OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| 2 // All Rights Reserved. |
| 3 // |
| 4 // Redistribution and use in source and binary forms, with or without |
| 5 // modification, are permitted provided that the following conditions are |
| 6 // met: |
| 7 // |
| 8 // - Redistributions of source code must retain the above copyright notice, |
| 9 // this list of conditions and the following disclaimer. |
| 10 // |
| 11 // - Redistribution in binary form must reproduce the above copyright |
| 12 // notice, this list of conditions and the following disclaimer in the |
| 13 // documentation and/or other materials provided with the distribution. |
| 14 // |
| 15 // - Neither the name of Sun Microsystems or the names of contributors may |
| 16 // be used to endorse or promote products derived from this software without |
| 17 // specific prior written permission. |
| 18 // |
| 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 |
| 31 // The original source code covered by the above license above has been |
| 32 // modified significantly by Google Inc. |
| 33 // Copyright 2010 the V8 project authors. All rights reserved. |
| 34 |
| 35 |
| 36 #include "v8.h" |
| 37 #include "mips/assembler-mips-inl.h" |
| 38 #include "serialize.h" |
| 39 |
| 40 |
| 41 namespace v8 { |
| 42 namespace internal { |
| 43 |
| 44 |
| 45 |
| 46 const Register no_reg = { -1 }; |
| 47 |
| 48 const Register zero_reg = { 0 }; |
| 49 const Register at = { 1 }; |
| 50 const Register v0 = { 2 }; |
| 51 const Register v1 = { 3 }; |
| 52 const Register a0 = { 4 }; |
| 53 const Register a1 = { 5 }; |
| 54 const Register a2 = { 6 }; |
| 55 const Register a3 = { 7 }; |
| 56 const Register t0 = { 8 }; |
| 57 const Register t1 = { 9 }; |
| 58 const Register t2 = { 10 }; |
| 59 const Register t3 = { 11 }; |
| 60 const Register t4 = { 12 }; |
| 61 const Register t5 = { 13 }; |
| 62 const Register t6 = { 14 }; |
| 63 const Register t7 = { 15 }; |
| 64 const Register s0 = { 16 }; |
| 65 const Register s1 = { 17 }; |
| 66 const Register s2 = { 18 }; |
| 67 const Register s3 = { 19 }; |
| 68 const Register s4 = { 20 }; |
| 69 const Register s5 = { 21 }; |
| 70 const Register s6 = { 22 }; |
| 71 const Register s7 = { 23 }; |
| 72 const Register t8 = { 24 }; |
| 73 const Register t9 = { 25 }; |
| 74 const Register k0 = { 26 }; |
| 75 const Register k1 = { 27 }; |
| 76 const Register gp = { 28 }; |
| 77 const Register sp = { 29 }; |
| 78 const Register s8_fp = { 30 }; |
| 79 const Register ra = { 31 }; |
| 80 |
| 81 |
| 82 const FPURegister no_creg = { -1 }; |
| 83 |
| 84 const FPURegister f0 = { 0 }; |
| 85 const FPURegister f1 = { 1 }; |
| 86 const FPURegister f2 = { 2 }; |
| 87 const FPURegister f3 = { 3 }; |
| 88 const FPURegister f4 = { 4 }; |
| 89 const FPURegister f5 = { 5 }; |
| 90 const FPURegister f6 = { 6 }; |
| 91 const FPURegister f7 = { 7 }; |
| 92 const FPURegister f8 = { 8 }; |
| 93 const FPURegister f9 = { 9 }; |
| 94 const FPURegister f10 = { 10 }; |
| 95 const FPURegister f11 = { 11 }; |
| 96 const FPURegister f12 = { 12 }; |
| 97 const FPURegister f13 = { 13 }; |
| 98 const FPURegister f14 = { 14 }; |
| 99 const FPURegister f15 = { 15 }; |
| 100 const FPURegister f16 = { 16 }; |
| 101 const FPURegister f17 = { 17 }; |
| 102 const FPURegister f18 = { 18 }; |
| 103 const FPURegister f19 = { 19 }; |
| 104 const FPURegister f20 = { 20 }; |
| 105 const FPURegister f21 = { 21 }; |
| 106 const FPURegister f22 = { 22 }; |
| 107 const FPURegister f23 = { 23 }; |
| 108 const FPURegister f24 = { 24 }; |
| 109 const FPURegister f25 = { 25 }; |
| 110 const FPURegister f26 = { 26 }; |
| 111 const FPURegister f27 = { 27 }; |
| 112 const FPURegister f28 = { 28 }; |
| 113 const FPURegister f29 = { 29 }; |
| 114 const FPURegister f30 = { 30 }; |
| 115 const FPURegister f31 = { 31 }; |
| 116 |
| 117 int ToNumber(Register reg) { |
| 118 ASSERT(reg.is_valid()); |
| 119 const int kNumbers[] = { |
| 120 0, // zero_reg |
| 121 1, // at |
| 122 2, // v0 |
| 123 3, // v1 |
| 124 4, // a0 |
| 125 5, // a1 |
| 126 6, // a2 |
| 127 7, // a3 |
| 128 8, // t0 |
| 129 9, // t1 |
| 130 10, // t2 |
| 131 11, // t3 |
| 132 12, // t4 |
| 133 13, // t5 |
| 134 14, // t6 |
| 135 15, // t7 |
| 136 16, // s0 |
| 137 17, // s1 |
| 138 18, // s2 |
| 139 19, // s3 |
| 140 20, // s4 |
| 141 21, // s5 |
| 142 22, // s6 |
| 143 23, // s7 |
| 144 24, // t8 |
| 145 25, // t9 |
| 146 26, // k0 |
| 147 27, // k1 |
| 148 28, // gp |
| 149 29, // sp |
| 150 30, // s8_fp |
| 151 31, // ra |
| 152 }; |
| 153 return kNumbers[reg.code()]; |
| 154 } |
| 155 |
| 156 Register ToRegister(int num) { |
| 157 ASSERT(num >= 0 && num < kNumRegisters); |
| 158 const Register kRegisters[] = { |
| 159 zero_reg, |
| 160 at, |
| 161 v0, v1, |
| 162 a0, a1, a2, a3, |
| 163 t0, t1, t2, t3, t4, t5, t6, t7, |
