Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(18)

Unified Diff: src/arm/assembler-thumb2.cc

Issue 464070: Create the framework for adding a thumb2 backend for ARM. So far, it... Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: '' Created 11 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/arm/assembler-thumb2.h ('k') | src/arm/assembler-thumb2-inl.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/arm/assembler-thumb2.cc
===================================================================
--- src/arm/assembler-thumb2.cc (revision 0)
+++ src/arm/assembler-thumb2.cc (revision 0)
@@ -0,0 +1,1832 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the
+// distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+// OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been modified
+// significantly by Google Inc.
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+
+#include "v8.h"
+
+#include "arm/assembler-thumb2-inl.h"
+#include "serialize.h"
+
+namespace v8 {
+namespace internal {
+
+// Safe default is no features.
+unsigned CpuFeatures::supported_ = 0;
+unsigned CpuFeatures::enabled_ = 0;
+unsigned CpuFeatures::found_by_runtime_probing_ = 0;
+
+void CpuFeatures::Probe() {
+ // If the compiler is allowed to use vfp then we can use vfp too in our
+ // code generation.
+#if !defined(__arm__)
+ // For the simulator=arm build, always use VFP since the arm simulator has
+ // VFP support.
+ supported_ |= 1u << VFP3;
+#else
+ if (Serializer::enabled()) {
+ supported_ |= OS::CpuFeaturesImpliedByPlatform();
+ return; // No features if we might serialize.
+ }
+
+ if (OS::ArmCpuHasFeature(VFP3)) {
+ // This implementation also sets the VFP flags if
+ // runtime detection of VFP returns true.
+ supported_ |= 1u << VFP3;
+ found_by_runtime_probing_ |= 1u << VFP3;
+ }
+#endif
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of Register and CRegister
+
+Register no_reg = { -1 };
+
+Register r0 = { 0 };
+Register r1 = { 1 };
+Register r2 = { 2 };
+Register r3 = { 3 };
+Register r4 = { 4 };
+Register r5 = { 5 };
+Register r6 = { 6 };
+Register r7 = { 7 };
+Register r8 = { 8 };
+Register r9 = { 9 };
+Register r10 = { 10 };
+Register fp = { 11 };
+Register ip = { 12 };
+Register sp = { 13 };
+Register lr = { 14 };
+Register pc = { 15 };
+
+
+CRegister no_creg = { -1 };
+
+CRegister cr0 = { 0 };
+CRegister cr1 = { 1 };
+CRegister cr2 = { 2 };
+CRegister cr3 = { 3 };
+CRegister cr4 = { 4 };
+CRegister cr5 = { 5 };
+CRegister cr6 = { 6 };
+CRegister cr7 = { 7 };
+CRegister cr8 = { 8 };
+CRegister cr9 = { 9 };
+CRegister cr10 = { 10 };
+CRegister cr11 = { 11 };
+CRegister cr12 = { 12 };
+CRegister cr13 = { 13 };
+CRegister cr14 = { 14 };
+CRegister cr15 = { 15 };
+
+// Support for the VFP registers s0 to s31 (d0 to d15).
+// Note that "sN:sM" is the same as "dN/2".
+Register s0 = { 0 };
+Register s1 = { 1 };
+Register s2 = { 2 };
+Register s3 = { 3 };
+Register s4 = { 4 };
+Register s5 = { 5 };
+Register s6 = { 6 };
+Register s7 = { 7 };
+Register s8 = { 8 };
+Register s9 = { 9 };
+Register s10 = { 10 };
+Register s11 = { 11 };
+Register s12 = { 12 };
+Register s13 = { 13 };
+Register s14 = { 14 };
+Register s15 = { 15 };
+Register s16 = { 16 };
+Register s17 = { 17 };
+Register s18 = { 18 };
+Register s19 = { 19 };
+Register s20 = { 20 };
+Register s21 = { 21 };
+Register s22 = { 22 };
+Register s23 = { 23 };
+Register s24 = { 24 };
+Register s25 = { 25 };
+Register s26 = { 26 };
+Register s27 = { 27 };
+Register s28 = { 28 };
+Register s29 = { 29 };
+Register s30 = { 30 };
+Register s31 = { 31 };
+
+Register d0 = { 0 };
+Register d1 = { 1 };
+Register d2 = { 2 };
+Register d3 = { 3 };
+Register d4 = { 4 };
+Register d5 = { 5 };
+Register d6 = { 6 };
+Register d7 = { 7 };
+Register d8 = { 8 };
+Register d9 = { 9 };
+Register d10 = { 10 };
+Register d11 = { 11 };
+Register d12 = { 12 };
+Register d13 = { 13 };
+Register d14 = { 14 };
+Register d15 = { 15 };
+
+// -----------------------------------------------------------------------------
+// Implementation of RelocInfo
+
+const int RelocInfo::kApplyMask = 0;
+
+
+void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
+ // Patch the code at the current address with the supplied instructions.
+ Instr* pc = reinterpret_cast<Instr*>(pc_);
+ Instr* instr = reinterpret_cast<Instr*>(instructions);
+ for (int i = 0; i < instruction_count; i++) {
+ *(pc + i) = *(instr + i);
+ }
+
+ // Indicate that code has changed.
+ CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
+}
+
+
+// Patch the code at the current PC with a call to the target address.
+// Additional guard instructions can be added if required.
+void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
+ // Patch the code at the current address with a call to the target.
+ UNIMPLEMENTED();
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of Operand and MemOperand
+// See assembler-thumb2-inl.h for inlined constructors
+
+Operand::Operand(Handle<Object> handle) {
+ rm_ = no_reg;
+ // Verify all Objects referred by code are NOT in new space.
