OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| 2 // All Rights Reserved. |
| 3 // |
| 4 // Redistribution and use in source and binary forms, with or without |
| 5 // modification, are permitted provided that the following conditions |
| 6 // are met: |
| 7 // |
| 8 // - Redistributions of source code must retain the above copyright notice, |
| 9 // this list of conditions and the following disclaimer. |
| 10 // |
| 11 // - Redistribution in binary form must reproduce the above copyright |
| 12 // notice, this list of conditions and the following disclaimer in the |
| 13 // documentation and/or other materials provided with the |
| 14 // distribution. |
| 15 // |
| 16 // - Neither the name of Sun Microsystems or the names of contributors may |
| 17 // be used to endorse or promote products derived from this software without |
| 18 // specific prior written permission. |
| 19 // |
| 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 31 // OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 |
| 33 // The original source code covered by the above license above has been modified |
| 34 // significantly by Google Inc. |
| 35 // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| 36 |
| 37 #include "v8.h" |
| 38 |
| 39 #include "arm/assembler-thumb2-inl.h" |
| 40 #include "serialize.h" |
| 41 |
| 42 namespace v8 { |
| 43 namespace internal { |
| 44 |
| 45 // Safe default is no features. |
| 46 unsigned CpuFeatures::supported_ = 0; |
| 47 unsigned CpuFeatures::enabled_ = 0; |
| 48 unsigned CpuFeatures::found_by_runtime_probing_ = 0; |
| 49 |
| 50 void CpuFeatures::Probe() { |
| 51 // If the compiler is allowed to use vfp then we can use vfp too in our |
| 52 // code generation. |
| 53 #if !defined(__arm__) |
| 54 // For the simulator=arm build, always use VFP since the arm simulator has |
| 55 // VFP support. |
| 56 supported_ |= 1u << VFP3; |
| 57 #else |
| 58 if (Serializer::enabled()) { |
| 59 supported_ |= OS::CpuFeaturesImpliedByPlatform(); |
| 60 return; // No features if we might serialize. |
| 61 } |
| 62 |
| 63 if (OS::ArmCpuHasFeature(VFP3)) { |
| 64 // This implementation also sets the VFP flags if |
| 65 // runtime detection of VFP returns true. |
| 66 supported_ |= 1u << VFP3; |
| 67 found_by_runtime_probing_ |= 1u << VFP3; |
| 68 } |
| 69 #endif |
| 70 } |
| 71 |
| 72 |
| 73 // ----------------------------------------------------------------------------- |
| 74 // Implementation of Register and CRegister |
| 75 |
| 76 Register no_reg = { -1 }; |
| 77 |
| 78 Register r0 = { 0 }; |
| 79 Register r1 = { 1 }; |
| 80 Register r2 = { 2 }; |
| 81 Register r3 = { 3 }; |
| 82 Register r4 = { 4 }; |
| 83 Register r5 = { 5 }; |
| 84 Register r6 = { 6 }; |
| 85 Register r7 = { 7 }; |
| 86 Register r8 = { 8 }; |
| 87 Register r9 = { 9 }; |
| 88 Register r10 = { 10 }; |
| 89 Register fp = { 11 }; |
| 90 Register ip = { 12 }; |
| 91 Register sp = { 13 }; |
| 92 Register lr = { 14 }; |
| 93 Register pc = { 15 }; |
| 94 |
| 95 |
| 96 CRegister no_creg = { -1 }; |
| 97 |
| 98 CRegister cr0 = { 0 }; |
| 99 CRegister cr1 = { 1 }; |
| 100 CRegister cr2 = { 2 }; |
| 101 CRegister cr3 = { 3 }; |
| 102 CRegister cr4 = { 4 }; |
| 103 CRegister cr5 = { 5 }; |
| 104 CRegister cr6 = { 6 }; |
| 105 CRegister cr7 = { 7 }; |
| 106 CRegister cr8 = { 8 }; |
| 107 CRegister cr9 = { 9 }; |
| 108 CRegister cr10 = { 10 }; |
| 109 CRegister cr11 = { 11 }; |
| 110 CRegister cr12 = { 12 }; |
| 111 CRegister cr13 = { 13 }; |
| 112 CRegister cr14 = { 14 }; |
| 113 CRegister cr15 = { 15 }; |
| 114 |
| 115 // Support for the VFP registers s0 to s31 (d0 to d15). |
| 116 // Note that "sN:sM" is the same as "dN/2". |
| 117 Register s0 = { 0 }; |
| 118 Register s1 = { 1 }; |
| 119 Register s2 = { 2 }; |
| 120 Register s3 = { 3 }; |
| 121 Register s4 = { 4 }; |
| 122 Register s5 = { 5 }; |
| 123 Register s6 = { 6 }; |
| 124 Register s7 = { 7 }; |
| 125 Register s8 = { 8 }; |
| 126 Register s9 = { 9 }; |
| 127 Register s10 = { 10 }; |
| 128 Register s11 = { 11 }; |
| 129 Register s12 = { 12 }; |
| 130 Register s13 = { 13 }; |
| 131 Register s14 = { 14 }; |
| 132 Register s15 = { 15 }; |
| 133 Register s16 = { 16 }; |
| 134 Register s17 = { 17 }; |
| 135 Register s18 = { 18 }; |
| 136 Register s19 = { 19 }; |
| 137 Register s20 = { 20 }; |
| 138 Register s21 = { 21 }; |
| 139 Register s22 = { 22 }; |
| 140 Register s23 = { 23 }; |
| 141 Register s24 = { 24 }; |
| 142 Register s25 = { 25 }; |
| 143 Register s26 = { 26 }; |
| 144 Register s27 = { 27 }; |
| 145 Register s28 = { 28 }; |
| 146 Register s29 = { 29 }; |
| 147 Register s30 = { 30 }; |
| 148 Register s31 = { 31 }; |
| 149 |
| 150 Register d0 = { 0 }; |
| 151 Register d1 = { 1 }; |
| 152 Register d2 = { 2 }; |
| 153 Register d3 = { 3 }; |
| 154 Register d4 = { 4 }; |
| 155 Register d5 = { 5 }; |
| 156 Register d6 = { 6 }; |
| 157 Register d7 = { 7 }; |
| 158 Register d8 = { 8 }; |
| 159 Register d9 = { 9 }; |
| 160 Register d10 = { 10 }; |
| 161 Register d11 = { 11 }; |
| 162 Register d12 = { 12 }; |
| 163 Register d13 = { 13 }; |
| 164 Register d14 = { 14 }; |
| 165 Register d15 = { 15 }; |
| 166 |
| 167 // ----------------------------------------------------------------------------- |
| 168 // Implementation of RelocInfo |
| 169 |
| 170 const int RelocInfo::kApplyMask = 0; |
| 171 |
| 172 |
| 173 void RelocInfo::PatchCode(byte* instructions, int instruction_count) { |
| 174 // Patch the code at the current address with the supplied instructions. |
| 175 Instr* pc = reinterpret_cast<Instr*>(pc_); |
| 176 Instr* instr = reinterpret_cast<Instr*>(instructions); |
| 177 for (int i = 0; i < instruction_count; i++) { |
| 178 *(pc + i) = *(instr + i); |
| 179 } |
| 180 |
| 181 // Indicate that code has changed. |
| 182 CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); |
| 183 } |
| 184 |
| 185 |
| 186 // Patch the code at the current PC with a call to the target address. |
| 187 // Additional guard instructions can be added if required. |
| 188 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { |
| 189 // Patch the code at the current address with a call to the target. |
| 190 UNIMPLEMENTED(); |
| 191 } |
| 192 |
| 193 |
| 194 // ----------------------------------------------------------------------------- |
| 195 // Implementation of Operand and MemOperand |
| 196 // See assembler-thumb2-inl.h for inlined constructors |
| 197 |
| 198 Operand::Operand(Handle<Object> handle) { |
| 199 rm_ = no_reg; |
| 200 // Verify all Objects referred by code are NOT in new space. |
| 201 Object* obj = *handle; |
| 202 ASSERT(!Heap::InNewSpace(obj)); |
| 203 if (obj->IsHeapObject()) { |
| 204 imm32_ = reinterpret_cast<intptr_t>(handle.location()); |
| 205 rmode_ = RelocInfo::EMBEDDED_OBJECT; |
| 206 } else { |
| 207 // no relocation needed |
| 208 imm32_ = reinterpret_cast<intptr_t>(obj); |