| 164 s0, s1, s2, s3, s4, s5, s6, s7, |
| 165 t8, t9, |
| 166 k0, k1, |
| 167 gp, |
| 168 sp, |
| 169 s8_fp, |
| 170 ra |
| 171 }; |
| 172 return kRegisters[num]; |
| 173 } |
| 174 |
| 175 |
| 176 // ----------------------------------------------------------------------------- |
| 177 // Implementation of RelocInfo. |
| 178 |
| 179 const int RelocInfo::kApplyMask = 0; |
| 180 |
| 181 // Patch the code at the current address with the supplied instructions. |
| 182 void RelocInfo::PatchCode(byte* instructions, int instruction_count) { |
| 183 Instr* pc = reinterpret_cast<Instr*>(pc_); |
| 184 Instr* instr = reinterpret_cast<Instr*>(instructions); |
| 185 for (int i = 0; i < instruction_count; i++) { |
| 186 *(pc + i) = *(instr + i); |
| 187 } |
| 188 |
| 189 // Indicate that code has changed. |
| 190 CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); |
| 191 } |
| 192 |
| 193 |
| 194 // Patch the code at the current PC with a call to the target address. |
| 195 // Additional guard instructions can be added if required. |
| 196 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { |
| 197 // Patch the code at the current address with a call to the target. |
| 198 UNIMPLEMENTED_MIPS(); |
| 199 } |
| 200 |
| 201 |
| 202 // ----------------------------------------------------------------------------- |
| 203 // Implementation of Operand and MemOperand. |
| 204 // See assembler-mips-inl.h for inlined constructors. |
| 205 |
| 206 Operand::Operand(Handle<Object> handle) { |
| 207 rm_ = no_reg; |
| 208 // Verify all Objects referred by code are NOT in new space. |
| 209 Object* obj = *handle; |
| 210 ASSERT(!Heap::InNewSpace(obj)); |
| 211 if (obj->IsHeapObject()) { |
| 212 imm32_ = reinterpret_cast<intptr_t>(handle.location()); |
| 213 rmode_ = RelocInfo::EMBEDDED_OBJECT; |
| 214 } else { |
| 215 // No relocation needed. |
| 216 imm32_ = reinterpret_cast<intptr_t>(obj); |
| 217 rmode_ = RelocInfo::NONE; |
| 218 } |
| 219 } |
| 220 |
| 221 MemOperand::MemOperand(Register rm, int16_t offset) : Operand(rm) { |
| 222 offset_ = offset; |
| 223 } |
| 224 |
| 225 |
| 226 // ----------------------------------------------------------------------------- |
| 227 // Implementation of Assembler. |
| 228 |
| 229 static const int kMinimalBufferSize = 4*KB; |
| 230 static byte* spare_buffer_ = NULL; |
| 231 |
| 232 Assembler::Assembler(void* buffer, int buffer_size) { |
| 233 if (buffer == NULL) { |
| 234 // Do our own buffer management. |
| 235 if (buffer_size <= kMinimalBufferSize) { |
| 236 buffer_size = kMinimalBufferSize; |
| 237 |
| 238 if (spare_buffer_ != NULL) { |
| 239 buffer = spare_buffer_; |
| 240 spare_buffer_ = NULL; |
| 241 } |
| 242 } |
| 243 if (buffer == NULL) { |
| 244 buffer_ = NewArray<byte>(buffer_size); |
| 245 } else { |
| 246 buffer_ = static_cast<byte*>(buffer); |
| 247 } |
| 248 buffer_size_ = buffer_size; |
| 249 own_buffer_ = true; |
| 250 |
| 251 } else { |
| 252 // Use externally provided buffer instead. |
| 253 ASSERT(buffer_size > 0); |
| 254 buffer_ = static_cast<byte*>(buffer); |
| 255 buffer_size_ = buffer_size; |
| 256 own_buffer_ = false; |
| 257 } |
| 258 |
| 259 // Setup buffer pointers. |
| 260 ASSERT(buffer_ != NULL); |
| 261 pc_ = buffer_; |
| 262 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
| 263 current_statement_position_ = RelocInfo::kNoPosition; |
| 264 current_position_ = RelocInfo::kNoPosition; |
| 265 written_statement_position_ = current_statement_position_; |
| 266 written_position_ = current_position_; |
| 267 } |
| 268 |
| 269 |
| 270 Assembler::~Assembler() { |
| 271 if (own_buffer_) { |
| 272 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { |
| 273 spare_buffer_ = buffer_; |
| 274 } else { |
| 275 DeleteArray(buffer_); |
| 276 } |
| 277 } |
| 278 } |
| 279 |
| 280 |
| 281 void Assembler::GetCode(CodeDesc* desc) { |
| 282 ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap |
| 283 // Setup code descriptor. |
| 284 desc->buffer = buffer_; |
| 285 desc->buffer_size = buffer_size_; |
| 286 desc->instr_size = pc_offset(); |
| 287 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| 288 } |
| 289 |
| 290 |
| 291 // Labels refer to positions in the (to be) generated code. |
| 292 // There are bound, linked, and unused labels. |
| 293 // |
| 294 // Bound labels refer to known positions in the already |
| 295 // generated code. pos() is the position the label refers to. |
| 296 // |
| 297 // Linked labels refer to unknown positions in the code |
| 298 // to be generated; pos() is the position of the last |
| 299 // instruction using the label. |
| 300 |
| 301 |
| 302 // The link chain is terminated by a negative code position (must be aligned). |
| 303 const int kEndOfChain = -4; |
| 304 |
| 305 bool Assembler::is_branch(Instr instr) { |