+ Object* obj = *handle;
+ ASSERT(!Heap::InNewSpace(obj));
+ if (obj->IsHeapObject()) {
+ imm32_ = reinterpret_cast<intptr_t>(handle.location());
+ rmode_ = RelocInfo::EMBEDDED_OBJECT;
+ } else {
+ // no relocation needed
+ imm32_ = reinterpret_cast<intptr_t>(obj);
+ rmode_ = RelocInfo::NONE;
+ }
+}
+
+
+Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
+ ASSERT(is_uint5(shift_imm));
+ ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it
+ rm_ = rm;
+ rs_ = no_reg;
+ shift_op_ = shift_op;
+ shift_imm_ = shift_imm & 31;
+ if (shift_op == RRX) {
+ // encoded as ROR with shift_imm == 0
+ ASSERT(shift_imm == 0);
+ shift_op_ = ROR;
+ shift_imm_ = 0;
+ }
+}
+
+
+Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
+ ASSERT(shift_op != RRX);
+ rm_ = rm;
+ rs_ = no_reg;
+ shift_op_ = shift_op;
+ rs_ = rs;
+}
+
+
+MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
+ rn_ = rn;
+ rm_ = no_reg;
+ offset_ = offset;
+ am_ = am;
+}
+
+MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
+ rn_ = rn;
+ rm_ = rm;
+ shift_op_ = LSL;
+ shift_imm_ = 0;
+ am_ = am;
+}
+
+
+MemOperand::MemOperand(Register rn, Register rm,
+ ShiftOp shift_op, int shift_imm, AddrMode am) {
+ ASSERT(is_uint5(shift_imm));
+ rn_ = rn;
+ rm_ = rm;
+ shift_op_ = shift_op;
+ shift_imm_ = shift_imm & 31;
+ am_ = am;
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of Assembler
+
+// Instruction encoding bits
+enum {
+ H = 1 << 5, // halfword (or byte)
+ S6 = 1 << 6, // signed (or unsigned)
+ L = 1 << 20, // load (or store)
+ S = 1 << 20, // set condition code (or leave unchanged)
+ W = 1 << 21, // writeback base register (or leave unchanged)
+ A = 1 << 21, // accumulate in multiply instruction (or not)
+ B = 1 << 22, // unsigned byte (or word)
+ N = 1 << 22, // long (or short)
+ U = 1 << 23, // positive (or negative) offset/index
+ P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing)
+ I = 1 << 25, // immediate shifter operand (or not)
+
+ B4 = 1 << 4,
+ B5 = 1 << 5,
+ B6 = 1 << 6,
+ B7 = 1 << 7,
+ B8 = 1 << 8,
+ B9 = 1 << 9,
+ B12 = 1 << 12,
+ B16 = 1 << 16,
+ B18 = 1 << 18,
+ B19 = 1 << 19,
+ B20 = 1 << 20,
+ B21 = 1 << 21,
+ B22 = 1 << 22,
+ B23 = 1 << 23,
+ B24 = 1 << 24,
+ B25 = 1 << 25,
+ B26 = 1 << 26,
+ B27 = 1 << 27,
+
+ // Instruction bit masks
+ RdMask = 15 << 12, // in str instruction
+ CondMask = 15 << 28,
+ CoprocessorMask = 15 << 8,
+ OpCodeMask = 15 << 21, // in data-processing instructions
+ Imm24Mask = (1 << 24) - 1,
+ Off12Mask = (1 << 12) - 1,
+ // Reserved condition
+ nv = 15 << 28
+};
+
+
+// add(sp, sp, 4) instruction (aka Pop())
+static const Instr kPopInstruction =
+ al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12;
+// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
+// register r is not encoded.
+static const Instr kPushRegPattern =
+ al | B26 | 4 | NegPreIndex | sp.code() * B16;
+// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
+// register r is not encoded.
+static const Instr kPopRegPattern =
+ al | B26 | L | 4 | PostIndex | sp.code() * B16;
+// mov lr, pc
+const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12;
+// ldr pc, [pc, #XXX]
+const Instr kLdrPCPattern = al | B26 | L | pc.code() * B16;
+
+// spare_buffer_
+static const int kMinimalBufferSize = 4*KB;
+static byte* spare_buffer_ = NULL;
+
+Assembler::Assembler(void* buffer, int buffer_size) {
+ if (buffer == NULL) {
+ // do our own buffer management
+ if (buffer_size <= kMinimalBufferSize) {
+ buffer_size = kMinimalBufferSize;
+
+ if (spare_buffer_ != NULL) {
+ buffer = spare_buffer_;
+ spare_buffer_ = NULL;
+ }
+ }
+ if (buffer == NULL) {
+ buffer_ = NewArray<byte>(buffer_size);
+ } else {
+ buffer_ = static_cast<byte*>(buffer);
+ }
+ buffer_size_ = buffer_size;
+ own_buffer_ = true;
+
+ } else {
+ // use externally provided buffer instead
+ ASSERT(buffer_size > 0);
+ buffer_ = static_cast<byte*>(buffer);
+ buffer_size_ = buffer_size;
+ own_buffer_ = false;
+ }
+
+ // setup buffer pointers
+ ASSERT(buffer_ != NULL);
+ pc_ = buffer_;
+ reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
+ num_prinfo_ = 0;
+ next_buffer_check_ = 0;
+ no_const_pool_before_ = 0;
+ last_const_pool_end_ = 0;
+ last_bound_pos_ = 0;
+ current_statement_position_ = RelocInfo::kNoPosition;
+ current_position_ = RelocInfo::kNoPosition;
+ written_statement_position_ = current_statement_position_;
+ written_position_ = current_position_;
+}
+
+
+Assembler::~Assembler() {
+ if (own_buffer_) {
+ if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
+ spare_buffer_ = buffer_;
+ } else {
+ DeleteArray(buffer_);
+ }
+ }
+}
+
+
+void Assembler::GetCode(CodeDesc* desc) {
+ // emit constant pool if necessary
+ CheckConstPool(true, false);
+ ASSERT(num_prinfo_ == 0);
+
+ // setup desc
+ desc->buffer = buffer_;
+ desc->buffer_size = buffer_size_;
+ desc->instr_size = pc_offset();
+ desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
+}
+
+
+void Assembler::Align(int m) {
+ ASSERT(m >= 4 && IsPowerOf2(m));
+ while ((pc_offset() & (m - 1)) != 0) {
+ nop();
+ }
+}
+
+
+// Labels refer to positions in the (to be) generated code.
+// There are bound, linked, and unused labels.
+//
+// Bound labels refer to known positions in the already
+// generated code. pos() is the position the label refers to.
+//
+// Linked labels refer to unknown positions in the code
+// to be generated; pos() is the position of the last
+// instruction using the label.
+
+
+// The link chain is terminated by a negative code position (must be aligned)
+const int kEndOfChain = -4;
+
+
+int Assembler::target_at(int pos) {
+ Instr instr = instr_at(pos);
+ if ((instr & ~Imm24Mask) == 0) {
+ // Emitted label constant, not part of a branch.
+ return instr - (Code::kHeaderSize - kHeapObjectTag);
+ }
+ ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
+ int imm26 = ((instr & Imm24Mask) << 8) >> 6;
+ if ((instr & CondMask) == nv && (instr & B24) != 0)
+ // blx uses bit 24 to encode bit 2 of imm26
+ imm26 += 2;
+
+ return pos + kPcLoadDelta + imm26;
+}
+
+
+void Assembler::target_at_put(int pos, int target_pos) {
+ Instr instr = instr_at(pos);
+ if ((instr & ~Imm24Mask) == 0) {
+ ASSERT(target_pos == kEndOfChain || target_pos >= 0);
+ // Emitted label constant, not part of a branch.
+ // Make label relative to Code* of generated Code object.
+ instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
+ return;
+ }
+ int imm26 = target_pos - (pos + kPcLoadDelta);
+ ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
+ if ((instr & CondMask) == nv) {
+ // blx uses bit 24 to encode bit 2 of imm26
+ ASSERT((imm26 & 1) == 0);
+ instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24;
+ } else {
+ ASSERT((imm26 & 3) == 0);
+ instr &= ~Imm24Mask;
+ }
+ int imm24 = imm26 >> 2;
+ ASSERT(is_int24(imm24));
+ instr_at_put(pos, instr | (imm24 & Imm24Mask));
+}
+
+
+void Assembler::print(Label* L) {
+ if (L->is_unused()) {
+ PrintF("unused label\n");
+ } else if (L->is_bound()) {
+ PrintF("bound label to %d\n", L->pos());
+ } else if (L->is_linked()) {
+ Label l = *L;
+ PrintF("unbound label");
+ while (l.is_linked()) {
+ PrintF("@ %d ", l.pos());
+ Instr instr = instr_at(l.pos());
+ if ((instr & ~Imm24Mask) == 0) {
+ PrintF("value\n");
+ } else {
+ ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx
+ int cond = instr & CondMask;
+ const char* b;
+ const char* c;
+ if (cond == nv) {
+ b = "blx";
+ c = "";
+ } else {
+ if ((instr & B24) != 0)
+ b = "bl";
+ else
+ b = "b";
+
+ switch (cond) {
+ case eq: c = "eq"; break;
+ case ne: c = "ne"; break;
+ case hs: c = "hs"; break;
+ case lo: c = "lo"; break;
+ case mi: c = "mi"; break;
+ case pl: c = "pl"; break;
+ case vs: c = "vs"; break;
+ case vc: c = "vc"; break;
+ case hi: c = "hi"; break;
+ case ls: c = "ls"; break;
+ case ge: c = "ge"; break;
+ case lt: c = "lt"; break;
+ case gt: c = "gt"; break;
+ case le: c = "le"; break;
+ case al: c = ""; break;
+ default:
+ c = "";
+ UNREACHABLE();
+ }
+ }
+ PrintF("%s%s\n", b, c);
+ }
+ next(&l);
+ }
+ } else {
+ PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
+ }
+}
+
+
+void Assembler::bind_to(Label* L, int pos) {
+ ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
+ while (L->is_linked()) {
+ int fixup_pos = L->pos();
+ next(L); // call next before overwriting link with target at fixup_pos
+ target_at_put(fixup_pos, pos);
+ }
+ L->bind_to(pos);
+
+ // Keep track of the last bound label so we don't eliminate any instructions
+ // before a bound label.
+ if (pos > last_bound_pos_)
+ last_bound_pos_ = pos;
+}
+
+
+void Assembler::link_to(Label* L, Label* appendix) {
+ if (appendix->is_linked()) {
+ if (L->is_linked()) {
+ // append appendix to L's list
+ int fixup_pos;
+ int link = L->pos();
+ do {
+ fixup_pos = link;
+ link = target_at(fixup_pos);
+ } while (link > 0);
+ ASSERT(link == kEndOfChain);
+ target_at_put(fixup_pos, appendix->pos());
+ } else {
+ // L is empty, simply use appendix
+ *L = *appendix;
+ }
+ }
+ appendix->Unuse(); // appendix should not be used anymore
+}
+
+
+void Assembler::bind(Label* L) {
+ ASSERT(!L->is_bound()); // label can only be bound once
+ bind_to(L, pc_offset());
+}
+
+
+void Assembler::next(Label* L) {
+ ASSERT(L->is_linked());
+ int link = target_at(L->pos());
+ if (link > 0) {
+ L->link_to(link);
+ } else {
+ ASSERT(link == kEndOfChain);
+ L->Unuse();
+ }
+}
+
+
+// Low-level code emission routines depending on the addressing mode
+static bool fits_shifter(uint32_t imm32,
+ uint32_t* rotate_imm,
+ uint32_t* immed_8,
+ Instr* instr) {
+ // imm32 must be unsigned
+ for (int rot = 0; rot < 16; rot++) {
+ uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
+ if ((imm8 <= 0xff)) {
+ *rotate_imm = rot;
+ *immed_8 = imm8;
+ return true;
+ }
+ }
+ // if the opcode is mov or mvn and if ~imm32 fits, change the opcode
+ if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) {
+ if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
+ *instr ^= 0x2*B21;
+ return true;
+ }
+ }
+ return false;
+}
+
+
+// We have to use the temporary register for things that can be relocated even
+// if they can be encoded in the ARM's 12 bits of immediate-offset instruction
+// space. There is no guarantee that the relocated location can be similarly
+// encoded.
+static bool MustUseIp(RelocInfo::Mode rmode) {
+ if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
+#ifdef DEBUG
+ if (!Serializer::enabled()) {
+ Serializer::TooLateToEnableNow();
+ }
+#endif
+ return Serializer::enabled();
+ } else if (rmode == RelocInfo::NONE) {
+ return false;
+ }
+ return true;
+}
+
+
+void Assembler::addrmod1(Instr instr,
+ Register rn,
+ Register rd,
+ const Operand& x) {
+ CheckBuffer();
+ ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0);
+ if (!x.rm_.is_valid()) {
+ // immediate
+ uint32_t rotate_imm;
+ uint32_t immed_8;
+ if (MustUseIp(x.rmode_) ||
+ !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
+ // The immediate operand cannot be encoded as a shifter operand, so load
+ // it first to register ip and change the original instruction to use ip.
