| Index: src/mips/assembler-mips.cc
|
| ===================================================================
|
| --- src/mips/assembler-mips.cc (revision 0)
|
| +++ src/mips/assembler-mips.cc (revision 0)
|
| @@ -0,0 +1,1208 @@
|
| +// Copyright (c) 1994-2006 Sun Microsystems Inc.
|
| +// All Rights Reserved.
|
| +//
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// - Redistributions of source code must retain the above copyright notice,
|
| +// this list of conditions and the following disclaimer.
|
| +//
|
| +// - Redistribution in binary form must reproduce the above copyright
|
| +// notice, this list of conditions and the following disclaimer in the
|
| +// documentation and/or other materials provided with the distribution.
|
| +//
|
| +// - Neither the name of Sun Microsystems or the names of contributors may
|
| +// be used to endorse or promote products derived from this software without
|
| +// specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
| +// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
| +// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| +// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
| +// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
| +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
| +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
| +// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
| +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
| +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +// The original source code covered by the above license above has been
|
| +// modified significantly by Google Inc.
|
| +// Copyright 2010 the V8 project authors. All rights reserved.
|
| +
|
| +
|
| +#include "v8.h"
|
| +#include "mips/assembler-mips-inl.h"
|
| +#include "serialize.h"
|
| +
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +
|
| +
|
| +const Register no_reg = { -1 };
|
| +
|
| +const Register zero_reg = { 0 };
|
| +const Register at = { 1 };
|
| +const Register v0 = { 2 };
|
| +const Register v1 = { 3 };
|
| +const Register a0 = { 4 };
|
| +const Register a1 = { 5 };
|
| +const Register a2 = { 6 };
|
| +const Register a3 = { 7 };
|
| +const Register t0 = { 8 };
|
| +const Register t1 = { 9 };
|
| +const Register t2 = { 10 };
|
| +const Register t3 = { 11 };
|
| +const Register t4 = { 12 };
|
| +const Register t5 = { 13 };
|
| +const Register t6 = { 14 };
|
| +const Register t7 = { 15 };
|
| +const Register s0 = { 16 };
|
| +const Register s1 = { 17 };
|
| +const Register s2 = { 18 };
|
| +const Register s3 = { 19 };
|
| +const Register s4 = { 20 };
|
| +const Register s5 = { 21 };
|
| +const Register s6 = { 22 };
|
| +const Register s7 = { 23 };
|
| +const Register t8 = { 24 };
|
| +const Register t9 = { 25 };
|
| +const Register k0 = { 26 };
|
| +const Register k1 = { 27 };
|
| +const Register gp = { 28 };
|
| +const Register sp = { 29 };
|
| +const Register s8_fp = { 30 };
|
| +const Register ra = { 31 };
|
| +
|
| +
|
| +const FPURegister no_creg = { -1 };
|
| +
|
| +const FPURegister f0 = { 0 };
|
| +const FPURegister f1 = { 1 };
|
| +const FPURegister f2 = { 2 };
|
| +const FPURegister f3 = { 3 };
|
| +const FPURegister f4 = { 4 };
|
| +const FPURegister f5 = { 5 };
|
| +const FPURegister f6 = { 6 };
|
| +const FPURegister f7 = { 7 };
|
| +const FPURegister f8 = { 8 };
|
| +const FPURegister f9 = { 9 };
|
| +const FPURegister f10 = { 10 };
|
| +const FPURegister f11 = { 11 };
|
| +const FPURegister f12 = { 12 };
|
| +const FPURegister f13 = { 13 };
|
| +const FPURegister f14 = { 14 };
|
| +const FPURegister f15 = { 15 };
|
| +const FPURegister f16 = { 16 };
|
| +const FPURegister f17 = { 17 };
|
| +const FPURegister f18 = { 18 };
|
| +const FPURegister f19 = { 19 };
|
| +const FPURegister f20 = { 20 };
|
| +const FPURegister f21 = { 21 };
|
| +const FPURegister f22 = { 22 };
|
| +const FPURegister f23 = { 23 };
|
| +const FPURegister f24 = { 24 };
|