| 306 uint32_t opcode = ((instr & kOpcodeMask)); |
| 307 uint32_t rt_field = ((instr & kRtFieldMask)); |
| 308 uint32_t rs_field = ((instr & kRsFieldMask)); |
| 309 // Checks if the instruction is a branch. |
| 310 return opcode == BEQ || |
| 311 opcode == BNE || |
| 312 opcode == BLEZ || |
| 313 opcode == BGTZ || |
| 314 opcode == BEQL || |
| 315 opcode == BNEL || |
| 316 opcode == BLEZL || |
| 317 opcode == BGTZL|| |
| 318 (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || |
| 319 rt_field == BLTZAL || rt_field == BGEZAL)) || |
| 320 (opcode == COP1 && rs_field == BC1); // Coprocessor branch. |
| 321 } |
| 322 |
| 323 |
| 324 int Assembler::target_at(int32_t pos) { |
| 325 Instr instr = instr_at(pos); |
| 326 if ((instr & ~kImm16Mask) == 0) { |
| 327 // Emitted label constant, not part of a branch. |
| 328 return instr - (Code::kHeaderSize - kHeapObjectTag); |
| 329 } |
| 330 // Check we have a branch instruction. |
| 331 ASSERT(is_branch(instr)); |
| 332 // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming |
| 333 // the compiler uses arithmectic shifts for signed integers. |
| 334 int32_t imm18 = ((instr & |
| 335 static_cast<int32_t>(kImm16Mask)) << 16) >> 14; |
| 336 |
| 337 return pos + kBranchPCOffset + imm18; |
| 338 } |
| 339 |
| 340 |
| 341 void Assembler::target_at_put(int32_t pos, int32_t target_pos) { |
| 342 Instr instr = instr_at(pos); |
| 343 if ((instr & ~kImm16Mask) == 0) { |
| 344 ASSERT(target_pos == kEndOfChain || target_pos >= 0); |
| 345 // Emitted label constant, not part of a branch. |
| 346 // Make label relative to Code* of generated Code object. |
| 347 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| 348 return; |
| 349 } |
| 350 |
| 351 ASSERT(is_branch(instr)); |
| 352 int32_t imm18 = target_pos - (pos + kBranchPCOffset); |
| 353 ASSERT((imm18 & 3) == 0); |
| 354 |
| 355 instr &= ~kImm16Mask; |
| 356 int32_t imm16 = imm18 >> 2; |
| 357 ASSERT(is_int16(imm16)); |
| 358 |
| 359 instr_at_put(pos, instr | (imm16 & kImm16Mask)); |
| 360 } |
| 361 |
| 362 |
| 363 void Assembler::print(Label* L) { |
| 364 if (L->is_unused()) { |
| 365 PrintF("unused label\n"); |
| 366 } else if (L->is_bound()) { |
| 367 PrintF("bound label to %d\n", L->pos()); |
| 368 } else if (L->is_linked()) { |
| 369 Label l = *L; |
| 370 PrintF("unbound label"); |
| 371 while (l.is_linked()) { |
| 372 PrintF("@ %d ", l.pos()); |
| 373 Instr instr = instr_at(l.pos()); |
| 374 if ((instr & ~kImm16Mask) == 0) { |
| 375 PrintF("value\n"); |
| 376 } else { |
| 377 PrintF("%d\n", instr); |
| 378 } |
| 379 next(&l); |
| 380 } |
| 381 } else { |
| 382 PrintF("label in inconsistent state (pos = %d)\n", L->pos_); |
| 383 } |
| 384 } |
| 385 |
| 386 |
| 387 void Assembler::bind_to(Label* L, int pos) { |
| 388 ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position |
| 389 while (L->is_linked()) { |
| 390 int32_t fixup_pos = L->pos(); |
| 391 next(L); // call next before overwriting link with target at fixup_pos |
| 392 target_at_put(fixup_pos, pos); |
| 393 } |
| 394 L->bind_to(pos); |
| 395 |
| 396 // Keep track of the last bound label so we don't eliminate any instructions |
| 397 // before a bound label. |
| 398 if (pos > last_bound_pos_) |
| 399 last_bound_pos_ = pos; |
| 400 } |
| 401 |
| 402 |
| 403 void Assembler::link_to(Label* L, Label* appendix) { |
| 404 if (appendix->is_linked()) { |
| 405 if (L->is_linked()) { |
| 406 // Append appendix to L's list. |
| 407 int fixup_pos; |
| 408 int link = L->pos(); |
| 409 do { |
| 410 fixup_pos = link; |
| 411 link = target_at(fixup_pos); |
| 412 } while (link > 0); |
| 413 ASSERT(link == kEndOfChain); |
| 414 target_at_put(fixup_pos, appendix->pos()); |
| 415 } else { |
| 416 // L is empty, simply use appendix |
| 417 *L = *appendix; |
| 418 } |
| 419 } |
| 420 appendix->Unuse(); // appendix should not be used anymore |
| 421 } |
| 422 |
| 423 |
| 424 void Assembler::bind(Label* L) { |
| 425 ASSERT(!L->is_bound()); // label can only be bound once |
| 426 bind_to(L, pc_offset()); |
| 427 } |
| 428 |
| 429 |
| 430 void Assembler::next(Label* L) { |
| 431 ASSERT(L->is_linked()); |
| 432 int link = target_at(L->pos()); |
| 433 if (link > 0) { |
| 434 L->link_to(link); |
| 435 } else { |
| 436 ASSERT(link == kEndOfChain); |
| 437 L->Unuse(); |
| 438 } |
| 439 } |
| 440 |
| 441 |
| 442 // We have to use a temporary register for things that can be relocated even |
| 443 // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction |
| 444 // space. There is no guarantee that the relocated location can be similarly |
| 445 // encoded. |
| 446 bool Assembler::MustUseAt(RelocInfo::Mode rmode) { |
| 447 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
| 448 return Serializer::enabled(); |
| 449 } else if (rmode == RelocInfo::NONE) { |