+ // However, if the original instruction is a 'mov rd, x' (not setting the
+ // condition code), then replace it with a 'ldr rd, [pc]'
+ RecordRelocInfo(x.rmode_, x.imm32_);
+ CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed
+ Condition cond = static_cast<Condition>(instr & CondMask);
+ if ((instr & ~CondMask) == 13*B21) { // mov, S not set
+ ldr(rd, MemOperand(pc, 0), cond);
+ } else {
+ ldr(ip, MemOperand(pc, 0), cond);
+ addrmod1(instr, rn, rd, Operand(ip));
+ }
+ return;
+ }
+ instr |= I | rotate_imm*B8 | immed_8;
+ } else if (!x.rs_.is_valid()) {
+ // immediate shift
+ instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
+ } else {
+ // register shift
+ ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
+ instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
+ }
+ emit(instr | rn.code()*B16 | rd.code()*B12);
+ if (rn.is(pc) || x.rm_.is(pc))
+ // block constant pool emission for one instruction after reading pc
+ BlockConstPoolBefore(pc_offset() + kInstrSize);
+}
+
+
+void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
+ ASSERT((instr & ~(CondMask | B | L)) == B26);
+ int am = x.am_;
+ if (!x.rm_.is_valid()) {
+ // immediate offset
+ int offset_12 = x.offset_;
+ if (offset_12 < 0) {
+ offset_12 = -offset_12;
+ am ^= U;
+ }
+ if (!is_uint12(offset_12)) {
+ // immediate offset cannot be encoded, load it first to register ip
+ // rn (and rd in a load) should never be ip, or will be trashed
+ ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
+ mov(ip, Operand(x.offset_), LeaveCC,
+ static_cast<Condition>(instr & CondMask));
+ addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
+ return;
+ }
+ ASSERT(offset_12 >= 0); // no masking needed
+ instr |= offset_12;
+ } else {
+ // register offset (shift_imm_ and shift_op_ are 0) or scaled
+ // register offset the constructors make sure than both shift_imm_
+ // and shift_op_ are initialized
+ ASSERT(!x.rm_.is(pc));
+ instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
+ }
+ ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
+ emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
+}
+
+
+void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
+ ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7));
+ ASSERT(x.rn_.is_valid());
+ int am = x.am_;
+ if (!x.rm_.is_valid()) {
+ // immediate offset
+ int offset_8 = x.offset_;
+ if (offset_8 < 0) {
+ offset_8 = -offset_8;
+ am ^= U;
+ }
+ if (!is_uint8(offset_8)) {
+ // immediate offset cannot be encoded, load it first to register ip
+ // rn (and rd in a load) should never be ip, or will be trashed
+ ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
+ mov(ip, Operand(x.offset_), LeaveCC,
+ static_cast<Condition>(instr & CondMask));
+ addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
+ return;
+ }
+ ASSERT(offset_8 >= 0); // no masking needed
+ instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
+ } else if (x.shift_imm_ != 0) {
+ // scaled register offset not supported, load index first
+ // rn (and rd in a load) should never be ip, or will be trashed
+ ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
+ mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
+ static_cast<Condition>(instr & CondMask));
+ addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
+ return;
+ } else {
+ // register offset
+ ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback
+ instr |= x.rm_.code();
+ }
+ ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
+ emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
+}
+
+
+void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
+ ASSERT((instr & ~(CondMask | P | U | W | L)) == B27);
+ ASSERT(rl != 0);
+ ASSERT(!rn.is(pc));
+ emit(instr | rn.code()*B16 | rl);
+}
+
+
+void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
+ // unindexed addressing is not encoded by this function
+ ASSERT_EQ((B27 | B26),
+ (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L)));
+ ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
+ int am = x.am_;
+ int offset_8 = x.offset_;
+ ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset
+ offset_8 >>= 2;
+ if (offset_8 < 0) {
+ offset_8 = -offset_8;
+ am ^= U;
+ }
+ ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte
+ ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
+
+ // post-indexed addressing requires W == 1; different than in addrmod2/3
+ if ((am & P) == 0)
+ am |= W;
+
+ ASSERT(offset_8 >= 0); // no masking needed
+ emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
+}
+
+
+int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
+ int target_pos;
+ if (L->is_bound()) {
+ target_pos = L->pos();
+ } else {
+ if (L->is_linked()) {
+ target_pos = L->pos(); // L's link
+ } else {
+ target_pos = kEndOfChain;
+ }
+ L->link_to(pc_offset());
+ }
+
+ // Block the emission of the constant pool, since the branch instruction must
+ // be emitted at the pc offset recorded by the label
+ BlockConstPoolBefore(pc_offset() + kInstrSize);
+ return target_pos - (pc_offset() + kPcLoadDelta);
+}
+
+
+void Assembler::label_at_put(Label* L, int at_offset) {
+ int target_pos;
+ if (L->is_bound()) {
+ target_pos = L->pos();
+ } else {
+ if (L->is_linked()) {
+ target_pos = L->pos(); // L's link
+ } else {
+ target_pos = kEndOfChain;
+ }
+ L->link_to(at_offset);
+ instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
+ }
+}
+
+
+// Branch instructions
+void Assembler::b(int branch_offset, Condition cond) {
+ ASSERT((branch_offset & 3) == 0);
+ int imm24 = branch_offset >> 2;
+ ASSERT(is_int24(imm24));
+ emit(cond | B27 | B25 | (imm24 & Imm24Mask));
+
+ if (cond == al)
+ // dead code is a good location to emit the constant pool
+ CheckConstPool(false, false);
+}
+
+
+void Assembler::bl(int branch_offset, Condition cond) {
+ ASSERT((branch_offset & 3) == 0);
+ int imm24 = branch_offset >> 2;
+ ASSERT(is_int24(imm24));
+ emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask));
+}
+
+
+void Assembler::blx(int branch_offset) { // v5 and above
+ WriteRecordedPositions();
+ ASSERT((branch_offset & 1) == 0);
+ int h = ((branch_offset & 2) >> 1)*B24;
+ int imm24 = branch_offset >> 2;
+ ASSERT(is_int24(imm24));
+ emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask));
+}
+
+
+void Assembler::blx(Register target, Condition cond) { // v5 and above
+ WriteRecordedPositions();
+ ASSERT(!target.is(pc));
+ emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code());
+}
+
+
+void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t
+ WriteRecordedPositions();
+ ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged
+ emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code());
+}
+
+
+// Data-processing instructions
+void Assembler::and_(Register dst, Register src1, const Operand& src2,
+ SBit s, Condition cond) {
+ addrmod1(cond | 0*B21 | s, src1, dst, src2);
+}
+
+
+void Assembler::eor(Register dst, Register src1, const Operand& src2,
+ SBit s, Condition cond) {
+ addrmod1(cond | 1*B21 | s, src1, dst, src2);
+}
+
+
+void Assembler::sub(Register dst, Register src1, const Operand& src2,
+ SBit s, Condition cond) {
+ addrmod1(cond | 2*B21 | s, src1, dst, src2);
+}
+
+
+void Assembler::rsb(Register dst, Register src1, const Operand& src2,
+ SBit s, Condition cond) {
+ addrmod1(cond | 3*B21 | s, src1, dst, src2);
+}
+
+
+void Assembler::add(Register dst, Register src1, const Operand& src2,
+ SBit s, Condition cond) {
+ addrmod1(cond | 4*B21 | s, src1, dst, src2);
+
+ // Eliminate pattern: push(r), pop()
+ // str(src, MemOperand(sp, 4, NegPreIndex), al);
+ // add(sp, sp, Operand(kPointerSize));
+ // Both instructions can be eliminated.