| 209 rmode_ = RelocInfo::NONE; |
| 210 } |
| 211 } |
| 212 |
| 213 |
| 214 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) { |
| 215 ASSERT(is_uint5(shift_imm)); |
| 216 ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it |
| 217 rm_ = rm; |
| 218 rs_ = no_reg; |
| 219 shift_op_ = shift_op; |
| 220 shift_imm_ = shift_imm & 31; |
| 221 if (shift_op == RRX) { |
| 222 // encoded as ROR with shift_imm == 0 |
| 223 ASSERT(shift_imm == 0); |
| 224 shift_op_ = ROR; |
| 225 shift_imm_ = 0; |
| 226 } |
| 227 } |
| 228 |
| 229 |
| 230 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) { |
| 231 ASSERT(shift_op != RRX); |
| 232 rm_ = rm; |
| 233 rs_ = no_reg; |
| 234 shift_op_ = shift_op; |
| 235 rs_ = rs; |
| 236 } |
| 237 |
| 238 |
| 239 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) { |
| 240 rn_ = rn; |
| 241 rm_ = no_reg; |
| 242 offset_ = offset; |
| 243 am_ = am; |
| 244 } |
| 245 |
| 246 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) { |
| 247 rn_ = rn; |
| 248 rm_ = rm; |
| 249 shift_op_ = LSL; |
| 250 shift_imm_ = 0; |
| 251 am_ = am; |
| 252 } |
| 253 |
| 254 |
| 255 MemOperand::MemOperand(Register rn, Register rm, |
| 256 ShiftOp shift_op, int shift_imm, AddrMode am) { |
| 257 ASSERT(is_uint5(shift_imm)); |
| 258 rn_ = rn; |
| 259 rm_ = rm; |
| 260 shift_op_ = shift_op; |
| 261 shift_imm_ = shift_imm & 31; |
| 262 am_ = am; |
| 263 } |
| 264 |
| 265 |
| 266 // ----------------------------------------------------------------------------- |
| 267 // Implementation of Assembler |
| 268 |
| 269 // Instruction encoding bits |
| 270 enum { |
| 271 H = 1 << 5, // halfword (or byte) |
| 272 S6 = 1 << 6, // signed (or unsigned) |
| 273 L = 1 << 20, // load (or store) |
| 274 S = 1 << 20, // set condition code (or leave unchanged) |
| 275 W = 1 << 21, // writeback base register (or leave unchanged) |
| 276 A = 1 << 21, // accumulate in multiply instruction (or not) |
| 277 B = 1 << 22, // unsigned byte (or word) |
| 278 N = 1 << 22, // long (or short) |
| 279 U = 1 << 23, // positive (or negative) offset/index |
| 280 P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing) |
| 281 I = 1 << 25, // immediate shifter operand (or not) |
| 282 |
| 283 B4 = 1 << 4, |
| 284 B5 = 1 << 5, |
| 285 B6 = 1 << 6, |
| 286 B7 = 1 << 7, |
| 287 B8 = 1 << 8, |
| 288 B9 = 1 << 9, |
| 289 B12 = 1 << 12, |
| 290 B16 = 1 << 16, |
| 291 B18 = 1 << 18, |
| 292 B19 = 1 << 19, |
| 293 B20 = 1 << 20, |
| 294 B21 = 1 << 21, |
| 295 B22 = 1 << 22, |
| 296 B23 = 1 << 23, |
| 297 B24 = 1 << 24, |
| 298 B25 = 1 << 25, |
| 299 B26 = 1 << 26, |
| 300 B27 = 1 << 27, |
| 301 |
| 302 // Instruction bit masks |
| 303 RdMask = 15 << 12, // in str instruction |
| 304 CondMask = 15 << 28, |
| 305 CoprocessorMask = 15 << 8, |
| 306 OpCodeMask = 15 << 21, // in data-processing instructions |
| 307 Imm24Mask = (1 << 24) - 1, |
| 308 Off12Mask = (1 << 12) - 1, |
| 309 // Reserved condition |
| 310 nv = 15 << 28 |
| 311 }; |
| 312 |
| 313 |
| 314 // add(sp, sp, 4) instruction (aka Pop()) |
| 315 static const Instr kPopInstruction = |
| 316 al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12; |
| 317 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) |
| 318 // register r is not encoded. |
| 319 static const Instr kPushRegPattern = |
| 320 al | B26 | 4 | NegPreIndex | sp.code() * B16; |
| 321 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) |
| 322 // register r is not encoded. |
| 323 static const Instr kPopRegPattern = |
| 324 al | B26 | L | 4 | PostIndex | sp.code() * B16; |
| 325 // mov lr, pc |
| 326 const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12; |
| 327 // ldr pc, [pc, #XXX] |
| 328 const Instr kLdrPCPattern = al | B26 | L | pc.code() * B16; |
| 329 |
| 330 // spare_buffer_ |
| 331 static const int kMinimalBufferSize = 4*KB; |
| 332 static byte* spare_buffer_ = NULL; |
| 333 |
| 334 Assembler::Assembler(void* buffer, int buffer_size) { |
| 335 if (buffer == NULL) { |
| 336 // do our own buffer management |
| 337 if (buffer_size <= kMinimalBufferSize) { |
| 338 buffer_size = kMinimalBufferSize; |
| 339 |
| 340 if (spare_buffer_ != NULL) { |
| 341 buffer = spare_buffer_; |
| 342 spare_buffer_ = NULL; |
| 343 } |
| 344 } |
| 345 if (buffer == NULL) { |
| 346 buffer_ = NewArray<byte>(buffer_size); |
| 347 } else { |
| 348 buffer_ = static_cast<byte*>(buffer); |
| 349 } |
| 350 buffer_size_ = buffer_size; |
| 351 own_buffer_ = true; |
| 352 |
| 353 } else { |
| 354 // use externally provided buffer instead |
| 355 ASSERT(buffer_size > 0); |
| 356 buffer_ = static_cast<byte*>(buffer); |
| 357 buffer_size_ = buffer_size; |
| 358 own_buffer_ = false; |
| 359 } |
| 360 |
| 361 // setup buffer pointers |
| 362 ASSERT(buffer_ != NULL); |
| 363 pc_ = buffer_; |
| 364 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
| 365 num_prinfo_ = 0; |
| 366 next_buffer_check_ = 0; |
| 367 no_const_pool_before_ = 0; |
| 368 last_const_pool_end_ = 0; |
| 369 last_bound_pos_ = 0; |
| 370 current_statement_position_ = RelocInfo::kNoPosition; |
| 371 current_position_ = RelocInfo::kNoPosition; |
| 372 written_statement_position_ = current_statement_position_; |
| 373 written_position_ = current_position_; |
| 374 } |
| 375 |
| 376 |
| 377 Assembler::~Assembler() { |
| 378 if (own_buffer_) { |
| 379 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { |
| 380 spare_buffer_ = buffer_; |
| 381 } else { |
| 382 DeleteArray(buffer_); |
| 383 } |
| 384 } |
| 385 } |
| 386 |
| 387 |
| 388 void Assembler::GetCode(CodeDesc* desc) { |
| 389 // emit constant pool if necessary |
| 390 CheckConstPool(true, false); |
| 391 ASSERT(num_prinfo_ == 0); |
| 392 |
| 393 // setup desc |
| 394 desc->buffer = buffer_; |
| 395 desc->buffer_size = buffer_size_; |
| 396 desc->instr_size = pc_offset(); |
| 397 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| 398 } |
| 399 |
| 400 |
| 401 void Assembler::Align(int m) { |
| 402 ASSERT(m >= 4 && IsPowerOf2(m)); |
| 403 while ((pc_offset() & (m - 1)) != 0) { |
| 404 nop(); |
| 405 } |
| 406 } |
| 407 |
| 408 |
| 409 // Labels refer to positions in the (to be) generated code. |
| 410 // There are bound, linked, and unused labels. |
| 411 // |
| 412 // Bound labels refer to known positions in the already |
| 413 // generated code. pos() is the position the label refers to. |
| 414 // |
| 415 // Linked labels refer to unknown positions in the code |
| 416 // to be generated; pos() is the position of the last |
| 417 // instruction using the label. |
| 418 |
| 419 |
| 420 // The link chain is terminated by a negative code position (must be aligned) |
| 421 const int kEndOfChain = -4; |
| 422 |
| 423 |
| 424 int Assembler::target_at(int pos) { |
| 425 Instr instr = instr_at(pos); |
| 426 if ((instr & ~Imm24Mask) == 0) { |