| 450 return false; |
| 451 } |
| 452 return true; |
| 453 } |
| 454 |
| 455 |
| 456 void Assembler::GenInstrRegister(Opcode opcode, |
| 457 Register rs, |
| 458 Register rt, |
| 459 Register rd, |
| 460 uint16_t sa, |
| 461 SecondaryField func) { |
| 462 ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa)); |
| 463 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| 464 | (rd.code() << kRdShift) | (sa << kSaShift) | func; |
| 465 emit(instr); |
| 466 } |
| 467 |
| 468 |
| 469 void Assembler::GenInstrRegister(Opcode opcode, |
| 470 SecondaryField fmt, |
| 471 FPURegister ft, |
| 472 FPURegister fs, |
| 473 FPURegister fd, |
| 474 SecondaryField func) { |
| 475 ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid()); |
| 476 Instr instr = opcode | fmt | (ft.code() << 16) | (fs.code() << kFsShift) |
| 477 | (fd.code() << 6) | func; |
| 478 emit(instr); |
| 479 } |
| 480 |
| 481 |
| 482 void Assembler::GenInstrRegister(Opcode opcode, |
| 483 SecondaryField fmt, |
| 484 Register rt, |
| 485 FPURegister fs, |
| 486 FPURegister fd, |
| 487 SecondaryField func) { |
| 488 ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid()); |
| 489 Instr instr = opcode | fmt | (rt.code() << kRtShift) |
| 490 | (fs.code() << kFsShift) | (fd.code() << 6) | func; |
| 491 emit(instr); |
| 492 } |
| 493 |
| 494 |
| 495 // Instructions with immediate value. |
| 496 // Registers are in the order of the instruction encoding, from left to right. |
| 497 void Assembler::GenInstrImmediate(Opcode opcode, |
| 498 Register rs, |
| 499 Register rt, |
| 500 int32_t j) { |
| 501 ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j))); |
| 502 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| 503 | (j & kImm16Mask); |
| 504 emit(instr); |
| 505 } |
| 506 |
| 507 |
| 508 void Assembler::GenInstrImmediate(Opcode opcode, |
| 509 Register rs, |
| 510 SecondaryField SF, |
| 511 int32_t j) { |
| 512 ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j))); |
| 513 Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask); |
| 514 emit(instr); |
| 515 } |
| 516 |
| 517 |
| 518 void Assembler::GenInstrImmediate(Opcode opcode, |
| 519 Register rs, |
| 520 FPURegister ft, |
| 521 int32_t j) { |
| 522 ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); |
| 523 Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
| 524 | (j & kImm16Mask); |
| 525 emit(instr); |
| 526 } |
| 527 |
| 528 |
| 529 // Registers are in the order of the instruction encoding, from left to right. |
| 530 void Assembler::GenInstrJump(Opcode opcode, |
| 531 uint32_t address) { |
| 532 ASSERT(is_uint26(address)); |
| 533 Instr instr = opcode | address; |
| 534 emit(instr); |
| 535 } |
| 536 |
| 537 |
| 538 int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { |
| 539 int32_t target_pos; |
| 540 if (L->is_bound()) { |
| 541 target_pos = L->pos(); |
| 542 } else { |
| 543 if (L->is_linked()) { |
| 544 target_pos = L->pos(); // L's link |
| 545 } else { |
| 546 target_pos = kEndOfChain; |
| 547 } |
| 548 L->link_to(pc_offset()); |
| 549 } |
| 550 |
| 551 int32_t offset = target_pos - (pc_offset() + kBranchPCOffset); |
| 552 return offset; |
| 553 } |
| 554 |
| 555 |
| 556 void Assembler::label_at_put(Label* L, int at_offset) { |
| 557 int target_pos; |
| 558 if (L->is_bound()) { |
| 559 target_pos = L->pos(); |
| 560 } else { |
| 561 if (L->is_linked()) { |
| 562 target_pos = L->pos(); // L's link |
| 563 } else { |
| 564 target_pos = kEndOfChain; |
| 565 } |
| 566 L->link_to(at_offset); |
| 567 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| 568 } |
| 569 } |
| 570 |
| 571 |
| 572 //------- Branch and jump instructions -------- |
| 573 |
| 574 void Assembler::b(int16_t offset) { |
| 575 beq(zero_reg, zero_reg, offset); |
| 576 } |
| 577 |
| 578 |
| 579 void Assembler::bal(int16_t offset) { |
| 580 bgezal(zero_reg, offset); |
| 581 } |
| 582 |
| 583 |
| 584 void Assembler::beq(Register rs, Register rt, int16_t offset) { |
| 585 GenInstrImmediate(BEQ, rs, rt, offset); |
| 586 } |
| 587 |
| 588 |
| 589 void Assembler::bgez(Register rs, int16_t offset) { |
| 590 GenInstrImmediate(REGIMM, rs, BGEZ, offset); |
| 591 } |
| 592 |
| 593 |
| 594 void Assembler::bgezal(Register rs, int16_t offset) { |
| 595 GenInstrImmediate(REGIMM, rs, BGEZAL, offset); |
| 596 } |
| 597 |
| 598 |
| 599 void Assembler::bgtz(Register rs, int16_t offset) { |
| 600 GenInstrImmediate(BGTZ, rs, zero_reg, offset); |
| 601 } |
| 602 |
| 603 |
| 604 void Assembler::blez(Register rs, int16_t offset) { |
| 605 GenInstrImmediate(BLEZ, rs, zero_reg, offset); |
| 606 } |
| 607 |
| 608 |
| 609 void Assembler::bltz(Register rs, int16_t offset) { |
| 610 GenInstrImmediate(REGIMM, rs, BLTZ, offset); |
| 611 } |
| 612 |
| 613 |
| 614 void Assembler::bltzal(Register rs, int16_t offset) { |