| +const FPURegister f25 = { 25 };
|
| +const FPURegister f26 = { 26 };
|
| +const FPURegister f27 = { 27 };
|
| +const FPURegister f28 = { 28 };
|
| +const FPURegister f29 = { 29 };
|
| +const FPURegister f30 = { 30 };
|
| +const FPURegister f31 = { 31 };
|
| +
|
| +int ToNumber(Register reg) {
|
| + ASSERT(reg.is_valid());
|
| + const int kNumbers[] = {
|
| + 0, // zero_reg
|
| + 1, // at
|
| + 2, // v0
|
| + 3, // v1
|
| + 4, // a0
|
| + 5, // a1
|
| + 6, // a2
|
| + 7, // a3
|
| + 8, // t0
|
| + 9, // t1
|
| + 10, // t2
|
| + 11, // t3
|
| + 12, // t4
|
| + 13, // t5
|
| + 14, // t6
|
| + 15, // t7
|
| + 16, // s0
|
| + 17, // s1
|
| + 18, // s2
|
| + 19, // s3
|
| + 20, // s4
|
| + 21, // s5
|
| + 22, // s6
|
| + 23, // s7
|
| + 24, // t8
|
| + 25, // t9
|
| + 26, // k0
|
| + 27, // k1
|
| + 28, // gp
|
| + 29, // sp
|
| + 30, // s8_fp
|
| + 31, // ra
|
| + };
|
| + return kNumbers[reg.code()];
|
| +}
|
| +
|
| +Register ToRegister(int num) {
|
| + ASSERT(num >= 0 && num < kNumRegisters);
|
| + const Register kRegisters[] = {
|
| + zero_reg,
|
| + at,
|
| + v0, v1,
|
| + a0, a1, a2, a3,
|
| + t0, t1, t2, t3, t4, t5, t6, t7,
|
| + s0, s1, s2, s3, s4, s5, s6, s7,
|
| + t8, t9,
|
| + k0, k1,
|
| + gp,
|
| + sp,
|
| + s8_fp,
|
| + ra
|
| + };
|
| + return kRegisters[num];
|
| +}
|
| +
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Implementation of RelocInfo.
|
| +
|
| +const int RelocInfo::kApplyMask = 0;
|
| +
|
| +// Patch the code at the current address with the supplied instructions.
|
| +void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
|
| + Instr* pc = reinterpret_cast<Instr*>(pc_);
|
| + Instr* instr = reinterpret_cast<Instr*>(instructions);
|
| + for (int i = 0; i < instruction_count; i++) {
|
| + *(pc + i) = *(instr + i);
|
| + }
|
| +
|
| + // Indicate that code has changed.
|
| + CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
|
| +}
|
| +
|
| +
|
| +// Patch the code at the current PC with a call to the target address.
|
| +// Additional guard instructions can be added if required.
|
| +void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
|
| + // Patch the code at the current address with a call to the target.
|
| + UNIMPLEMENTED_MIPS();
|
| +}
|
| +
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Implementation of Operand and MemOperand.
|
| +// See assembler-mips-inl.h for inlined constructors.
|
| +
|
| +Operand::Operand(Handle<Object> handle) {
|
| + rm_ = no_reg;
|
| + // Verify all Objects referred by code are NOT in new space.
|
| + Object* obj = *handle;
|
| + ASSERT(!Heap::InNewSpace(obj));
|
| + if (obj->IsHeapObject()) {
|
| + imm32_ = reinterpret_cast<intptr_t>(handle.location());
|
| + rmode_ = RelocInfo::EMBEDDED_OBJECT;
|
| + } else {
|
| + // No relocation needed.
|
| + imm32_ = reinterpret_cast<intptr_t>(obj);
|
| + rmode_ = RelocInfo::NONE;
|
| + }
|
| +}
|
| +
|
| +MemOperand::MemOperand(Register rm, int16_t offset) : Operand(rm) {
|
| + offset_ = offset;
|
| +}
|
| +
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Implementation of Assembler.
|
| +
|
| +static const int kMinimalBufferSize = 4*KB;
|
| +static byte* spare_buffer_ = NULL;
|
| +
|
| +Assembler::Assembler(void* buffer, int buffer_size) {
|
| + if (buffer == NULL) {
|
| + // Do our own buffer management.
|
| + if (buffer_size <= kMinimalBufferSize) {
|
| + buffer_size = kMinimalBufferSize;
|
| +
|
| + if (spare_buffer_ != NULL) {
|
| + buffer = spare_buffer_;
|
| + spare_buffer_ = NULL;
|
| + }
|
| + }
|
| + if (buffer == NULL) {
|
| + buffer_ = NewArray<byte>(buffer_size);
|
| + } else {
|
| + buffer_ = static_cast<byte*>(buffer);
|
| + }
|
| + buffer_size_ = buffer_size;
|
| + own_buffer_ = true;
|
| +
|
| + } else {
|
| + // Use externally provided buffer instead.
|
| + ASSERT(buffer_size > 0);
|
| + buffer_ = static_cast<byte*>(buffer);
|
| + buffer_size_ = buffer_size;
|
| + own_buffer_ = false;
|
| + }
|
| +
|
| + // Setup buffer pointers.