| 427 // Emitted label constant, not part of a branch. |
| 428 return instr - (Code::kHeaderSize - kHeapObjectTag); |
| 429 } |
| 430 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 |
| 431 int imm26 = ((instr & Imm24Mask) << 8) >> 6; |
| 432 if ((instr & CondMask) == nv && (instr & B24) != 0) |
| 433 // blx uses bit 24 to encode bit 2 of imm26 |
| 434 imm26 += 2; |
| 435 |
| 436 return pos + kPcLoadDelta + imm26; |
| 437 } |
| 438 |
| 439 |
| 440 void Assembler::target_at_put(int pos, int target_pos) { |
| 441 Instr instr = instr_at(pos); |
| 442 if ((instr & ~Imm24Mask) == 0) { |
| 443 ASSERT(target_pos == kEndOfChain || target_pos >= 0); |
| 444 // Emitted label constant, not part of a branch. |
| 445 // Make label relative to Code* of generated Code object. |
| 446 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| 447 return; |
| 448 } |
| 449 int imm26 = target_pos - (pos + kPcLoadDelta); |
| 450 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 |
| 451 if ((instr & CondMask) == nv) { |
| 452 // blx uses bit 24 to encode bit 2 of imm26 |
| 453 ASSERT((imm26 & 1) == 0); |
| 454 instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24; |
| 455 } else { |
| 456 ASSERT((imm26 & 3) == 0); |
| 457 instr &= ~Imm24Mask; |
| 458 } |
| 459 int imm24 = imm26 >> 2; |
| 460 ASSERT(is_int24(imm24)); |
| 461 instr_at_put(pos, instr | (imm24 & Imm24Mask)); |
| 462 } |
| 463 |
| 464 |
| 465 void Assembler::print(Label* L) { |
| 466 if (L->is_unused()) { |
| 467 PrintF("unused label\n"); |
| 468 } else if (L->is_bound()) { |
| 469 PrintF("bound label to %d\n", L->pos()); |
| 470 } else if (L->is_linked()) { |
| 471 Label l = *L; |
| 472 PrintF("unbound label"); |
| 473 while (l.is_linked()) { |
| 474 PrintF("@ %d ", l.pos()); |
| 475 Instr instr = instr_at(l.pos()); |
| 476 if ((instr & ~Imm24Mask) == 0) { |
| 477 PrintF("value\n"); |
| 478 } else { |
| 479 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx |
| 480 int cond = instr & CondMask; |
| 481 const char* b; |
| 482 const char* c; |
| 483 if (cond == nv) { |
| 484 b = "blx"; |
| 485 c = ""; |
| 486 } else { |
| 487 if ((instr & B24) != 0) |
| 488 b = "bl"; |
| 489 else |
| 490 b = "b"; |
| 491 |
| 492 switch (cond) { |
| 493 case eq: c = "eq"; break; |
| 494 case ne: c = "ne"; break; |
| 495 case hs: c = "hs"; break; |
| 496 case lo: c = "lo"; break; |
| 497 case mi: c = "mi"; break; |
| 498 case pl: c = "pl"; break; |
| 499 case vs: c = "vs"; break; |
| 500 case vc: c = "vc"; break; |
| 501 case hi: c = "hi"; break; |
| 502 case ls: c = "ls"; break; |
| 503 case ge: c = "ge"; break; |
| 504 case lt: c = "lt"; break; |
| 505 case gt: c = "gt"; break; |
| 506 case le: c = "le"; break; |
| 507 case al: c = ""; break; |
| 508 default: |
| 509 c = ""; |
| 510 UNREACHABLE(); |
| 511 } |
| 512 } |
| 513 PrintF("%s%s\n", b, c); |
| 514 } |
| 515 next(&l); |
| 516 } |
| 517 } else { |
| 518 PrintF("label in inconsistent state (pos = %d)\n", L->pos_); |
| 519 } |
| 520 } |
| 521 |
| 522 |
| 523 void Assembler::bind_to(Label* L, int pos) { |
| 524 ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position |
| 525 while (L->is_linked()) { |
| 526 int fixup_pos = L->pos(); |
| 527 next(L); // call next before overwriting link with target at fixup_pos |
| 528 target_at_put(fixup_pos, pos); |
| 529 } |
| 530 L->bind_to(pos); |
| 531 |
| 532 // Keep track of the last bound label so we don't eliminate any instructions |
| 533 // before a bound label. |
| 534 if (pos > last_bound_pos_) |
| 535 last_bound_pos_ = pos; |
| 536 } |
| 537 |
| 538 |
| 539 void Assembler::link_to(Label* L, Label* appendix) { |
| 540 if (appendix->is_linked()) { |
| 541 if (L->is_linked()) { |
| 542 // append appendix to L's list |
| 543 int fixup_pos; |
| 544 int link = L->pos(); |
| 545 do { |
| 546 fixup_pos = link; |
| 547 link = target_at(fixup_pos); |
| 548 } while (link > 0); |
| 549 ASSERT(link == kEndOfChain); |
| 550 target_at_put(fixup_pos, appendix->pos()); |
| 551 } else { |
| 552 // L is empty, simply use appendix |
| 553 *L = *appendix; |
| 554 } |
| 555 } |
| 556 appendix->Unuse(); // appendix should not be used anymore |
| 557 } |
| 558 |
| 559 |
| 560 void Assembler::bind(Label* L) { |
| 561 ASSERT(!L->is_bound()); // label can only be bound once |
| 562 bind_to(L, pc_offset()); |
| 563 } |
| 564 |
| 565 |
| 566 void Assembler::next(Label* L) { |
| 567 ASSERT(L->is_linked()); |
| 568 int link = target_at(L->pos()); |
| 569 if (link > 0) { |
| 570 L->link_to(link); |
| 571 } else { |
| 572 ASSERT(link == kEndOfChain); |
| 573 L->Unuse(); |
| 574 } |
| 575 } |
| 576 |
| 577 |
| 578 // Low-level code emission routines depending on the addressing mode |
| 579 static bool fits_shifter(uint32_t imm32, |
| 580 uint32_t* rotate_imm, |
| 581 uint32_t* immed_8, |
| 582 Instr* instr) { |
| 583 // imm32 must be unsigned |
| 584 for (int rot = 0; rot < 16; rot++) { |
| 585 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot)); |
| 586 if ((imm8 <= 0xff)) { |
| 587 *rotate_imm = rot; |
| 588 *immed_8 = imm8; |
| 589 return true; |
| 590 } |
| 591 } |
| 592 // if the opcode is mov or mvn and if ~imm32 fits, change the opcode |
| 593 if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) { |
| 594 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { |
| 595 *instr ^= 0x2*B21; |
| 596 return true; |
| 597 } |
| 598 } |
| 599 return false; |
| 600 } |
| 601 |
| 602 |
| 603 // We have to use the temporary register for things that can be relocated even |
| 604 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction |
| 605 // space. There is no guarantee that the relocated location can be similarly |
| 606 // encoded. |
| 607 static bool MustUseIp(RelocInfo::Mode rmode) { |
| 608 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
| 609 #ifdef DEBUG |
| 610 if (!Serializer::enabled()) { |
| 611 Serializer::TooLateToEnableNow(); |
| 612 } |
| 613 #endif |
| 614 return Serializer::enabled(); |
| 615 } else if (rmode == RelocInfo::NONE) { |
| 616 return false; |
| 617 } |
| 618 return true; |
| 619 } |
| 620 |
| 621 |
| 622 void Assembler::addrmod1(Instr instr, |
| 623 Register rn, |
| 624 Register rd, |
| 625 const Operand& x) { |
| 626 CheckBuffer(); |
| 627 ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0); |
| 628 if (!x.rm_.is_valid()) { |
| 629 // immediate |
| 630 uint32_t rotate_imm; |
| 631 uint32_t immed_8; |
| 632 if (MustUseIp(x.rmode_) || |
| 633 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) { |
| 634 // The immediate operand cannot be encoded as a shifter operand, so load |
| 635 // it first to register ip and change the original instruction to use ip. |
| 636 // However, if the original instruction is a 'mov rd, x' (not setting the |
| 637 // condition code), then replace it with a 'ldr rd, [pc]' |
| 638 RecordRelocInfo(x.rmode_, x.imm32_); |