| 615 GenInstrImmediate(REGIMM, rs, BLTZAL, offset); |
| 616 } |
| 617 |
| 618 |
| 619 void Assembler::bne(Register rs, Register rt, int16_t offset) { |
| 620 GenInstrImmediate(BNE, rs, rt, offset); |
| 621 } |
| 622 |
| 623 |
| 624 void Assembler::j(int32_t target) { |
| 625 ASSERT(is_uint28(target) && ((target & 3) == 0)); |
| 626 GenInstrJump(J, target >> 2); |
| 627 } |
| 628 |
| 629 |
| 630 void Assembler::jr(Register rs) { |
| 631 GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); |
| 632 } |
| 633 |
| 634 |
| 635 void Assembler::jal(int32_t target) { |
| 636 ASSERT(is_uint28(target) && ((target & 3) == 0)); |
| 637 GenInstrJump(JAL, target >> 2); |
| 638 } |
| 639 |
| 640 |
| 641 void Assembler::jalr(Register rs, Register rd) { |
| 642 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); |
| 643 } |
| 644 |
| 645 |
| 646 //-------Data-processing-instructions--------- |
| 647 |
| 648 // Arithmetic. |
| 649 |
| 650 void Assembler::add(Register rd, Register rs, Register rt) { |
| 651 GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADD); |
| 652 } |
| 653 |
| 654 |
| 655 void Assembler::addu(Register rd, Register rs, Register rt) { |
| 656 GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); |
| 657 } |
| 658 |
| 659 |
| 660 void Assembler::addi(Register rd, Register rs, int32_t j) { |
| 661 GenInstrImmediate(ADDI, rs, rd, j); |
| 662 } |
| 663 |
| 664 |
| 665 void Assembler::addiu(Register rd, Register rs, int32_t j) { |
| 666 GenInstrImmediate(ADDIU, rs, rd, j); |
| 667 } |
| 668 |
| 669 |
| 670 void Assembler::sub(Register rd, Register rs, Register rt) { |
| 671 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUB); |
| 672 } |
| 673 |
| 674 |
| 675 void Assembler::subu(Register rd, Register rs, Register rt) { |
| 676 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); |
| 677 } |
| 678 |
| 679 |
| 680 void Assembler::mul(Register rd, Register rs, Register rt) { |
| 681 GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL); |
| 682 } |
| 683 |
| 684 |
| 685 void Assembler::mult(Register rs, Register rt) { |
| 686 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT); |
| 687 } |
| 688 |
| 689 |
| 690 void Assembler::multu(Register rs, Register rt) { |
| 691 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU); |
| 692 } |
| 693 |
| 694 |
| 695 void Assembler::div(Register rs, Register rt) { |
| 696 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV); |
| 697 } |
| 698 |
| 699 |
| 700 void Assembler::divu(Register rs, Register rt) { |
| 701 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU); |
| 702 } |
| 703 |
| 704 |
| 705 // Logical. |
| 706 |
| 707 void Assembler::and_(Register rd, Register rs, Register rt) { |
| 708 GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND); |
| 709 } |
| 710 |
| 711 |
| 712 void Assembler::andi(Register rt, Register rs, int32_t j) { |
| 713 GenInstrImmediate(ANDI, rs, rt, j); |
| 714 } |
| 715 |
| 716 |
| 717 void Assembler::or_(Register rd, Register rs, Register rt) { |
| 718 GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR); |
| 719 } |
| 720 |
| 721 |
| 722 void Assembler::ori(Register rt, Register rs, int32_t j) { |
| 723 GenInstrImmediate(ORI, rs, rt, j); |
| 724 } |
| 725 |
| 726 |
| 727 void Assembler::xor_(Register rd, Register rs, Register rt) { |
| 728 GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR); |
| 729 } |
| 730 |
| 731 |
| 732 void Assembler::xori(Register rt, Register rs, int32_t j) { |
| 733 GenInstrImmediate(XORI, rs, rt, j); |
| 734 } |
| 735 |
| 736 |
| 737 void Assembler::nor(Register rd, Register rs, Register rt) { |
| 738 GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); |
| 739 } |
| 740 |
| 741 |
| 742 // Shifts. |
| 743 void Assembler::sll(Register rd, Register rt, uint16_t sa) { |
| 744 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL); |
| 745 } |
| 746 |
| 747 |
| 748 void Assembler::sllv(Register rd, Register rt, Register rs) { |
| 749 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV); |
| 750 } |
| 751 |
| 752 |
| 753 void Assembler::srl(Register rd, Register rt, uint16_t sa) { |
| 754 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL); |
| 755 } |
| 756 |
| 757 |
| 758 void Assembler::srlv(Register rd, Register rt, Register rs) { |
| 759 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV); |
| 760 } |
| 761 |
| 762 |
| 763 void Assembler::sra(Register rd, Register rt, uint16_t sa) { |
| 764 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA); |
| 765 } |
| 766 |
| 767 |
| 768 void Assembler::srav(Register rd, Register rt, Register rs) { |
| 769 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); |
| 770 } |
| 771 |
| 772 |
| 773 //------------Memory-instructions------------- |
| 774 |
| 775 void Assembler::lb(Register rd, const MemOperand& rs) { |