+ int pattern_size = 2 * kInstrSize;
+ if (FLAG_push_pop_elimination &&
+ last_bound_pos_ <= (pc_offset() - pattern_size) &&
+ reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
+ // pattern
+ instr_at(pc_ - 1 * kInstrSize) == kPopInstruction &&
+ (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) {
+ pc_ -= 2 * kInstrSize;
+ if (FLAG_print_push_pop_elimination) {
+ PrintF("%x push(reg)/pop() eliminated\n", pc_offset());
+ }
+ }
+}
+
+
+void Assembler::adc(Register dst, Register src1, const Operand& src2,
+ SBit s, Condition cond) {
+ addrmod1(cond | 5*B21 | s, src1, dst, src2);
+}
+
+
+void Assembler::sbc(Register dst, Register src1, const Operand& src2,
+ SBit s, Condition cond) {
+ addrmod1(cond | 6*B21 | s, src1, dst, src2);
+}
+
+
+void Assembler::rsc(Register dst, Register src1, const Operand& src2,
+ SBit s, Condition cond) {
+ addrmod1(cond | 7*B21 | s, src1, dst, src2);
+}
+
+
+void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
+ addrmod1(cond | 8*B21 | S, src1, r0, src2);
+}
+
+
+void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
+ addrmod1(cond | 9*B21 | S, src1, r0, src2);
+}
+
+
+void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
+ addrmod1(cond | 10*B21 | S, src1, r0, src2);
+}
+
+
+void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
+ addrmod1(cond | 11*B21 | S, src1, r0, src2);
+}
+
+
+void Assembler::orr(Register dst, Register src1, const Operand& src2,
+ SBit s, Condition cond) {
+ addrmod1(cond | 12*B21 | s, src1, dst, src2);
+}
+
+
+void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
+ if (dst.is(pc)) {
+ WriteRecordedPositions();
+ }
+ addrmod1(cond | 13*B21 | s, r0, dst, src);
+}
+
+
+void Assembler::bic(Register dst, Register src1, const Operand& src2,
+ SBit s, Condition cond) {
+ addrmod1(cond | 14*B21 | s, src1, dst, src2);
+}
+
+
+void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
+ addrmod1(cond | 15*B21 | s, r0, dst, src);
+}
+
+
+// Multiply instructions
+void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
+ SBit s, Condition cond) {
+ ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
+ emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
+ src2.code()*B8 | B7 | B4 | src1.code());
+}
+
+
+void Assembler::mul(Register dst, Register src1, Register src2,
+ SBit s, Condition cond) {
+ ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
+ // dst goes in bits 16-19 for this instruction!
+ emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
+}
+
+
+void Assembler::smlal(Register dstL,
+ Register dstH,
+ Register src1,
+ Register src2,
+ SBit s,
+ Condition cond) {
+ ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
+ ASSERT(!dstL.is(dstH));
+ emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
+ src2.code()*B8 | B7 | B4 | src1.code());
+}
+
+
+void Assembler::smull(Register dstL,
+ Register dstH,
+ Register src1,
+ Register src2,
+ SBit s,
+ Condition cond) {
+ ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
+ ASSERT(!dstL.is(dstH));
+ emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
+ src2.code()*B8 | B7 | B4 | src1.code());
+}
+
+
+void Assembler::umlal(Register dstL,
+ Register dstH,
+ Register src1,
+ Register src2,
+ SBit s,
+ Condition cond) {
+ ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
+ ASSERT(!dstL.is(dstH));
+ emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
+ src2.code()*B8 | B7 | B4 | src1.code());
+}
+
+
+void Assembler::umull(Register dstL,
+ Register dstH,
+ Register src1,
+ Register src2,
+ SBit s,
+ Condition cond) {
+ ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
+ ASSERT(!dstL.is(dstH));
+ emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
+ src2.code()*B8 | B7 | B4 | src1.code());
+}
+
+
+// Miscellaneous arithmetic instructions
+void Assembler::clz(Register dst, Register src, Condition cond) {
+ // v5 and above.
+ ASSERT(!dst.is(pc) && !src.is(pc));
+ emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
+ 15*B8 | B4 | src.code());
+}
+
+
+// Status register access instructions
+void Assembler::mrs(Register dst, SRegister s, Condition cond) {
+ ASSERT(!dst.is(pc));
+ emit(cond | B24 | s | 15*B16 | dst.code()*B12);
+}
+
+
+void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
+ Condition cond) {
+ ASSERT(fields >= B16 && fields < B20); // at least one field set
+ Instr instr;
+ if (!src.rm_.is_valid()) {
+ // immediate
+ uint32_t rotate_imm;
+ uint32_t immed_8;
+ if (MustUseIp(src.rmode_) ||
+ !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
+ // immediate operand cannot be encoded, load it first to register ip
+ RecordRelocInfo(src.rmode_, src.imm32_);
+ ldr(ip, MemOperand(pc, 0), cond);
+ msr(fields, Operand(ip), cond);
+ return;
+ }
+ instr = I | rotate_imm*B8 | immed_8;
+ } else {
+ ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed
+ instr = src.rm_.code();
+ }
+ emit(cond | instr | B24 | B21 | fields | 15*B12);
+}
+
+
+// Load/Store instructions
+void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
+ if (dst.is(pc)) {
+ WriteRecordedPositions();
+ }
+ addrmod2(cond | B26 | L, dst, src);
+
+ // Eliminate pattern: push(r), pop(r)
+ // str(r, MemOperand(sp, 4, NegPreIndex), al)
+ // ldr(r, MemOperand(sp, 4, PostIndex), al)
+ // Both instructions can be eliminated.
+ int pattern_size = 2 * kInstrSize;
+ if (FLAG_push_pop_elimination &&
+ last_bound_pos_ <= (pc_offset() - pattern_size) &&
+ reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
+ // pattern
+ instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) &&
+ instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) {
+ pc_ -= 2 * kInstrSize;
+ if (FLAG_print_push_pop_elimination) {
+ PrintF("%x push/pop (same reg) eliminated\n", pc_offset());
+ }
+ }
+}
+
+
+void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
+ addrmod2(cond | B26, src, dst);
+
+ // Eliminate pattern: pop(), push(r)
+ // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al
+ // -> str r, [sp, 0], al
+ int pattern_size = 2 * kInstrSize;
+ if (FLAG_push_pop_elimination &&
+ last_bound_pos_ <= (pc_offset() - pattern_size) &&
+ reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
+ instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) &&
+ instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) {
+ pc_ -= 2 * kInstrSize;
+ emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12);
+ if (FLAG_print_push_pop_elimination) {
+ PrintF("%x pop()/push(reg) eliminated\n", pc_offset());
+ }
+ }
+}
+
+
+void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
+ addrmod2(cond | B26 | B | L, dst, src);
+}
+
+
+void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
+ addrmod2(cond | B26 | B, src, dst);
+}
+
+
+void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
+ addrmod3(cond | L | B7 | H | B4, dst, src);
+}
+
+
+void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
+ addrmod3(cond | B7 | H | B4, src, dst);
+}
+
+
+void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
+ addrmod3(cond | L | B7 | S6 | B4, dst, src);
+}
+
+
+void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
+ addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
+}
+
+
+// Load/Store multiple instructions
+void Assembler::ldm(BlockAddrMode am,
+ Register base,
+ RegList dst,
+ Condition cond) {
+ // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable
+ ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
+
+ addrmod4(cond | B27 | am | L, base, dst);
+
+ // emit the constant pool after a function return implemented by ldm ..{..pc}
+ if (cond == al && (dst & pc.bit()) != 0) {
+ // There is a slight chance that the ldm instruction was actually a call,
+ // in which case it would be wrong to return into the constant pool; we
+ // recognize this case by checking if the emission of the pool was blocked
+ // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
+ // the case, we emit a jump over the pool.
+ CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
+ }
+}
+
+
+void Assembler::stm(BlockAddrMode am,
+ Register base,
+ RegList src,
+ Condition cond) {
+ addrmod4(cond | B27 | am, base, src);
+}
+
+
+// Semaphore instructions
+void Assembler::swp(Register dst, Register src, Register base, Condition cond) {
+ ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc));
+ ASSERT(!dst.is(base) && !src.is(base));
+ emit(cond | P | base.code()*B16 | dst.code()*B12 |
+ B7 | B4 | src.code());
+}
+
+
+void Assembler::swpb(Register dst,
+ Register src,
+ Register base,
+ Condition cond) {
+ ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc));
+ ASSERT(!dst.is(base) && !src.is(base));
+ emit(cond | P | B | base.code()*B16 | dst.code()*B12 |
+ B7 | B4 | src.code());
+}
+
+
+// Exception-generating instructions and debugging support
+void Assembler::stop(const char* msg) {
+#if !defined(__arm__)
+ // The simulator handles these special instructions and stops execution.
+ emit(15 << 28 | ((intptr_t) msg));
+#else
+ // Just issue a simple break instruction for now. Alternatively we could use
+ // the swi(0x9f0001) instruction on Linux.
+ bkpt(0);
+#endif
+}
+
+
+void Assembler::bkpt(uint32_t imm16) { // v5 and above
+ ASSERT(is_uint16(imm16));
+ emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf));
+}
+
+
+void Assembler::swi(uint32_t imm24, Condition cond) {
+ ASSERT(is_uint24(imm24));
+ emit(cond | 15*B24 | imm24);
+}
+
+
+// Coprocessor instructions
+void Assembler::cdp(Coprocessor coproc,
+ int opcode_1,
+ CRegister crd,
+ CRegister crn,
+ CRegister crm,
+ int opcode_2,
+ Condition cond) {
+ ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
+ emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
+ crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
+}
+
+
+void Assembler::cdp2(Coprocessor coproc,
+ int opcode_1,
+ CRegister crd,
+ CRegister crn,
+ CRegister crm,
+ int opcode_2) { // v5 and above
+ cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv));
+}
+
+
+void Assembler::mcr(Coprocessor coproc,
+ int opcode_1,
+ Register rd,
+ CRegister crn,
+ CRegister crm,
+ int opcode_2,
+ Condition cond) {
+ ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
+ emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
+ rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
+}
+
+
+void Assembler::mcr2(Coprocessor coproc,
+ int opcode_1,
+ Register rd,
+ CRegister crn,
+ CRegister crm,
+ int opcode_2) { // v5 and above
+ mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
+}
+
+
+void Assembler::mrc(Coprocessor coproc,
+ int opcode_1,
+ Register rd,
+ CRegister crn,
+ CRegister crm,
+ int opcode_2,
+ Condition cond) {
+ ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
+ emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
+ rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
+}
+
+
+void Assembler::mrc2(Coprocessor coproc,
+ int opcode_1,
+ Register rd,
+ CRegister crn,
+ CRegister crm,
+ int opcode_2) { // v5 and above
+ mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
+}
+
+
+void Assembler::ldc(Coprocessor coproc,
+ CRegister crd,
+ const MemOperand& src,
+ LFlag l,
+ Condition cond) {
+ addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
+}
+
+
+void Assembler::ldc(Coprocessor coproc,
+ CRegister crd,
+ Register rn,
+ int option,
+ LFlag l,
+ Condition cond) {
+ // unindexed addressing
+ ASSERT(is_uint8(option));
+ emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
+ coproc*B8 | (option & 255));
+}
+
+
+void Assembler::ldc2(Coprocessor coproc,
+ CRegister crd,
+ const MemOperand& src,
+ LFlag l) { // v5 and above
+ ldc(coproc, crd, src, l, static_cast<Condition>(nv));
+}
+
+
+void Assembler::ldc2(Coprocessor coproc,
+ CRegister crd,
+ Register rn,
+ int option,
+ LFlag l) { // v5 and above
+ ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
+}
+
+
+void Assembler::stc(Coprocessor coproc,
+ CRegister crd,
+ const MemOperand& dst,
+ LFlag l,
+ Condition cond) {
+ addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst);
+}
+
+
+void Assembler::stc(Coprocessor coproc,
+ CRegister crd,
+ Register rn,
+ int option,
+ LFlag l,
+ Condition cond) {
+ // unindexed addressing
+ ASSERT(is_uint8(option));
+ emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 |
+ coproc*B8 | (option & 255));
+}
+
+
+void Assembler::stc2(Coprocessor
+ coproc, CRegister crd,
+ const MemOperand& dst,
+ LFlag l) { // v5 and above
+ stc(coproc, crd, dst, l, static_cast<Condition>(nv));
+}
+
+
+void Assembler::stc2(Coprocessor coproc,
+ CRegister crd,
+ Register rn,
+ int option,
+ LFlag l) { // v5 and above
+ stc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
+}
+
+
+// Support for VFP.
+void Assembler::fmdrr(const Register dst,
+ const Register src1,
+ const Register src2,
+ const SBit s,
+ const Condition cond) {
+ // Dm = <Rt,Rt2>.
+ // Instruction details available in ARM DDI 0406A, A8-646.
+ // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
+ // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(!src1.is(pc) && !src2.is(pc));
+ emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
+ src1.code()*B12 | 0xB*B8 | B4 | dst.code());
+}
+
+
+void Assembler::fmrrd(const Register dst1,
+ const Register dst2,
+ const Register src,
+ const SBit s,
+ const Condition cond) {
+ // <Rt,Rt2> = Dm.
+ // Instruction details available in ARM DDI 0406A, A8-646.
+ // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
+ // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(!dst1.is(pc) && !dst2.is(pc));
+ emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
+ dst1.code()*B12 | 0xB*B8 | B4 | src.code());
+}
+
+
+void Assembler::fmsr(const Register dst,
+ const Register src,
+ const SBit s,
+ const Condition cond) {
+ // Sn = Rt.
+ // Instruction details available in ARM DDI 0406A, A8-642.
+ // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
+ // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(!src.is(pc));
+ emit(cond | 0xE*B24 | (dst.code() >> 1)*B16 |
+ src.code()*B12 | 0xA*B8 | (0x1 & dst.code())*B7 | B4);
+}
+
+
+void Assembler::fmrs(const Register dst,
+ const Register src,
+ const SBit s,
+ const Condition cond) {
+ // Rt = Sn.