| 639 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed |
| 640 Condition cond = static_cast<Condition>(instr & CondMask); |
| 641 if ((instr & ~CondMask) == 13*B21) { // mov, S not set |
| 642 ldr(rd, MemOperand(pc, 0), cond); |
| 643 } else { |
| 644 ldr(ip, MemOperand(pc, 0), cond); |
| 645 addrmod1(instr, rn, rd, Operand(ip)); |
| 646 } |
| 647 return; |
| 648 } |
| 649 instr |= I | rotate_imm*B8 | immed_8; |
| 650 } else if (!x.rs_.is_valid()) { |
| 651 // immediate shift |
| 652 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); |
| 653 } else { |
| 654 // register shift |
| 655 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc)); |
| 656 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code(); |
| 657 } |
| 658 emit(instr | rn.code()*B16 | rd.code()*B12); |
| 659 if (rn.is(pc) || x.rm_.is(pc)) |
| 660 // block constant pool emission for one instruction after reading pc |
| 661 BlockConstPoolBefore(pc_offset() + kInstrSize); |
| 662 } |
| 663 |
| 664 |
| 665 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) { |
| 666 ASSERT((instr & ~(CondMask | B | L)) == B26); |
| 667 int am = x.am_; |
| 668 if (!x.rm_.is_valid()) { |
| 669 // immediate offset |
| 670 int offset_12 = x.offset_; |
| 671 if (offset_12 < 0) { |
| 672 offset_12 = -offset_12; |
| 673 am ^= U; |
| 674 } |
| 675 if (!is_uint12(offset_12)) { |
| 676 // immediate offset cannot be encoded, load it first to register ip |
| 677 // rn (and rd in a load) should never be ip, or will be trashed |
| 678 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
| 679 mov(ip, Operand(x.offset_), LeaveCC, |
| 680 static_cast<Condition>(instr & CondMask)); |
| 681 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
| 682 return; |
| 683 } |
| 684 ASSERT(offset_12 >= 0); // no masking needed |
| 685 instr |= offset_12; |
| 686 } else { |
| 687 // register offset (shift_imm_ and shift_op_ are 0) or scaled |
| 688 // register offset the constructors make sure than both shift_imm_ |
| 689 // and shift_op_ are initialized |
| 690 ASSERT(!x.rm_.is(pc)); |
| 691 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); |
| 692 } |
| 693 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
| 694 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); |
| 695 } |
| 696 |
| 697 |
| 698 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) { |
| 699 ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7)); |
| 700 ASSERT(x.rn_.is_valid()); |
| 701 int am = x.am_; |
| 702 if (!x.rm_.is_valid()) { |
| 703 // immediate offset |
| 704 int offset_8 = x.offset_; |
| 705 if (offset_8 < 0) { |
| 706 offset_8 = -offset_8; |
| 707 am ^= U; |
| 708 } |
| 709 if (!is_uint8(offset_8)) { |
| 710 // immediate offset cannot be encoded, load it first to register ip |
| 711 // rn (and rd in a load) should never be ip, or will be trashed |
| 712 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
| 713 mov(ip, Operand(x.offset_), LeaveCC, |
| 714 static_cast<Condition>(instr & CondMask)); |
| 715 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
| 716 return; |
| 717 } |
| 718 ASSERT(offset_8 >= 0); // no masking needed |
| 719 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf); |
| 720 } else if (x.shift_imm_ != 0) { |
| 721 // scaled register offset not supported, load index first |
| 722 // rn (and rd in a load) should never be ip, or will be trashed |
| 723 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
| 724 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, |
| 725 static_cast<Condition>(instr & CondMask)); |
| 726 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
| 727 return; |
| 728 } else { |
| 729 // register offset |
| 730 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback |
| 731 instr |= x.rm_.code(); |
| 732 } |
| 733 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
| 734 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); |
| 735 } |
| 736 |
| 737 |
| 738 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) { |
| 739 ASSERT((instr & ~(CondMask | P | U | W | L)) == B27); |
| 740 ASSERT(rl != 0); |
| 741 ASSERT(!rn.is(pc)); |
| 742 emit(instr | rn.code()*B16 | rl); |
| 743 } |
| 744 |
| 745 |
| 746 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) { |
| 747 // unindexed addressing is not encoded by this function |
| 748 ASSERT_EQ((B27 | B26), |
| 749 (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L))); |
| 750 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid()); |
| 751 int am = x.am_; |
| 752 int offset_8 = x.offset_; |
| 753 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset |
| 754 offset_8 >>= 2; |
| 755 if (offset_8 < 0) { |
| 756 offset_8 = -offset_8; |
| 757 am ^= U; |
| 758 } |
| 759 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte |
| 760 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
| 761 |
| 762 // post-indexed addressing requires W == 1; different than in addrmod2/3 |
| 763 if ((am & P) == 0) |
| 764 am |= W; |
| 765 |
| 766 ASSERT(offset_8 >= 0); // no masking needed |
| 767 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8); |
| 768 } |
| 769 |
| 770 |
| 771 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { |
| 772 int target_pos; |
| 773 if (L->is_bound()) { |
| 774 target_pos = L->pos(); |
| 775 } else { |
| 776 if (L->is_linked()) { |
| 777 target_pos = L->pos(); // L's link |
| 778 } else { |
| 779 target_pos = kEndOfChain; |
| 780 } |
| 781 L->link_to(pc_offset()); |
| 782 } |
| 783 |
| 784 // Block the emission of the constant pool, since the branch instruction must |
| 785 // be emitted at the pc offset recorded by the label |
| 786 BlockConstPoolBefore(pc_offset() + kInstrSize); |
| 787 return target_pos - (pc_offset() + kPcLoadDelta); |
| 788 } |
| 789 |
| 790 |
| 791 void Assembler::label_at_put(Label* L, int at_offset) { |
| 792 int target_pos; |
| 793 if (L->is_bound()) { |
| 794 target_pos = L->pos(); |
| 795 } else { |
| 796 if (L->is_linked()) { |
| 797 target_pos = L->pos(); // L's link |
| 798 } else { |
| 799 target_pos = kEndOfChain; |
| 800 } |
| 801 L->link_to(at_offset); |
| 802 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| 803 } |
| 804 } |
| 805 |
| 806 |
| 807 // Branch instructions |
| 808 void Assembler::b(int branch_offset, Condition cond) { |
| 809 ASSERT((branch_offset & 3) == 0); |
| 810 int imm24 = branch_offset >> 2; |
| 811 ASSERT(is_int24(imm24)); |
| 812 emit(cond | B27 | B25 | (imm24 & Imm24Mask)); |
| 813 |
| 814 if (cond == al) |
| 815 // dead code is a good location to emit the constant pool |
| 816 CheckConstPool(false, false); |
| 817 } |
| 818 |
| 819 |
| 820 void Assembler::bl(int branch_offset, Condition cond) { |
| 821 ASSERT((branch_offset & 3) == 0); |
| 822 int imm24 = branch_offset >> 2; |
| 823 ASSERT(is_int24(imm24)); |
| 824 emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask)); |