|
| + ASSERT(buffer_ != NULL);
|
| + pc_ = buffer_;
|
| + reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
|
| + current_statement_position_ = RelocInfo::kNoPosition;
|
| + current_position_ = RelocInfo::kNoPosition;
|
| + written_statement_position_ = current_statement_position_;
|
| + written_position_ = current_position_;
|
| +}
|
| +
|
| +
|
| +Assembler::~Assembler() {
|
| + if (own_buffer_) {
|
| + if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
|
| + spare_buffer_ = buffer_;
|
| + } else {
|
| + DeleteArray(buffer_);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::GetCode(CodeDesc* desc) {
|
| + ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap
|
| + // Setup code descriptor.
|
| + desc->buffer = buffer_;
|
| + desc->buffer_size = buffer_size_;
|
| + desc->instr_size = pc_offset();
|
| + desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
|
| +}
|
| +
|
| +
|
| +// Labels refer to positions in the (to be) generated code.
|
| +// There are bound, linked, and unused labels.
|
| +//
|
| +// Bound labels refer to known positions in the already
|
| +// generated code. pos() is the position the label refers to.
|
| +//
|
| +// Linked labels refer to unknown positions in the code
|
| +// to be generated; pos() is the position of the last
|
| +// instruction using the label.
|
| +
|
| +
|
| +// The link chain is terminated by a negative code position (must be aligned).
|
| +const int kEndOfChain = -4;
|
| +
|
| +bool Assembler::is_branch(Instr instr) {
|
| + uint32_t opcode = ((instr & kOpcodeMask));
|
| + uint32_t rt_field = ((instr & kRtFieldMask));
|
| + uint32_t rs_field = ((instr & kRsFieldMask));
|
| + // Checks if the instruction is a branch.
|
| + return opcode == BEQ ||
|
| + opcode == BNE ||
|
| + opcode == BLEZ ||
|
| + opcode == BGTZ ||
|
| + opcode == BEQL ||
|
| + opcode == BNEL ||
|
| + opcode == BLEZL ||
|
| + opcode == BGTZL||
|
| + (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
|
| + rt_field == BLTZAL || rt_field == BGEZAL)) ||
|
| + (opcode == COP1 && rs_field == BC1); // Coprocessor branch.
|
| +}
|
| +
|
| +
|
| +int Assembler::target_at(int32_t pos) {
|
| + Instr instr = instr_at(pos);
|
| + if ((instr & ~kImm16Mask) == 0) {
|
| + // Emitted label constant, not part of a branch.
|
| + return instr - (Code::kHeaderSize - kHeapObjectTag);
|
| + }
|
| + // Check we have a branch instruction.
|
| + ASSERT(is_branch(instr));
|
| + // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
|
| + // the compiler uses arithmectic shifts for signed integers.
|
| + int32_t imm18 = ((instr &
|
| + static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
|
| +
|
| + return pos + kBranchPCOffset + imm18;
|
| +}
|
| +
|
| +
|
| +void Assembler::target_at_put(int32_t pos, int32_t target_pos) {
|
| + Instr instr = instr_at(pos);
|
| + if ((instr & ~kImm16Mask) == 0) {
|
| + ASSERT(target_pos == kEndOfChain || target_pos >= 0);
|
| + // Emitted label constant, not part of a branch.
|
| + // Make label relative to Code* of generated Code object.
|
| + instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
|
| + return;
|
| + }
|
| +
|
| + ASSERT(is_branch(instr));
|
| + int32_t imm18 = target_pos - (pos + kBranchPCOffset);
|
| + ASSERT((imm18 & 3) == 0);
|
| +
|
| + instr &= ~kImm16Mask;
|
| + int32_t imm16 = imm18 >> 2;
|
| + ASSERT(is_int16(imm16));
|
| +
|
| + instr_at_put(pos, instr | (imm16 & kImm16Mask));
|
| +}
|
| +
|
| +
|
| +void Assembler::print(Label* L) {
|
| + if (L->is_unused()) {
|
| + PrintF("unused label\n");
|
| + } else if (L->is_bound()) {
|
| + PrintF("bound label to %d\n", L->pos());
|
| + } else if (L->is_linked()) {
|
| + Label l = *L;
|
| + PrintF("unbound label");
|
| + while (l.is_linked()) {
|
| + PrintF("@ %d ", l.pos());
|
| + Instr instr = instr_at(l.pos());
|
| + if ((instr & ~kImm16Mask) == 0) {
|
| + PrintF("value\n");
|
| + } else {
|
| + PrintF("%d\n", instr);
|
| + }
|
| + next(&l);
|
| + }
|
| + } else {
|
| + PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::bind_to(Label* L, int pos) {
|
| + ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
|
| + while (L->is_linked()) {
|
| + int32_t fixup_pos = L->pos();
|
| + next(L); // call next before overwriting link with target at fixup_pos
|
| + target_at_put(fixup_pos, pos);
|
| + }
|
| + L->bind_to(pos);
|
| +
|
| + // Keep track of the last bound label so we don't eliminate any instructions
|
| + // before a bound label.
