get_register(fp)); |
| 1602 |
| 1603 // Restore callee-saved registers with the original value. |
| 1604 set_register(s0, s0_val); |
| 1605 set_register(s1, s1_val); |
| 1606 set_register(s2, s2_val); |
| 1607 set_register(s3, s3_val); |
| 1608 set_register(s4, s4_val); |
| 1609 set_register(s5, s5_val); |
| 1610 set_register(s6, s6_val); |
| 1611 set_register(s7, s7_val); |
| 1612 set_register(gp, gp_val); |
| 1613 set_register(sp, sp_val); |
| 1614 set_register(fp, fp_val); |
| 1615 |
| 1616 // Pop stack passed arguments. |
| 1617 CHECK_EQ(entry_stack, get_register(sp)); |
| 1618 set_register(sp, original_stack); |
| 1619 |
| 1620 int32_t result = get_register(v0); |
| 1621 return result; |
| 1622 } |
| 1623 |
| 1624 |
| 1625 uintptr_t Simulator::PushAddress(uintptr_t address) { |
| 1626 int new_sp = get_register(sp) - sizeof(uintptr_t); |
| 1627 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); |
| 1628 *stack_slot = address; |
| 1629 set_register(sp, new_sp); |
| 1630 return new_sp; |
| 1631 } |
| 1632 |
| 1633 |
| 1634 uintptr_t Simulator::PopAddress() { |
| 1635 int current_sp = get_register(sp); |
| 1636 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); |
| 1637 uintptr_t address = *stack_slot; |
| 1638 set_register(sp, current_sp + sizeof(uintptr_t)); |
| 1639 return address; |
| 1640 } |
| 1641 |
| 1642 |
| 1643 #undef UNSUPPORTED |
| 1644 |
| 1645 } } // namespace assembler::mips |
| 1646 |
| 1647 #endif // !defined(__mips) |
| 1648 |
OLD | NEW |