| 825 } |
| 826 |
| 827 |
| 828 void Assembler::blx(int branch_offset) { // v5 and above |
| 829 WriteRecordedPositions(); |
| 830 ASSERT((branch_offset & 1) == 0); |
| 831 int h = ((branch_offset & 2) >> 1)*B24; |
| 832 int imm24 = branch_offset >> 2; |
| 833 ASSERT(is_int24(imm24)); |
| 834 emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask)); |
| 835 } |
| 836 |
| 837 |
| 838 void Assembler::blx(Register target, Condition cond) { // v5 and above |
| 839 WriteRecordedPositions(); |
| 840 ASSERT(!target.is(pc)); |
| 841 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code()); |
| 842 } |
| 843 |
| 844 |
| 845 void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t |
| 846 WriteRecordedPositions(); |
| 847 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged |
| 848 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code()); |
| 849 } |
| 850 |
| 851 |
| 852 // Data-processing instructions |
| 853 void Assembler::and_(Register dst, Register src1, const Operand& src2, |
| 854 SBit s, Condition cond) { |
| 855 addrmod1(cond | 0*B21 | s, src1, dst, src2); |
| 856 } |
| 857 |
| 858 |
| 859 void Assembler::eor(Register dst, Register src1, const Operand& src2, |
| 860 SBit s, Condition cond) { |
| 861 addrmod1(cond | 1*B21 | s, src1, dst, src2); |
| 862 } |
| 863 |
| 864 |
| 865 void Assembler::sub(Register dst, Register src1, const Operand& src2, |
| 866 SBit s, Condition cond) { |
| 867 addrmod1(cond | 2*B21 | s, src1, dst, src2); |
| 868 } |
| 869 |
| 870 |
| 871 void Assembler::rsb(Register dst, Register src1, const Operand& src2, |
| 872 SBit s, Condition cond) { |
| 873 addrmod1(cond | 3*B21 | s, src1, dst, src2); |
| 874 } |
| 875 |
| 876 |
| 877 void Assembler::add(Register dst, Register src1, const Operand& src2, |
| 878 SBit s, Condition cond) { |
| 879 addrmod1(cond | 4*B21 | s, src1, dst, src2); |
| 880 |
| 881 // Eliminate pattern: push(r), pop() |
| 882 // str(src, MemOperand(sp, 4, NegPreIndex), al); |
| 883 // add(sp, sp, Operand(kPointerSize)); |
| 884 // Both instructions can be eliminated. |
| 885 int pattern_size = 2 * kInstrSize; |
| 886 if (FLAG_push_pop_elimination && |
| 887 last_bound_pos_ <= (pc_offset() - pattern_size) && |
| 888 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && |
| 889 // pattern |
| 890 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && |
| 891 (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) { |
| 892 pc_ -= 2 * kInstrSize; |
| 893 if (FLAG_print_push_pop_elimination) { |
| 894 PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); |
| 895 } |
| 896 } |
| 897 } |
| 898 |
| 899 |
| 900 void Assembler::adc(Register dst, Register src1, const Operand& src2, |
| 901 SBit s, Condition cond) { |
| 902 addrmod1(cond | 5*B21 | s, src1, dst, src2); |
| 903 } |
| 904 |
| 905 |
| 906 void Assembler::sbc(Register dst, Register src1, const Operand& src2, |
| 907 SBit s, Condition cond) { |
| 908 addrmod1(cond | 6*B21 | s, src1, dst, src2); |
| 909 } |
| 910 |
| 911 |
| 912 void Assembler::rsc(Register dst, Register src1, const Operand& src2, |
| 913 SBit s, Condition cond) { |
| 914 addrmod1(cond | 7*B21 | s, src1, dst, src2); |
| 915 } |
| 916 |
| 917 |
| 918 void Assembler::tst(Register src1, const Operand& src2, Condition cond) { |
| 919 addrmod1(cond | 8*B21 | S, src1, r0, src2); |
| 920 } |
| 921 |
| 922 |
| 923 void Assembler::teq(Register src1, const Operand& src2, Condition cond) { |
| 924 addrmod1(cond | 9*B21 | S, src1, r0, src2); |
| 925 } |
| 926 |
| 927 |
| 928 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) { |
| 929 addrmod1(cond | 10*B21 | S, src1, r0, src2); |
| 930 } |
| 931 |
| 932 |
| 933 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) { |
| 934 addrmod1(cond | 11*B21 | S, src1, r0, src2); |
| 935 } |
| 936 |
| 937 |
| 938 void Assembler::orr(Register dst, Register src1, const Operand& src2, |
| 939 SBit s, Condition cond) { |
| 940 addrmod1(cond | 12*B21 | s, src1, dst, src2); |
| 941 } |
| 942 |
| 943 |
| 944 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) { |
| 945 if (dst.is(pc)) { |
| 946 WriteRecordedPositions(); |
| 947 } |
| 948 addrmod1(cond | 13*B21 | s, r0, dst, src); |
| 949 } |
| 950 |
| 951 |
| 952 void Assembler::bic(Register dst, Register src1, const Operand& src2, |
| 953 SBit s, Condition cond) { |
| 954 addrmod1(cond | 14*B21 | s, src1, dst, src2); |
| 955 } |
| 956 |
| 957 |
| 958 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { |
| 959 addrmod1(cond | 15*B21 | s, r0, dst, src); |
| 960 } |
| 961 |
| 962 |
| 963 // Multiply instructions |
| 964 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, |
| 965 SBit s, Condition cond) { |
| 966 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); |
| 967 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 | |
| 968 src2.code()*B8 | B7 | B4 | src1.code()); |
| 969 } |
| 970 |
| 971 |
| 972 void Assembler::mul(Register dst, Register src1, Register src2, |
| 973 SBit s, Condition cond) { |
| 974 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc)); |
| 975 // dst goes in bits 16-19 for this instruction! |
| 976 emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code()); |
| 977 } |
| 978 |
| 979 |
| 980 void Assembler::smlal(Register dstL, |
| 981 Register dstH, |
| 982 Register src1, |
| 983 Register src2, |
| 984 SBit s, |
| 985 Condition cond) { |
| 986 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); |
| 987 ASSERT(!dstL.is(dstH)); |
| 988 emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 | |
| 989 src2.code()*B8 | B7 | B4 | src1.code()); |
| 990 } |
| 991 |
| 992 |
| 993 void Assembler::smull(Register dstL, |
| 994 Register dstH, |
| 995 Register src1, |
| 996 Register src2, |
| 997 SBit s, |
| 998 Condition cond) { |
| 999 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); |
| 1000 ASSERT(!dstL.is(dstH)); |
| 1001 emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 | |
| 1002 src2.code()*B8 | B7 | B4 | src1.code()); |
| 1003 } |
| 1004 |
| 1005 |
| 1006 void Assembler::umlal(Register dstL, |
| 1007 Register dstH, |
| 1008 Register src1, |
| 1009 Register src2, |
| 1010 SBit s, |
| 1011 Condition cond) { |
| 1012 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); |
| 1013 ASSERT(!dstL.is(dstH)); |
| 1014 emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 | |
| 1015 src2.code()*B8 | B7 | B4 | src1.code()); |
| 1016 } |
| 1017 |
| 1018 |
| 1019 void Assembler::umull(Register dstL, |
| 1020 Register dstH, |
| 1021 Register src1, |
| 1022 Register src2, |
| 1023 SBit s, |
| 1024 Condition cond) { |
| 1025 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); |
| 1026 ASSERT(!dstL.is(dstH)); |
| 1027 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 | |
| 1028 src2.code()*B8 | B7 | B4 | src1.code()); |
| 1029 } |
| 1030 |
| 1031 |