| 776 GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); |
| 777 } |
| 778 |
| 779 |
| 780 void Assembler::lbu(Register rd, const MemOperand& rs) { |
| 781 GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); |
| 782 } |
| 783 |
| 784 |
| 785 void Assembler::lw(Register rd, const MemOperand& rs) { |
| 786 GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); |
| 787 } |
| 788 |
| 789 |
| 790 void Assembler::sb(Register rd, const MemOperand& rs) { |
| 791 GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); |
| 792 } |
| 793 |
| 794 |
| 795 void Assembler::sw(Register rd, const MemOperand& rs) { |
| 796 GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); |
| 797 } |
| 798 |
| 799 |
| 800 void Assembler::lui(Register rd, int32_t j) { |
| 801 GenInstrImmediate(LUI, zero_reg, rd, j); |
| 802 } |
| 803 |
| 804 |
| 805 //-------------Misc-instructions-------------- |
| 806 |
| 807 // Break / Trap instructions. |
| 808 void Assembler::break_(uint32_t code) { |
| 809 ASSERT((code & ~0xfffff) == 0); |
| 810 Instr break_instr = SPECIAL | BREAK | (code << 6); |
| 811 emit(break_instr); |
| 812 } |
| 813 |
| 814 |
| 815 void Assembler::tge(Register rs, Register rt, uint16_t code) { |
| 816 ASSERT(is_uint10(code)); |
| 817 Instr instr = SPECIAL | TGE | rs.code() << kRsShift |
| 818 | rt.code() << kRtShift | code << 6; |
| 819 emit(instr); |
| 820 } |
| 821 |
| 822 |
| 823 void Assembler::tgeu(Register rs, Register rt, uint16_t code) { |
| 824 ASSERT(is_uint10(code)); |
| 825 Instr instr = SPECIAL | TGEU | rs.code() << kRsShift |
| 826 | rt.code() << kRtShift | code << 6; |
| 827 emit(instr); |
| 828 } |
| 829 |
| 830 |
| 831 void Assembler::tlt(Register rs, Register rt, uint16_t code) { |
| 832 ASSERT(is_uint10(code)); |
| 833 Instr instr = |
| 834 SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| 835 emit(instr); |
| 836 } |
| 837 |
| 838 |
| 839 void Assembler::tltu(Register rs, Register rt, uint16_t code) { |
| 840 ASSERT(is_uint10(code)); |
| 841 Instr instr = SPECIAL | TLTU | rs.code() << kRsShift |
| 842 | rt.code() << kRtShift | code << 6; |
| 843 emit(instr); |
| 844 } |
| 845 |
| 846 |
| 847 void Assembler::teq(Register rs, Register rt, uint16_t code) { |
| 848 ASSERT(is_uint10(code)); |
| 849 Instr instr = |
| 850 SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| 851 emit(instr); |
| 852 } |
| 853 |
| 854 |
| 855 void Assembler::tne(Register rs, Register rt, uint16_t code) { |
| 856 ASSERT(is_uint10(code)); |
| 857 Instr instr = |
| 858 SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| 859 emit(instr); |
| 860 } |
| 861 |
| 862 |
| 863 // Move from HI/LO register. |
| 864 |
| 865 void Assembler::mfhi(Register rd) { |
| 866 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI); |
| 867 } |
| 868 |
| 869 |
| 870 void Assembler::mflo(Register rd) { |
| 871 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO); |
| 872 } |
| 873 |
| 874 |
| 875 // Set on less than instructions. |
| 876 void Assembler::slt(Register rd, Register rs, Register rt) { |
| 877 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT); |
| 878 } |
| 879 |
| 880 |
| 881 void Assembler::sltu(Register rd, Register rs, Register rt) { |
| 882 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU); |
| 883 } |
| 884 |
| 885 |
| 886 void Assembler::slti(Register rt, Register rs, int32_t j) { |
| 887 GenInstrImmediate(SLTI, rs, rt, j); |
| 888 } |
| 889 |
| 890 |
| 891 void Assembler::sltiu(Register rt, Register rs, int32_t j) { |
| 892 GenInstrImmediate(SLTIU, rs, rt, j); |
| 893 } |
| 894 |
| 895 |
| 896 //--------Coprocessor-instructions---------------- |
| 897 |
| 898 // Load, store, move. |
| 899 void Assembler::lwc1(FPURegister fd, const MemOperand& src) { |
| 900 GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); |
| 901 } |
| 902 |
| 903 |
| 904 void Assembler::ldc1(FPURegister fd, const MemOperand& src) { |
| 905 GenInstrImmediate(LDC1, src.rm(), fd, src.offset_); |
| 906 } |
| 907 |
| 908 |
| 909 void Assembler::swc1(FPURegister fd, const MemOperand& src) { |
| 910 GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); |
| 911 } |
| 912 |
| 913 |
| 914 void Assembler::sdc1(FPURegister fd, const MemOperand& src) { |
| 915 GenInstrImmediate(SDC1, src.rm(), fd, src.offset_); |
| 916 } |
| 917 |
| 918 |
| 919 void Assembler::mtc1(FPURegister fs, Register rt) { |
| 920 GenInstrRegister(COP1, MTC1, rt, fs, f0); |
| 921 } |
| 922 |
| 923 |
| 924 void Assembler::mthc1(FPURegister fs, Register rt) { |
| 925 GenInstrRegister(COP1, MTHC1, rt, fs, f0); |
| 926 } |
| 927 |
| 928 |
| 929 void Assembler::mfc1(FPURegister fs, Register rt) { |
| 930 GenInstrRegister(COP1, MFC1, rt, fs, f0); |
| 931 } |
| 932 |
| 933 |
| 934 void Assembler::mfhc1(FPURegister fs, Register rt) { |