|
| + if (pos > last_bound_pos_)
|
| + last_bound_pos_ = pos;
|
| +}
|
| +
|
| +
|
| +void Assembler::link_to(Label* L, Label* appendix) {
|
| + if (appendix->is_linked()) {
|
| + if (L->is_linked()) {
|
| + // Append appendix to L's list.
|
| + int fixup_pos;
|
| + int link = L->pos();
|
| + do {
|
| + fixup_pos = link;
|
| + link = target_at(fixup_pos);
|
| + } while (link > 0);
|
| + ASSERT(link == kEndOfChain);
|
| + target_at_put(fixup_pos, appendix->pos());
|
| + } else {
|
| + // L is empty, simply use appendix
|
| + *L = *appendix;
|
| + }
|
| + }
|
| + appendix->Unuse(); // appendix should not be used anymore
|
| +}
|
| +
|
| +
|
| +void Assembler::bind(Label* L) {
|
| + ASSERT(!L->is_bound()); // label can only be bound once
|
| + bind_to(L, pc_offset());
|
| +}
|
| +
|
| +
|
| +void Assembler::next(Label* L) {
|
| + ASSERT(L->is_linked());
|
| + int link = target_at(L->pos());
|
| + if (link > 0) {
|
| + L->link_to(link);
|
| + } else {
|
| + ASSERT(link == kEndOfChain);
|
| + L->Unuse();
|
| + }
|
| +}
|
| +
|
| +
|
| +// We have to use a temporary register for things that can be relocated even
|
| +// if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
|
| +// space. There is no guarantee that the relocated location can be similarly
|
| +// encoded.
|
| +bool Assembler::MustUseAt(RelocInfo::Mode rmode) {
|
| + if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
|
| + return Serializer::enabled();
|
| + } else if (rmode == RelocInfo::NONE) {
|
| + return false;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +
|
| +void Assembler::GenInstrRegister(Opcode opcode,
|
| + Register rs,
|
| + Register rt,
|
| + Register rd,
|
| + uint16_t sa,
|
| + SecondaryField func) {
|
| + ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
|
| + Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
|
| + | (rd.code() << kRdShift) | (sa << kSaShift) | func;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::GenInstrRegister(Opcode opcode,
|
| + SecondaryField fmt,
|
| + FPURegister ft,
|
| + FPURegister fs,
|
| + FPURegister fd,
|
| + SecondaryField func) {
|
| + ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid());
|
| + Instr instr = opcode | fmt | (ft.code() << 16) | (fs.code() << kFsShift)
|
| + | (fd.code() << 6) | func;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::GenInstrRegister(Opcode opcode,
|
| + SecondaryField fmt,
|
| + Register rt,
|
| + FPURegister fs,
|
| + FPURegister fd,
|
| + SecondaryField func) {
|
| + ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid());
|
| + Instr instr = opcode | fmt | (rt.code() << kRtShift)
|
| + | (fs.code() << kFsShift) | (fd.code() << 6) | func;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +// Instructions with immediate value.
|
| +// Registers are in the order of the instruction encoding, from left to right.
|
| +void Assembler::GenInstrImmediate(Opcode opcode,
|
| + Register rs,
|
| + Register rt,
|
| + int32_t j) {
|
| + ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
|
| + Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
|
| + | (j & kImm16Mask);
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::GenInstrImmediate(Opcode opcode,
|
| + Register rs,
|
| + SecondaryField SF,
|
| + int32_t j) {
|
| + ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j)));
|
| + Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::GenInstrImmediate(Opcode opcode,
|
| + Register rs,
|
| + FPURegister ft,
|
| + int32_t j) {
|
| + ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
|
| + Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift)
|
| + | (j & kImm16Mask);
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +// Registers are in the order of the instruction encoding, from left to right.