| 1032 // Miscellaneous arithmetic instructions |
| 1033 void Assembler::clz(Register dst, Register src, Condition cond) { |
| 1034 // v5 and above. |
| 1035 ASSERT(!dst.is(pc) && !src.is(pc)); |
| 1036 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 | |
| 1037 15*B8 | B4 | src.code()); |
| 1038 } |
| 1039 |
| 1040 |
| 1041 // Status register access instructions |
| 1042 void Assembler::mrs(Register dst, SRegister s, Condition cond) { |
| 1043 ASSERT(!dst.is(pc)); |
| 1044 emit(cond | B24 | s | 15*B16 | dst.code()*B12); |
| 1045 } |
| 1046 |
| 1047 |
| 1048 void Assembler::msr(SRegisterFieldMask fields, const Operand& src, |
| 1049 Condition cond) { |
| 1050 ASSERT(fields >= B16 && fields < B20); // at least one field set |
| 1051 Instr instr; |
| 1052 if (!src.rm_.is_valid()) { |
| 1053 // immediate |
| 1054 uint32_t rotate_imm; |
| 1055 uint32_t immed_8; |
| 1056 if (MustUseIp(src.rmode_) || |
| 1057 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) { |
| 1058 // immediate operand cannot be encoded, load it first to register ip |
| 1059 RecordRelocInfo(src.rmode_, src.imm32_); |
| 1060 ldr(ip, MemOperand(pc, 0), cond); |
| 1061 msr(fields, Operand(ip), cond); |
| 1062 return; |
| 1063 } |
| 1064 instr = I | rotate_imm*B8 | immed_8; |
| 1065 } else { |
| 1066 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed |
| 1067 instr = src.rm_.code(); |
| 1068 } |
| 1069 emit(cond | instr | B24 | B21 | fields | 15*B12); |
| 1070 } |
| 1071 |
| 1072 |
| 1073 // Load/Store instructions |
| 1074 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { |
| 1075 if (dst.is(pc)) { |
| 1076 WriteRecordedPositions(); |
| 1077 } |
| 1078 addrmod2(cond | B26 | L, dst, src); |
| 1079 |
| 1080 // Eliminate pattern: push(r), pop(r) |
| 1081 // str(r, MemOperand(sp, 4, NegPreIndex), al) |
| 1082 // ldr(r, MemOperand(sp, 4, PostIndex), al) |
| 1083 // Both instructions can be eliminated. |
| 1084 int pattern_size = 2 * kInstrSize; |
| 1085 if (FLAG_push_pop_elimination && |
| 1086 last_bound_pos_ <= (pc_offset() - pattern_size) && |
| 1087 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && |
| 1088 // pattern |
| 1089 instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) && |
| 1090 instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) { |
| 1091 pc_ -= 2 * kInstrSize; |
| 1092 if (FLAG_print_push_pop_elimination) { |
| 1093 PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); |
| 1094 } |
| 1095 } |
| 1096 } |
| 1097 |
| 1098 |
| 1099 void Assembler::str(Register src, const MemOperand& dst, Condition cond) { |
| 1100 addrmod2(cond | B26, src, dst); |
| 1101 |
| 1102 // Eliminate pattern: pop(), push(r) |
| 1103 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al |
| 1104 // -> str r, [sp, 0], al |
| 1105 int pattern_size = 2 * kInstrSize; |
| 1106 if (FLAG_push_pop_elimination && |
| 1107 last_bound_pos_ <= (pc_offset() - pattern_size) && |
| 1108 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && |
| 1109 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) && |
| 1110 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) { |
| 1111 pc_ -= 2 * kInstrSize; |
| 1112 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12); |
| 1113 if (FLAG_print_push_pop_elimination) { |
| 1114 PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); |
| 1115 } |
| 1116 } |
| 1117 } |
| 1118 |
| 1119 |
| 1120 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) { |
| 1121 addrmod2(cond | B26 | B | L, dst, src); |
| 1122 } |
| 1123 |
| 1124 |
| 1125 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) { |
| 1126 addrmod2(cond | B26 | B, src, dst); |
| 1127 } |
| 1128 |
| 1129 |
| 1130 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) { |
| 1131 addrmod3(cond | L | B7 | H | B4, dst, src); |
| 1132 } |
| 1133 |
| 1134 |
| 1135 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) { |
| 1136 addrmod3(cond | B7 | H | B4, src, dst); |
| 1137 } |
| 1138 |
| 1139 |
| 1140 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { |
| 1141 addrmod3(cond | L | B7 | S6 | B4, dst, src); |
| 1142 } |
| 1143 |
| 1144 |
| 1145 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { |
| 1146 addrmod3(cond | L | B7 | S6 | H | B4, dst, src); |
| 1147 } |
| 1148 |
| 1149 |
| 1150 // Load/Store multiple instructions |
| 1151 void Assembler::ldm(BlockAddrMode am, |
| 1152 Register base, |
| 1153 RegList dst, |
| 1154 Condition cond) { |
| 1155 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable |
| 1156 ASSERT(base.is(sp) || (dst & sp.bit()) == 0); |
| 1157 |
| 1158 addrmod4(cond | B27 | am | L, base, dst); |
| 1159 |
| 1160 // emit the constant pool after a function return implemented by ldm ..{..pc} |
| 1161 if (cond == al && (dst & pc.bit()) != 0) { |
| 1162 // There is a slight chance that the ldm instruction was actually a call, |
| 1163 // in which case it would be wrong to return into the constant pool; we |
| 1164 // recognize this case by checking if the emission of the pool was blocked |
| 1165 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is |
| 1166 // the case, we emit a jump over the pool. |
| 1167 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); |
| 1168 } |
| 1169 } |
| 1170 |
| 1171 |
| 1172 void Assembler::stm(BlockAddrMode am, |
| 1173 Register base, |
| 1174 RegList src, |
| 1175 Condition cond) { |
| 1176 addrmod4(cond | B27 | am, base, src); |
| 1177 } |
| 1178 |
| 1179 |
| 1180 // Semaphore instructions |
| 1181 void Assembler::swp(Register dst, Register src, Register base, Condition cond) { |
| 1182 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); |
| 1183 ASSERT(!dst.is(base) && !src.is(base)); |
| 1184 emit(cond | P | base.code()*B16 | dst.code()*B12 | |
| 1185 B7 | B4 | src.code()); |
| 1186 } |
| 1187 |
| 1188 |
| 1189 void Assembler::swpb(Register dst, |
| 1190 Register src, |
| 1191 Register base, |
| 1192 Condition cond) { |
| 1193 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); |
| 1194 ASSERT(!dst.is(base) && !src.is(base)); |
| 1195 emit(cond | P | B | base.code()*B16 | dst.code()*B12 | |
| 1196 B7 | B4 | src.code()); |
| 1197 } |
| 1198 |
| 1199 |
| 1200 // Exception-generating instructions and debugging support |
| 1201 void Assembler::stop(const char* msg) { |
| 1202 #if !defined(__arm__) |
| 1203 // The simulator handles these special instructions and stops execution. |
| 1204 emit(15 << 28 | ((intptr_t) msg)); |
| 1205 #else |
| 1206 // Just issue a simple break instruction for now. Alternatively we could use |
| 1207 // the swi(0x9f0001) instruction on Linux. |
| 1208 bkpt(0); |
| 1209 #endif |
| 1210 } |
| 1211 |
| 1212 |
| 1213 void Assembler::bkpt(uint32_t imm16) { // v5 and above |
| 1214 ASSERT(is_uint16(imm16)); |
| 1215 emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf)); |
| 1216 } |
| 1217 |
| 1218 |