| 935 GenInstrRegister(COP1, MFHC1, rt, fs, f0); |
| 936 } |
| 937 |
| 938 |
| 939 // Conversions. |
| 940 |
| 941 void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) { |
| 942 GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S); |
| 943 } |
| 944 |
| 945 |
| 946 void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { |
| 947 GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D); |
| 948 } |
| 949 |
| 950 |
| 951 void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { |
| 952 GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); |
| 953 } |
| 954 |
| 955 |
| 956 void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { |
| 957 GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); |
| 958 } |
| 959 |
| 960 |
| 961 void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { |
| 962 GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); |
| 963 } |
| 964 |
| 965 |
| 966 void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { |
| 967 GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); |
| 968 } |
| 969 |
| 970 |
| 971 void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) { |
| 972 GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D); |
| 973 } |
| 974 |
| 975 |
| 976 void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) { |
| 977 GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W); |
| 978 } |
| 979 |
| 980 |
| 981 void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { |
| 982 GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); |
| 983 } |
| 984 |
| 985 |
| 986 void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { |
| 987 GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S); |
| 988 } |
| 989 |
| 990 |
| 991 // Conditions. |
| 992 void Assembler::c(FPUCondition cond, SecondaryField fmt, |
| 993 FPURegister ft, FPURegister fs, uint16_t cc) { |
| 994 ASSERT(is_uint3(cc)); |
| 995 ASSERT((fmt & ~(31 << kRsShift)) == 0); |
| 996 Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift |
| 997 | cc << 8 | 3 << 4 | cond; |
| 998 emit(instr); |
| 999 } |
| 1000 |
| 1001 |
| 1002 void Assembler::bc1f(int16_t offset, uint16_t cc) { |
| 1003 ASSERT(is_uint3(cc)); |
| 1004 Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); |
| 1005 emit(instr); |
| 1006 } |
| 1007 |
| 1008 |
| 1009 void Assembler::bc1t(int16_t offset, uint16_t cc) { |
| 1010 ASSERT(is_uint3(cc)); |
| 1011 Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); |
| 1012 emit(instr); |
| 1013 } |
| 1014 |
| 1015 |
| 1016 // Debugging. |
| 1017 void Assembler::RecordJSReturn() { |
| 1018 WriteRecordedPositions(); |
| 1019 CheckBuffer(); |
| 1020 RecordRelocInfo(RelocInfo::JS_RETURN); |
| 1021 } |
| 1022 |
| 1023 |
| 1024 void Assembler::RecordComment(const char* msg) { |
| 1025 if (FLAG_debug_code) { |
| 1026 CheckBuffer(); |
| 1027 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
| 1028 } |
| 1029 } |
| 1030 |
| 1031 |
| 1032 void Assembler::RecordPosition(int pos) { |
| 1033 if (pos == RelocInfo::kNoPosition) return; |
| 1034 ASSERT(pos >= 0); |
| 1035 current_position_ = pos; |
| 1036 } |
| 1037 |
| 1038 |
| 1039 void Assembler::RecordStatementPosition(int pos) { |
| 1040 if (pos == RelocInfo::kNoPosition) return; |
| 1041 ASSERT(pos >= 0); |
| 1042 current_statement_position_ = pos; |
| 1043 } |
| 1044 |
| 1045 |
| 1046 void Assembler::WriteRecordedPositions() { |
| 1047 // Write the statement position if it is different from what was written last |
| 1048 // time. |
| 1049 if (current_statement_position_ != written_statement_position_) { |
| 1050 CheckBuffer(); |
| 1051 RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); |
| 1052 written_statement_position_ = current_statement_position_; |
| 1053 } |
| 1054 |
| 1055 // Write the position if it is different from what was written last time and |
| 1056 // also different from the written statement position. |
| 1057 if (current_position_ != written_position_ && |
| 1058 current_position_ != written_statement_position_) { |
| 1059 CheckBuffer(); |
| 1060 RecordRelocInfo(RelocInfo::POSITION, current_position_); |
| 1061 written_position_ = current_position_; |
| 1062 } |
| 1063 } |
| 1064 |
| 1065 |
| 1066 void Assembler::GrowBuffer() { |
| 1067 if (!own_buffer_) FATAL("external code buffer is too small"); |
| 1068 |
| 1069 // Compute new buffer size. |
| 1070 CodeDesc desc; // the new buffer |
| 1071 if (buffer_size_ < 4*KB) { |
| 1072 desc.buffer_size = 4*KB; |
| 1073 } else if (buffer_size_ < 1*MB) { |
| 1074 desc.buffer_size = 2*buffer_size_; |
| 1075 } else { |
| 1076 desc.buffer_size = buffer_size_ + 1*MB; |
| 1077 } |
| 1078 CHECK_GT(desc.buffer_size, 0); // no overflow |
| 1079 |
| 1080 // Setup new buffer. |
| 1081 desc.buffer = NewArray<byte>(desc.buffer_size); |
| 1082 |
| 1083 desc.instr_size = pc_offset(); |