|
| +void Assembler::GenInstrJump(Opcode opcode,
|
| + uint32_t address) {
|
| + ASSERT(is_uint26(address));
|
| + Instr instr = opcode | address;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
|
| + int32_t target_pos;
|
| + if (L->is_bound()) {
|
| + target_pos = L->pos();
|
| + } else {
|
| + if (L->is_linked()) {
|
| + target_pos = L->pos(); // L's link
|
| + } else {
|
| + target_pos = kEndOfChain;
|
| + }
|
| + L->link_to(pc_offset());
|
| + }
|
| +
|
| + int32_t offset = target_pos - (pc_offset() + kBranchPCOffset);
|
| + return offset;
|
| +}
|
| +
|
| +
|
| +void Assembler::label_at_put(Label* L, int at_offset) {
|
| + int target_pos;
|
| + if (L->is_bound()) {
|
| + target_pos = L->pos();
|
| + } else {
|
| + if (L->is_linked()) {
|
| + target_pos = L->pos(); // L's link
|
| + } else {
|
| + target_pos = kEndOfChain;
|
| + }
|
| + L->link_to(at_offset);
|
| + instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
|
| + }
|
| +}
|
| +
|
| +
|
| +//------- Branch and jump instructions --------
|
| +
|
| +void Assembler::b(int16_t offset) {
|
| + beq(zero_reg, zero_reg, offset);
|
| +}
|
| +
|
| +
|
| +void Assembler::bal(int16_t offset) {
|
| + bgezal(zero_reg, offset);
|
| +}
|
| +
|
| +
|
| +void Assembler::beq(Register rs, Register rt, int16_t offset) {
|
| + GenInstrImmediate(BEQ, rs, rt, offset);
|
| +}
|
| +
|
| +
|
| +void Assembler::bgez(Register rs, int16_t offset) {
|
| + GenInstrImmediate(REGIMM, rs, BGEZ, offset);
|
| +}
|
| +
|
| +
|
| +void Assembler::bgezal(Register rs, int16_t offset) {
|
| + GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
|
| +}
|
| +
|
| +
|
| +void Assembler::bgtz(Register rs, int16_t offset) {
|
| + GenInstrImmediate(BGTZ, rs, zero_reg, offset);
|
| +}
|
| +
|
| +
|
| +void Assembler::blez(Register rs, int16_t offset) {
|
| + GenInstrImmediate(BLEZ, rs, zero_reg, offset);
|
| +}
|
| +
|
| +
|
| +void Assembler::bltz(Register rs, int16_t offset) {
|
| + GenInstrImmediate(REGIMM, rs, BLTZ, offset);
|
| +}
|
| +
|
| +
|
| +void Assembler::bltzal(Register rs, int16_t offset) {
|
| + GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
|
| +}
|
| +
|
| +
|
| +void Assembler::bne(Register rs, Register rt, int16_t offset) {
|
| + GenInstrImmediate(BNE, rs, rt, offset);
|
| +}
|
| +
|
| +
|
| +void Assembler::j(int32_t target) {
|
| + ASSERT(is_uint28(target) && ((target & 3) == 0));
|
| + GenInstrJump(J, target >> 2);
|
| +}
|
| +
|
| +
|
| +void Assembler::jr(Register rs) {
|
| + GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
|
| +}
|
| +
|
| +
|
| +void Assembler::jal(int32_t target) {
|
| + ASSERT(is_uint28(target) && ((target & 3) == 0));
|
| + GenInstrJump(JAL, target >> 2);
|
| +}
|
| +
|
| +
|
| +void Assembler::jalr(Register rs, Register rd) {
|
| + GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
|
| +}
|
| +
|
| +
|
| +//-------Data-processing-instructions---------
|
| +
|
| +// Arithmetic.
|
| +
|
| +void Assembler::add(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADD);
|
| +}
|
| +
|
| +
|
| +void Assembler::addu(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
|
| +}
|
| +
|
| +
|
| +void Assembler::addi(Register rd, Register rs, int32_t j) {
|
| + GenInstrImmediate(ADDI, rs, rd, j);
|
| +}
|
| +
|
| +
|
| +void Assembler::addiu(Register rd, Register rs, int32_t j) {
|
| + GenInstrImmediate(ADDIU, rs, rd, j);
|
| +}
|
| +
|
| +
|
| +void Assembler::sub(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUB);
|
| +}
|
| +
|
| +
|
| +void Assembler::subu(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
|
| +}
|
| +
|
| +
|
| +void Assembler::mul(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
|
| +}
|
| +
|
| +
|
| +void Assembler::mult(Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
|
| +}
|
| +
|
| +
|
| +void Assembler::multu(Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
|
| +}
|
| +
|
| +
|
| +void Assembler::div(Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
|
| +}
|
| +
|
| +
|
| +void Assembler::divu(Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
|
| +}
|
| +
|
| +
|
| +// Logical.