| 1219 void Assembler::swi(uint32_t imm24, Condition cond) { |
| 1220 ASSERT(is_uint24(imm24)); |
| 1221 emit(cond | 15*B24 | imm24); |
| 1222 } |
| 1223 |
| 1224 |
| 1225 // Coprocessor instructions |
| 1226 void Assembler::cdp(Coprocessor coproc, |
| 1227 int opcode_1, |
| 1228 CRegister crd, |
| 1229 CRegister crn, |
| 1230 CRegister crm, |
| 1231 int opcode_2, |
| 1232 Condition cond) { |
| 1233 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2)); |
| 1234 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 | |
| 1235 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code()); |
| 1236 } |
| 1237 |
| 1238 |
| 1239 void Assembler::cdp2(Coprocessor coproc, |
| 1240 int opcode_1, |
| 1241 CRegister crd, |
| 1242 CRegister crn, |
| 1243 CRegister crm, |
| 1244 int opcode_2) { // v5 and above |
| 1245 cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv)); |
| 1246 } |
| 1247 |
| 1248 |
| 1249 void Assembler::mcr(Coprocessor coproc, |
| 1250 int opcode_1, |
| 1251 Register rd, |
| 1252 CRegister crn, |
| 1253 CRegister crm, |
| 1254 int opcode_2, |
| 1255 Condition cond) { |
| 1256 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); |
| 1257 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 | |
| 1258 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); |
| 1259 } |
| 1260 |
| 1261 |
| 1262 void Assembler::mcr2(Coprocessor coproc, |
| 1263 int opcode_1, |
| 1264 Register rd, |
| 1265 CRegister crn, |
| 1266 CRegister crm, |
| 1267 int opcode_2) { // v5 and above |
| 1268 mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); |
| 1269 } |
| 1270 |
| 1271 |
| 1272 void Assembler::mrc(Coprocessor coproc, |
| 1273 int opcode_1, |
| 1274 Register rd, |
| 1275 CRegister crn, |
| 1276 CRegister crm, |
| 1277 int opcode_2, |
| 1278 Condition cond) { |
| 1279 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); |
| 1280 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 | |
| 1281 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); |
| 1282 } |
| 1283 |
| 1284 |
| 1285 void Assembler::mrc2(Coprocessor coproc, |
| 1286 int opcode_1, |
| 1287 Register rd, |
| 1288 CRegister crn, |
| 1289 CRegister crm, |
| 1290 int opcode_2) { // v5 and above |
| 1291 mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); |
| 1292 } |
| 1293 |
| 1294 |
| 1295 void Assembler::ldc(Coprocessor coproc, |
| 1296 CRegister crd, |
| 1297 const MemOperand& src, |
| 1298 LFlag l, |
| 1299 Condition cond) { |
| 1300 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src); |
| 1301 } |
| 1302 |
| 1303 |
| 1304 void Assembler::ldc(Coprocessor coproc, |
| 1305 CRegister crd, |
| 1306 Register rn, |
| 1307 int option, |
| 1308 LFlag l, |
| 1309 Condition cond) { |
| 1310 // unindexed addressing |
| 1311 ASSERT(is_uint8(option)); |
| 1312 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 | |
| 1313 coproc*B8 | (option & 255)); |
| 1314 } |
| 1315 |
| 1316 |
| 1317 void Assembler::ldc2(Coprocessor coproc, |
| 1318 CRegister crd, |
| 1319 const MemOperand& src, |
| 1320 LFlag l) { // v5 and above |
| 1321 ldc(coproc, crd, src, l, static_cast<Condition>(nv)); |
| 1322 } |
| 1323 |
| 1324 |
| 1325 void Assembler::ldc2(Coprocessor coproc, |
| 1326 CRegister crd, |
| 1327 Register rn, |
| 1328 int option, |
| 1329 LFlag l) { // v5 and above |
| 1330 ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); |
| 1331 } |
| 1332 |
| 1333 |
| 1334 void Assembler::stc(Coprocessor coproc, |
| 1335 CRegister crd, |
| 1336 const MemOperand& dst, |
| 1337 LFlag l, |
| 1338 Condition cond) { |
| 1339 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst); |
| 1340 } |
| 1341 |
| 1342 |
| 1343 void Assembler::stc(Coprocessor coproc, |
| 1344 CRegister crd, |
| 1345 Register rn, |
| 1346 int option, |
| 1347 LFlag l, |
| 1348 Condition cond) { |
| 1349 // unindexed addressing |
| 1350 ASSERT(is_uint8(option)); |
| 1351 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 | |
| 1352 coproc*B8 | (option & 255)); |
| 1353 } |
| 1354 |
| 1355 |
| 1356 void Assembler::stc2(Coprocessor |
| 1357 coproc, CRegister crd, |
| 1358 const MemOperand& dst, |
| 1359 LFlag l) { // v5 and above |
| 1360 stc(coproc, crd, dst, l, static_cast<Condition>(nv)); |
| 1361 } |
| 1362 |
| 1363 |
| 1364 void Assembler::stc2(Coprocessor coproc, |
| 1365 CRegister crd, |
| 1366 Register rn, |
| 1367 int option, |
| 1368 LFlag l) { // v5 and above |
| 1369 stc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); |
| 1370 } |
| 1371 |
| 1372 |
| 1373 // Support for VFP. |
| 1374 void Assembler::fmdrr(const Register dst, |
| 1375 const Register src1, |
| 1376 const Register src2, |
| 1377 const SBit s, |
| 1378 const Condition cond) { |
| 1379 // Dm = <Rt,Rt2>. |
| 1380 // Instruction details available in ARM DDI 0406A, A8-646. |
| 1381 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) | |
| 1382 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm |
| 1383 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1384 ASSERT(!src1.is(pc) && !src2.is(pc)); |
| 1385 emit(cond | 0xC*B24 | B22 | src2.code()*B16 | |
| 1386 src1.code()*B12 | 0xB*B8 | B4 | dst.code()); |
| 1387 } |
| 1388 |
| 1389 |
| 1390 void Assembler::fmrrd(const Register dst1, |
| 1391 const Register dst2, |
| 1392 const Register src, |
| 1393 const SBit s, |
| 1394 const Condition cond) { |
| 1395 // <Rt,Rt2> = Dm. |
| 1396 // Instruction details available in ARM DDI 0406A, A8-646. |
| 1397 // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) | |
| 1398 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm |
| 1399 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1400 ASSERT(!dst1.is(pc) && !dst2.is(pc)); |
| 1401 emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 | |
| 1402 dst1.code()*B12 | 0xB*B8 | B4 | src.code()); |
| 1403 } |
| 1404 |
| 1405 |
| 1406 void Assembler::fmsr(const Register dst, |
| 1407 const Register src, |
| 1408 const SBit s, |
| 1409 const Condition cond) { |
| 1410 // Sn = Rt. |
| 1411 // Instruction details available in ARM DDI 0406A, A8-642. |
| 1412 // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) | |
| 1413 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) |
| 1414 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1415 ASSERT(!src.is(pc)); |
| 1416 emit(cond | 0xE*B24 | (dst.code() >> 1)*B16 | |
| 1417 src.code()*B12 | 0xA*B8 | (0x1 & dst.code())*B7 | B4); |
| 1418 } |
| 1419 |
| 1420 |
| 1421 void Assembler::fmrs(const Register dst, |
| 1422 const Register src, |
| 1423 const SBit s, |
| 1424 const Condition cond) { |
| 1425 // Rt = Sn. |
| 1426 // Instruction details available in ARM DDI 0406A, A8-642. |
| 1427 // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) | |
| 1428 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) |
| 1429 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1430 ASSERT(!dst.is(pc)); |