| 1084 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| 1085 |
| 1086 // Copy the data. |
| 1087 int pc_delta = desc.buffer - buffer_; |
| 1088 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); |
| 1089 memmove(desc.buffer, buffer_, desc.instr_size); |
| 1090 memmove(reloc_info_writer.pos() + rc_delta, |
| 1091 reloc_info_writer.pos(), desc.reloc_size); |
| 1092 |
| 1093 // Switch buffers. |
| 1094 DeleteArray(buffer_); |
| 1095 buffer_ = desc.buffer; |
| 1096 buffer_size_ = desc.buffer_size; |
| 1097 pc_ += pc_delta; |
| 1098 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| 1099 reloc_info_writer.last_pc() + pc_delta); |
| 1100 |
| 1101 |
| 1102 // On ia32 and ARM pc relative addressing is used, and we thus need to apply a |
| 1103 // shift by pc_delta. But on MIPS the target address it directly loaded, so |
| 1104 // we do not need to relocate here. |
| 1105 |
| 1106 ASSERT(!overflow()); |
| 1107 } |
| 1108 |
| 1109 |
| 1110 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
| 1111 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants |
| 1112 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { |
| 1113 // Adjust code for new modes. |
| 1114 ASSERT(RelocInfo::IsJSReturn(rmode) |
| 1115 || RelocInfo::IsComment(rmode) |
| 1116 || RelocInfo::IsPosition(rmode)); |
| 1117 // These modes do not need an entry in the constant pool. |
| 1118 } |
| 1119 if (rinfo.rmode() != RelocInfo::NONE) { |
| 1120 // Don't record external references unless the heap will be serialized. |
| 1121 if (rmode == RelocInfo::EXTERNAL_REFERENCE && |
| 1122 !Serializer::enabled() && |
| 1123 !FLAG_debug_code) { |
| 1124 return; |
| 1125 } |
| 1126 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here |
| 1127 reloc_info_writer.Write(&rinfo); |
| 1128 } |
| 1129 } |
| 1130 |
| 1131 |
| 1132 Address Assembler::target_address_at(Address pc) { |
| 1133 Instr instr1 = instr_at(pc); |
| 1134 Instr instr2 = instr_at(pc + kInstrSize); |
| 1135 // Check we have 2 instructions generated by li. |
| 1136 ASSERT(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || |
| 1137 ((instr1 == nopInstr) && ((instr2 & kOpcodeMask) == ADDI || |
| 1138 (instr2 & kOpcodeMask) == ORI || |
| 1139 (instr2 & kOpcodeMask) == LUI))); |
| 1140 // Interpret these 2 instructions. |
| 1141 if (instr1 == nopInstr) { |
| 1142 if ((instr2 & kOpcodeMask) == ADDI) { |
| 1143 return reinterpret_cast<Address>(((instr2 & kImm16Mask) << 16) >> 16); |
| 1144 } else if ((instr2 & kOpcodeMask) == ORI) { |
| 1145 return reinterpret_cast<Address>(instr2 & kImm16Mask); |
| 1146 } else if ((instr2 & kOpcodeMask) == LUI) { |
| 1147 return reinterpret_cast<Address>((instr2 & kImm16Mask) << 16); |
| 1148 } |
| 1149 } else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) { |
| 1150 // 32 bits value. |
| 1151 return reinterpret_cast<Address>( |
| 1152 (instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask)); |
| 1153 } |
| 1154 |
| 1155 // We should never get here. |
| 1156 UNREACHABLE(); |
| 1157 return (Address)0x0; |
| 1158 } |
| 1159 |
| 1160 |
| 1161 void Assembler::set_target_address_at(Address pc, Address target) { |
| 1162 // On MIPS we need to patch the code to generate. |
| 1163 |
| 1164 // First check we have a li. |
| 1165 Instr instr2 = instr_at(pc + kInstrSize); |
| 1166 #ifdef DEBUG |
| 1167 Instr instr1 = instr_at(pc); |
| 1168 |
| 1169 // Check we have indeed the result from a li with MustUseAt true. |
| 1170 CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || |
| 1171 ((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU || |
| 1172 (instr2 & kOpcodeMask)== ORI || |
| 1173 (instr2 & kOpcodeMask)== LUI))); |
| 1174 #endif |
| 1175 |
| 1176 |
| 1177 uint32_t rt_code = (instr2 & kRtFieldMask); |
| 1178 uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
| 1179 uint32_t itarget = reinterpret_cast<uint32_t>(target); |
| 1180 |
| 1181 if (is_int16(itarget)) { |
| 1182 // nop |
| 1183 // addiu rt zero_reg j |
| 1184 *p = nopInstr; |
| 1185 *(p+1) = ADDIU | rt_code | (itarget & LOMask); |
| 1186 } else if (!(itarget & HIMask)) { |
| 1187 // nop |
| 1188 // ori rt zero_reg j |
| 1189 *p = nopInstr; |
| 1190 *(p+1) = ORI | rt_code | (itarget & LOMask); |
| 1191 } else if (!(itarget & LOMask)) { |
| 1192 // nop |
| 1193 // lui rt (HIMask & itarget)>>16 |
| 1194 *p = nopInstr; |
| 1195 *(p+1) = LUI | rt_code | ((itarget & HIMask)>>16); |
| 1196 } else { |
| 1197 // lui rt (HIMask & itarget)>>16 |
| 1198 // ori rt rt, (LOMask & itarget) |
| 1199 *p = LUI | rt_code | ((itarget & HIMask)>>16); |
| 1200 *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & LOMask); |
| 1201 } |
| 1202 |
| 1203 CPU::FlushICache(pc, 2 * sizeof(int32_t)); |
| 1204 } |
| 1205 |
| 1206 |
| 1207 } } // namespace v8::internal |
| 1208 |
OLD | NEW |