|
| +
|
| +void Assembler::and_(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
|
| +}
|
| +
|
| +
|
| +void Assembler::andi(Register rt, Register rs, int32_t j) {
|
| + GenInstrImmediate(ANDI, rs, rt, j);
|
| +}
|
| +
|
| +
|
| +void Assembler::or_(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
|
| +}
|
| +
|
| +
|
| +void Assembler::ori(Register rt, Register rs, int32_t j) {
|
| + GenInstrImmediate(ORI, rs, rt, j);
|
| +}
|
| +
|
| +
|
| +void Assembler::xor_(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
|
| +}
|
| +
|
| +
|
| +void Assembler::xori(Register rt, Register rs, int32_t j) {
|
| + GenInstrImmediate(XORI, rs, rt, j);
|
| +}
|
| +
|
| +
|
| +void Assembler::nor(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
|
| +}
|
| +
|
| +
|
| +// Shifts.
|
| +void Assembler::sll(Register rd, Register rt, uint16_t sa) {
|
| + GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL);
|
| +}
|
| +
|
| +
|
| +void Assembler::sllv(Register rd, Register rt, Register rs) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
|
| +}
|
| +
|
| +
|
| +void Assembler::srl(Register rd, Register rt, uint16_t sa) {
|
| + GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL);
|
| +}
|
| +
|
| +
|
| +void Assembler::srlv(Register rd, Register rt, Register rs) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
|
| +}
|
| +
|
| +
|
| +void Assembler::sra(Register rd, Register rt, uint16_t sa) {
|
| + GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA);
|
| +}
|
| +
|
| +
|
| +void Assembler::srav(Register rd, Register rt, Register rs) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
|
| +}
|
| +
|
| +
|
| +//------------Memory-instructions-------------
|
| +
|
| +void Assembler::lb(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::lbu(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::lw(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::sb(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::sw(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::lui(Register rd, int32_t j) {
|
| + GenInstrImmediate(LUI, zero_reg, rd, j);
|
| +}
|
| +
|
| +
|
| +//-------------Misc-instructions--------------
|
| +
|
| +// Break / Trap instructions.
|
| +void Assembler::break_(uint32_t code) {
|
| + ASSERT((code & ~0xfffff) == 0);
|
| + Instr break_instr = SPECIAL | BREAK | (code << 6);
|
| + emit(break_instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::tge(Register rs, Register rt, uint16_t code) {
|
| + ASSERT(is_uint10(code));
|
| + Instr instr = SPECIAL | TGE | rs.code() << kRsShift
|
| + | rt.code() << kRtShift | code << 6;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
|
| + ASSERT(is_uint10(code));
|
| + Instr instr = SPECIAL | TGEU | rs.code() << kRsShift
|
| + | rt.code() << kRtShift | code << 6;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::tlt(Register rs, Register rt, uint16_t code) {
|
| + ASSERT(is_uint10(code));
|
| + Instr instr =
|
| + SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::tltu(Register rs, Register rt, uint16_t code) {
|
| + ASSERT(is_uint10(code));
|
| + Instr instr = SPECIAL | TLTU | rs.code() << kRsShift
|
| + | rt.code() << kRtShift | code << 6;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::teq(Register rs, Register rt, uint16_t code) {
|
| + ASSERT(is_uint10(code));
|
| + Instr instr =
|
| + SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::tne(Register rs, Register rt, uint16_t code) {
|
| + ASSERT(is_uint10(code));
|
| + Instr instr =
|
| + SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +// Move from HI/LO register.
|
| +
|
| +void Assembler::mfhi(Register rd) {
|
| + GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
|
| +}
|
| +
|
| +
|
| +void Assembler::mflo(Register rd) {
|
| + GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
|
| +}
|
| +
|
| +
|
| +// Set on less than instructions.
|
| +void Assembler::slt(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
|
| +}
|
| +
|
| +
|
| +void Assembler::sltu(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
|
| +}
|
| +
|
| +
|
| +void Assembler::slti(Register rt, Register rs, int32_t j) {
|
| + GenInstrImmediate(SLTI, rs, rt, j);
|
| +}
|
| +
|
| +
|
| +void Assembler::sltiu(Register rt, Register rs, int32_t j) {
|
| + GenInstrImmediate(SLTIU, rs, rt, j);
|
| +}
|
| +
|
| +
|
| +//--------Coprocessor-instructions----------------
|
| +
|
| +// Load, store, move.