+ // Instruction details available in ARM DDI 0406A, A8-642.
+ // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
+ // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(!dst.is(pc));
+ emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 |
+ dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4);
+}
+
+
+void Assembler::fsitod(const Register dst,
+ const Register src,
+ const SBit s,
+ const Condition cond) {
+ // Dd = Sm (integer in Sm converted to IEEE 64-bit doubles in Dd).
+ // Instruction details available in ARM DDI 0406A, A8-576.
+ // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) |opc2=000(18-16) |
+ // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=1 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ emit(cond | 0xE*B24 | B23 | 0x3*B20 | B19 |
+ dst.code()*B12 | 0x5*B9 | B8 | B7 | B6 |
+ (0x1 & src.code())*B5 | (src.code() >> 1));
+}
+
+
+void Assembler::ftosid(const Register dst,
+ const Register src,
+ const SBit s,
+ const Condition cond) {
+ // Sd = Dm (IEEE 64-bit doubles in Dm converted to 32 bit integer in Sd).
+ // Instruction details available in ARM DDI 0406A, A8-576.
+ // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=101(18-16)|
+ // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=? | 1(6) | M=?(5) | 0(4) | Vm(3-0)
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ emit(cond | 0xE*B24 | B23 |(0x1 & dst.code())*B22 |
+ 0x3*B20 | B19 | 0x5*B16 | (dst.code() >> 1)*B12 |
+ 0x5*B9 | B8 | B7 | B6 | src.code());
+}
+
+
+void Assembler::faddd(const Register dst,
+ const Register src1,
+ const Register src2,
+ const SBit s,
+ const Condition cond) {
+ // Dd = faddd(Dn, Dm) double precision floating point addition.
+ // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
+ // Instruction details available in ARM DDI 0406A, A8-536.
+ // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
+ // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
+ dst.code()*B12 | 0x5*B9 | B8 | src2.code());
+}
+
+
+void Assembler::fsubd(const Register dst,
+ const Register src1,
+ const Register src2,
+ const SBit s,
+ const Condition cond) {
+ // Dd = fsubd(Dn, Dm) double precision floating point subtraction.
+ // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
+ // Instruction details available in ARM DDI 0406A, A8-784.
+ // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
+ // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
+ dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
+}
+
+
+void Assembler::fmuld(const Register dst,
+ const Register src1,
+ const Register src2,
+ const SBit s,
+ const Condition cond) {
+ // Dd = fmuld(Dn, Dm) double precision floating point multiplication.
+ // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
+ // Instruction details available in ARM DDI 0406A, A8-784.
+ // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) |
+ // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 |
+ dst.code()*B12 | 0x5*B9 | B8 | src2.code());
+}
+
+
+void Assembler::fdivd(const Register dst,
+ const Register src1,
+ const Register src2,
+ const SBit s,
+ const Condition cond) {
+ // Dd = fdivd(Dn, Dm) double precision floating point division.
+ // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
+ // Instruction details available in ARM DDI 0406A, A8-584.
+ // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) |
+ // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0)
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ emit(cond | 0xE*B24 | B23 | src1.code()*B16 |
+ dst.code()*B12 | 0x5*B9 | B8 | src2.code());
+}
+
+
+void Assembler::fcmp(const Register src1,
+ const Register src2,
+ const SBit s,
+ const Condition cond) {
+ // vcmp(Dd, Dm) double precision floating point comparison.
+ // Instruction details available in ARM DDI 0406A, A8-570.
+ // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) |
+ // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=? | 1(6) | M(5)=? | 0(4) | Vm(3-0)
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 |
+ src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
+}
+
+
+void Assembler::vmrs(Register dst, Condition cond) {
+ // Instruction details available in ARM DDI 0406A, A8-652.
+ // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
+ // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ emit(cond | 0xE*B24 | 0xF*B20 | B16 |
+ dst.code()*B12 | 0xA*B8 | B4);
+}
+
+
+// Pseudo instructions
+void Assembler::lea(Register dst,
+ const MemOperand& x,
+ SBit s,
+ Condition cond) {
+ int am = x.am_;
+ if (!x.rm_.is_valid()) {
+ // immediate offset
+ if ((am & P) == 0) // post indexing
+ mov(dst, Operand(x.rn_), s, cond);
+ else if ((am & U) == 0) // negative indexing
+ sub(dst, x.rn_, Operand(x.offset_), s, cond);
+ else
+ add(dst, x.rn_, Operand(x.offset_), s, cond);
+ } else {
+ // Register offset (shift_imm_ and shift_op_ are 0) or scaled
+ // register offset the constructors make sure than both shift_imm_
+ // and shift_op_ are initialized.
+ ASSERT(!x.rm_.is(pc));
+ if ((am & P) == 0) // post indexing
+ mov(dst, Operand(x.rn_), s, cond);
+ else if ((am & U) == 0) // negative indexing
+ sub(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond);
+ else
+ add(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond);
+ }
+}
+
+
+bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
+ uint32_t dummy1;
+ uint32_t dummy2;
+ return fits_shifter(imm32, &dummy1, &dummy2, NULL);
+}
+
+
+void Assembler::BlockConstPoolFor(int instructions) {
+ BlockConstPoolBefore(pc_offset() + instructions * kInstrSize);
+}
+
+
+// Debugging
+void Assembler::RecordJSReturn() {
+ WriteRecordedPositions();
+ CheckBuffer();
+ RecordRelocInfo(RelocInfo::JS_RETURN);
+}
+
+
+void Assembler::RecordComment(const char* msg) {
+ if (FLAG_debug_code) {
+ CheckBuffer();
+ RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
+ }
+}
+
+
+void Assembler::RecordPosition(int pos) {
+ if (pos == RelocInfo::kNoPosition) return;
+ ASSERT(pos >= 0);
+ current_position_ = pos;
+}
+
+
+void Assembler::RecordStatementPosition(int pos) {
+ if (pos == RelocInfo::kNoPosition) return;
+ ASSERT(pos >= 0);
+ current_statement_position_ = pos;
+}
+
+
+void Assembler::WriteRecordedPositions() {
+ // Write the statement position if it is different from what was written last
+ // time.
+ if (current_statement_position_ != written_statement_position_) {
+ CheckBuffer();
+ RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_);
+ written_statement_position_ = current_statement_position_;
+ }
+
+ // Write the position if it is different from what was written last time and
+ // also different from the written statement position.
+ if (current_position_ != written_position_ &&
+ current_position_ != written_statement_position_) {
+ CheckBuffer();
+ RecordRelocInfo(RelocInfo::POSITION, current_position_);
+ written_position_ = current_position_;
+ }
+}
+
+
+void Assembler::GrowBuffer() {
+ if (!own_buffer_) FATAL("external code buffer is too small");
+
+ // compute new buffer size
+ CodeDesc desc; // the new buffer
+ if (buffer_size_ < 4*KB) {
+ desc.buffer_size = 4*KB;
+ } else if (buffer_size_ < 1*MB) {
+ desc.buffer_size = 2*buffer_size_;
+ } else {
+ desc.buffer_size = buffer_size_ + 1*MB;
+ }
+ CHECK_GT(desc.buffer_size, 0); // no overflow
+
+ // setup new buffer
+ desc.buffer = NewArray<byte>(desc.buffer_size);
+
+ desc.instr_size = pc_offset();
+ desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
+
+ // copy the data
+ int pc_delta = desc.buffer - buffer_;
+ int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
+ memmove(desc.buffer, buffer_, desc.instr_size);
+ memmove(reloc_info_writer.pos() + rc_delta,
+ reloc_info_writer.pos(), desc.reloc_size);
+
+ // switch buffers
+ DeleteArray(buffer_);
+ buffer_ = desc.buffer;
+ buffer_size_ = desc.buffer_size;
+ pc_ += pc_delta;
+ reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
+ reloc_info_writer.last_pc() + pc_delta);
+
+ // none of our relocation types are pc relative pointing outside the code
+ // buffer nor pc absolute pointing inside the code buffer, so there is no need
+ // to relocate any emitted relocation entries
+
+ // relocate pending relocation entries
+ for (int i = 0; i < num_prinfo_; i++) {
+ RelocInfo& rinfo = prinfo_[i];
+ ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
+ rinfo.rmode() != RelocInfo::POSITION);
+ if (rinfo.rmode() != RelocInfo::JS_RETURN) {
+ rinfo.set_pc(rinfo.pc() + pc_delta);
+ }
+ }
+}
+
+
+void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
+ RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants
+ if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) {
+ // Adjust code for new modes
+ ASSERT(RelocInfo::IsJSReturn(rmode)
+ || RelocInfo::IsComment(rmode)
+ || RelocInfo::IsPosition(rmode));
+ // these modes do not need an entry in the constant pool
+ } else {
+ ASSERT(num_prinfo_ < kMaxNumPRInfo);
+ prinfo_[num_prinfo_++] = rinfo;
+ // Make sure the constant pool is not emitted in place of the next
+ // instruction for which we just recorded relocation info
+ BlockConstPoolBefore(pc_offset() + kInstrSize);
+ }
+ if (rinfo.rmode() != RelocInfo::NONE) {
+ // Don't record external references unless the heap will be serialized.
+ if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
+#ifdef DEBUG
+ if (!Serializer::enabled()) {
+ Serializer::TooLateToEnableNow();
+ }
+#endif
+ if (!Serializer::enabled() && !FLAG_debug_code) {
+ return;
+ }
+ }
+ ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
+ reloc_info_writer.Write(&rinfo);
+ }
+}
+
+
+void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
+ // Calculate the offset of the next check. It will be overwritten
+ // when a const pool is generated or when const pools are being
+ // blocked for a specific range.
+ next_buffer_check_ = pc_offset() + kCheckConstInterval;
+
+ // There is nothing to do if there are no pending relocation info entries
+ if (num_prinfo_ == 0) return;
+
+ // We emit a constant pool at regular intervals of about kDistBetweenPools
+ // or when requested by parameter force_emit (e.g. after each function).
+ // We prefer not to emit a jump unless the max distance is reached or if we
+ // are running low on slots, which can happen if a lot of constants are being
+ // emitted (e.g. --debug-code and many static references).
+ int dist = pc_offset() - last_const_pool_end_;
+ if (!force_emit && dist < kMaxDistBetweenPools &&
+ (require_jump || dist < kDistBetweenPools) &&
+ // TODO(1236125): Cleanup the "magic" number below. We know that
+ // the code generation will test every kCheckConstIntervalInst.
+ // Thus we are safe as long as we generate less than 7 constant
+ // entries per instruction.
+ (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) {
+ return;
+ }
+
+ // If we did not return by now, we need to emit the constant pool soon.
+
+ // However, some small sequences of instructions must not be broken up by the
+ // insertion of a constant pool; such sequences are protected by setting
+ // no_const_pool_before_, which is checked here. Also, recursive calls to
+ // CheckConstPool are blocked by no_const_pool_before_.
+ if (pc_offset() < no_const_pool_before_) {
+ // Emission is currently blocked; make sure we try again as soon as possible
+ next_buffer_check_ = no_const_pool_before_;
+
+ // Something is wrong if emission is forced and blocked at the same time
+ ASSERT(!force_emit);
+ return;
+ }
+
+ int jump_instr = require_jump ? kInstrSize : 0;
+
+ // Check that the code buffer is large enough before emitting the constant
+ // pool and relocation information (include the jump over the pool and the
+ // constant pool marker).
+ int max_needed_space =
+ jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize);
+ while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer();
+
+ // Block recursive calls to CheckConstPool
+ BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize +
+ num_prinfo_*kInstrSize);
+ // Don't bother to check for the emit calls below.
+ next_buffer_check_ = no_const_pool_before_;
+
+ // Emit jump over constant pool if necessary
+ Label after_pool;
+ if (require_jump) b(&after_pool);
+
+ RecordComment("[ Constant Pool");
+
+ // Put down constant pool marker
+ // "Undefined instruction" as specified by A3.1 Instruction set encoding
+ emit(0x03000000 | num_prinfo_);
+
+ // Emit constant pool entries
+ for (int i = 0; i < num_prinfo_; i++) {
+ RelocInfo& rinfo = prinfo_[i];
+ ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
+ rinfo.rmode() != RelocInfo::POSITION &&
+ rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
+ Instr instr = instr_at(rinfo.pc());
+
+ // Instruction to patch must be a ldr/str [pc, #offset]
+ // P and U set, B and W clear, Rn == pc, offset12 still 0
+ ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) ==
+ (2*B25 | P | U | pc.code()*B16));
+ int delta = pc_ - rinfo.pc() - 8;
+ ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32
+ if (delta < 0) {
+ instr &= ~U;
+ delta = -delta;
+ }
+ ASSERT(is_uint12(delta));
+ instr_at_put(rinfo.pc(), instr + delta);
+ emit(rinfo.data());
+ }
+ num_prinfo_ = 0;
+ last_const_pool_end_ = pc_offset();
+
+ RecordComment("]");
+
+ if (after_pool.is_linked()) {
+ bind(&after_pool);
+ }
+
+ // Since a constant pool was just emitted, move the check offset forward by
+ // the standard interval.
+ next_buffer_check_ = pc_offset() + kCheckConstInterval;
+}
+
+
+} } // namespace v8::internal
+
« no previous file with comments | « src/arm/assembler-thumb2.h ('k') | src/arm/assembler-thumb2-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698