|
| +void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
|
| + GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
|
| + GenInstrImmediate(LDC1, src.rm(), fd, src.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::swc1(FPURegister fd, const MemOperand& src) {
|
| + GenInstrImmediate(SWC1, src.rm(), fd, src.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::sdc1(FPURegister fd, const MemOperand& src) {
|
| + GenInstrImmediate(SDC1, src.rm(), fd, src.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::mtc1(FPURegister fs, Register rt) {
|
| + GenInstrRegister(COP1, MTC1, rt, fs, f0);
|
| +}
|
| +
|
| +
|
| +void Assembler::mthc1(FPURegister fs, Register rt) {
|
| + GenInstrRegister(COP1, MTHC1, rt, fs, f0);
|
| +}
|
| +
|
| +
|
| +void Assembler::mfc1(FPURegister fs, Register rt) {
|
| + GenInstrRegister(COP1, MFC1, rt, fs, f0);
|
| +}
|
| +
|
| +
|
| +void Assembler::mfhc1(FPURegister fs, Register rt) {
|
| + GenInstrRegister(COP1, MFHC1, rt, fs, f0);
|
| +}
|
| +
|
| +
|
| +// Conversions.
|
| +
|
| +void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
|
| +}
|
| +
|
| +
|
| +void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
|
| +}
|
| +
|
| +
|
| +void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
|
| +}
|
| +
|
| +
|
| +void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
|
| +}
|
| +
|
| +
|
| +void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
|
| +}
|
| +
|
| +
|
| +void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
|
| +}
|
| +
|
| +
|
| +void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
|
| +}
|
| +
|
| +
|
| +// Conditions.
|
| +void Assembler::c(FPUCondition cond, SecondaryField fmt,
|
| + FPURegister ft, FPURegister fs, uint16_t cc) {
|
| + ASSERT(is_uint3(cc));
|
| + ASSERT((fmt & ~(31 << kRsShift)) == 0);
|
| + Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift
|
| + | cc << 8 | 3 << 4 | cond;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::bc1f(int16_t offset, uint16_t cc) {
|
| + ASSERT(is_uint3(cc));
|
| + Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::bc1t(int16_t offset, uint16_t cc) {
|
| + ASSERT(is_uint3(cc));
|
| + Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +// Debugging.
|
| +void Assembler::RecordJSReturn() {
|
| + WriteRecordedPositions();
|
| + CheckBuffer();
|
| + RecordRelocInfo(RelocInfo::JS_RETURN);
|
| +}
|
| +
|
| +
|
| +void Assembler::RecordComment(const char* msg) {
|
| + if (FLAG_debug_code) {
|
| + CheckBuffer();
|
| + RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::RecordPosition(int pos) {
|
| + if (pos == RelocInfo::kNoPosition) return;
|
| + ASSERT(pos >= 0);
|
| + current_position_ = pos;
|
| +}
|
| +
|
| +
|
| +void Assembler::RecordStatementPosition(int pos) {
|
| + if (pos == RelocInfo::kNoPosition) return;
|
| + ASSERT(pos >= 0);
|
| + current_statement_position_ = pos;
|
| +}
|
| +
|
| +
|
| +void Assembler::WriteRecordedPositions() {
|
| + // Write the statement position if it is different from what was written last
|
| + // time.
|
| + if (current_statement_position_ != written_statement_position_) {
|
| + CheckBuffer();
|
| + RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_);
|
| + written_statement_position_ = current_statement_position_;
|
| + }
|
| +
|
| + // Write the position if it is different from what was written last time and
|
| + // also different from the written statement position.
|
| + if (current_position_ != written_position_ &&
|
| + current_position_ != written_statement_position_) {
|
| + CheckBuffer();
|
| + RecordRelocInfo(RelocInfo::POSITION, current_position_);
|
| + written_position_ = current_position_;
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::GrowBuffer() {
|
| + if (!own_buffer_) FATAL("external code buffer is too small");
|
| +
|
| + // Compute new buffer size.
|
| + CodeDesc desc; // the new buffer
|
| + if (buffer_size_ < 4*KB) {
|
| + desc.buffer_size = 4*KB;
|
| + } else if (buffer_size_ < 1*MB) {
|
| + desc.buffer_size = 2*buffer_size_;
|
| + } else {
|
| + desc.buffer_size = buffer_size_ + 1*MB;
|
| + }
|
| + CHECK_GT(desc.buffer_size, 0); // no overflow
|
| +
|
| + // Setup new buffer.
|
| + desc.buffer = NewArray<byte>(desc.buffer_size);
|
| +
|
| + desc.instr_size = pc_offset();
|
| + desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
|
| +
|
| + // Copy the data.
|
| + int pc_delta = desc.buffer - buffer_;
|
| + int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
|
| + memmove(desc.buffer, buffer_, desc.instr_size);
|
| + memmove(reloc_info_writer.pos() + rc_delta,
|
| + reloc_info_writer.pos(), desc.reloc_size);
|
| +
|
| + // Switch buffers.
|
| + DeleteArray(buffer_);
|
| + buffer_ = desc.buffer;
|
| + buffer_size_ = desc.buffer_size;
|
| + pc_ += pc_delta;
|
| + reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
|
| + reloc_info_writer.last_pc() + pc_delta);
|
| +
|
| +
|
| + // On ia32 and ARM pc relative addressing is used, and we thus need to apply a
|
| + // shift by pc_delta. But on MIPS the target address it directly loaded, so
|
| + // we do not need to relocate here.
|
| +
|
| + ASSERT(!overflow());
|
| +}
|
| +
|
| +
|
| +void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
|
| + RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants
|
| + if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) {
|
| + // Adjust code for new modes.
|
| + ASSERT(RelocInfo::IsJSReturn(rmode)
|
| + || RelocInfo::IsComment(rmode)
|
| + || RelocInfo::IsPosition(rmode));
|
| + // These modes do not need an entry in the constant pool.
|
| + }
|
| + if (rinfo.rmode() != RelocInfo::NONE) {
|
| + // Don't record external references unless the heap will be serialized.
|
| + if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
|
| + !Serializer::enabled() &&
|
| + !FLAG_debug_code) {
|
| + return;
|
| + }
|
| + ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
|
| + reloc_info_writer.Write(&rinfo);
|
| + }
|
| +}
|
| +
|
| +
|
| +Address Assembler::target_address_at(Address pc) {
|
| + Instr instr1 = instr_at(pc);
|
| + Instr instr2 = instr_at(pc + kInstrSize);
|
| + // Check we have 2 instructions generated by li.
|
| + ASSERT(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) ||
|
| + ((instr1 == nopInstr) && ((instr2 & kOpcodeMask) == ADDI ||
|
| + (instr2 & kOpcodeMask) == ORI ||
|
| + (instr2 & kOpcodeMask) == LUI)));
|
| + // Interpret these 2 instructions.
|
| + if (instr1 == nopInstr) {
|
| + if ((instr2 & kOpcodeMask) == ADDI) {
|
| + return reinterpret_cast<Address>(((instr2 & kImm16Mask) << 16) >> 16);
|
| + } else if ((instr2 & kOpcodeMask) == ORI) {
|
| + return reinterpret_cast<Address>(instr2 & kImm16Mask);
|
| + } else if ((instr2 & kOpcodeMask) == LUI) {
|
| + return reinterpret_cast<Address>((instr2 & kImm16Mask) << 16);
|
| + }
|
| + } else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) {
|
| + // 32 bits value.
|
| + return reinterpret_cast<Address>(
|
| + (instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask));
|
| + }
|
| +
|
| + // We should never get here.
|
| + UNREACHABLE();
|
| + return (Address)0x0;
|
| +}
|
| +
|
| +
|
| +void Assembler::set_target_address_at(Address pc, Address target) {
|
| + // On MIPS we need to patch the code to generate.
|
| +
|
| + // First check we have a li.
|
| + Instr instr2 = instr_at(pc + kInstrSize);
|
| +#ifdef DEBUG
|
| + Instr instr1 = instr_at(pc);
|
| +
|
| + // Check we have indeed the result from a li with MustUseAt true.
|
| + CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) ||
|
| + ((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU ||
|
| + (instr2 & kOpcodeMask)== ORI ||
|
| + (instr2 & kOpcodeMask)== LUI)));
|
| +#endif
|
| +
|
| +
|
| + uint32_t rt_code = (instr2 & kRtFieldMask);
|
| + uint32_t* p = reinterpret_cast<uint32_t*>(pc);
|
| + uint32_t itarget = reinterpret_cast<uint32_t>(target);
|
| +
|
| + if (is_int16(itarget)) {
|
| + // nop
|
| + // addiu rt zero_reg j
|
| + *p = nopInstr;
|
| + *(p+1) = ADDIU | rt_code | (itarget & LOMask);
|
| + } else if (!(itarget & HIMask)) {
|
| + // nop
|
| + // ori rt zero_reg j
|
| + *p = nopInstr;
|
| + *(p+1) = ORI | rt_code | (itarget & LOMask);
|
| + } else if (!(itarget & LOMask)) {
|
| + // nop
|
| + // lui rt (HIMask & itarget)>>16
|
| + *p = nopInstr;
|
| + *(p+1) = LUI | rt_code | ((itarget & HIMask)>>16);
|
| + } else {
|
| + // lui rt (HIMask & itarget)>>16
|
| + // ori rt rt, (LOMask & itarget)
|
| + *p = LUI | rt_code | ((itarget & HIMask)>>16);
|
| + *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & LOMask);
|
| + }
|
| +
|
| + CPU::FlushICache(pc, 2 * sizeof(int32_t));
|
| +}
|
| +
|
| +
|
| +} } // namespace v8::internal
|
| +
|
|
|