| 1431 emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 | |
| 1432 dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4); |
| 1433 } |
| 1434 |
| 1435 |
| 1436 void Assembler::fsitod(const Register dst, |
| 1437 const Register src, |
| 1438 const SBit s, |
| 1439 const Condition cond) { |
| 1440 // Dd = Sm (integer in Sm converted to IEEE 64-bit doubles in Dd). |
| 1441 // Instruction details available in ARM DDI 0406A, A8-576. |
| 1442 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) |opc2=000(18-16) | |
| 1443 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=1 | 1(6) | M=?(5) | 0(4) | Vm(3-0) |
| 1444 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1445 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B19 | |
| 1446 dst.code()*B12 | 0x5*B9 | B8 | B7 | B6 | |
| 1447 (0x1 & src.code())*B5 | (src.code() >> 1)); |
| 1448 } |
| 1449 |
| 1450 |
| 1451 void Assembler::ftosid(const Register dst, |
| 1452 const Register src, |
| 1453 const SBit s, |
| 1454 const Condition cond) { |
| 1455 // Sd = Dm (IEEE 64-bit doubles in Dm converted to 32 bit integer in Sd). |
| 1456 // Instruction details available in ARM DDI 0406A, A8-576. |
| 1457 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=101(18-16)| |
| 1458 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=? | 1(6) | M=?(5) | 0(4) | Vm(3-0) |
| 1459 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1460 emit(cond | 0xE*B24 | B23 |(0x1 & dst.code())*B22 | |
| 1461 0x3*B20 | B19 | 0x5*B16 | (dst.code() >> 1)*B12 | |
| 1462 0x5*B9 | B8 | B7 | B6 | src.code()); |
| 1463 } |
| 1464 |
| 1465 |
| 1466 void Assembler::faddd(const Register dst, |
| 1467 const Register src1, |
| 1468 const Register src2, |
| 1469 const SBit s, |
| 1470 const Condition cond) { |
| 1471 // Dd = faddd(Dn, Dm) double precision floating point addition. |
| 1472 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. |
| 1473 // Instruction details available in ARM DDI 0406A, A8-536. |
| 1474 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) | |
| 1475 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0) |
| 1476 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1477 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 | |
| 1478 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); |
| 1479 } |
| 1480 |
| 1481 |
| 1482 void Assembler::fsubd(const Register dst, |
| 1483 const Register src1, |
| 1484 const Register src2, |
| 1485 const SBit s, |
| 1486 const Condition cond) { |
| 1487 // Dd = fsubd(Dn, Dm) double precision floating point subtraction. |
| 1488 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. |
| 1489 // Instruction details available in ARM DDI 0406A, A8-784. |
| 1490 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) | |
| 1491 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0) |
| 1492 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1493 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 | |
| 1494 dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code()); |
| 1495 } |
| 1496 |
| 1497 |
| 1498 void Assembler::fmuld(const Register dst, |
| 1499 const Register src1, |
| 1500 const Register src2, |
| 1501 const SBit s, |
| 1502 const Condition cond) { |
| 1503 // Dd = fmuld(Dn, Dm) double precision floating point multiplication. |
| 1504 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. |
| 1505 // Instruction details available in ARM DDI 0406A, A8-784. |
| 1506 // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) | |
| 1507 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0) |
| 1508 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1509 emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 | |
| 1510 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); |
| 1511 } |
| 1512 |
| 1513 |
| 1514 void Assembler::fdivd(const Register dst, |
| 1515 const Register src1, |
| 1516 const Register src2, |
| 1517 const SBit s, |
| 1518 const Condition cond) { |
| 1519 // Dd = fdivd(Dn, Dm) double precision floating point division. |
| 1520 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. |
| 1521 // Instruction details available in ARM DDI 0406A, A8-584. |
| 1522 // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) | |
| 1523 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0) |
| 1524 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1525 emit(cond | 0xE*B24 | B23 | src1.code()*B16 | |
| 1526 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); |
| 1527 } |
| 1528 |
| 1529 |
| 1530 void Assembler::fcmp(const Register src1, |
| 1531 const Register src2, |
| 1532 const SBit s, |
| 1533 const Condition cond) { |
| 1534 // vcmp(Dd, Dm) double precision floating point comparison. |
| 1535 // Instruction details available in ARM DDI 0406A, A8-570. |
| 1536 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) | |
| 1537 // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=? | 1(6) | M(5)=? | 0(4) | Vm(3-0) |
| 1538 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1539 emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 | |
| 1540 src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code()); |
| 1541 } |
| 1542 |
| 1543 |
| 1544 void Assembler::vmrs(Register dst, Condition cond) { |
| 1545 // Instruction details available in ARM DDI 0406A, A8-652. |
| 1546 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | |
| 1547 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) |
| 1548 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1549 emit(cond | 0xE*B24 | 0xF*B20 | B16 | |
| 1550 dst.code()*B12 | 0xA*B8 | B4); |
| 1551 } |
| 1552 |
| 1553 |
| 1554 // Pseudo instructions |
| 1555 void Assembler::lea(Register dst, |
| 1556 const MemOperand& x, |
| 1557 SBit s, |
| 1558 Condition cond) { |
| 1559 int am = x.am_; |
| 1560 if (!x.rm_.is_valid()) { |
| 1561 // immediate offset |
| 1562 if ((am & P) == 0) // post indexing |
| 1563 mov(dst, Operand(x.rn_), s, cond); |
| 1564 else if ((am & U) == 0) // negative indexing |
| 1565 sub(dst, x.rn_, Operand(x.offset_), s, cond); |
| 1566 else |
| 1567 add(dst, x.rn_, Operand(x.offset_), s, cond); |
| 1568 } else { |
| 1569 // Register offset (shift_imm_ and shift_op_ are 0) or scaled |
| 1570 // register offset the constructors make sure than both shift_imm_ |
| 1571 // and shift_op_ are initialized. |
| 1572 ASSERT(!x.rm_.is(pc)); |
| 1573 if ((am & P) == 0) // post indexing |
| 1574 mov(dst, Operand(x.rn_), s, cond); |
| 1575 else if ((am & U) == 0) // negative indexing |
| 1576 sub(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond); |
| 1577 else |
| 1578 add(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond); |
| 1579 } |
| 1580 } |
| 1581 |
| 1582 |
| 1583 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) { |
| 1584 uint32_t dummy1; |
| 1585 uint32_t dummy2; |
| 1586 return fits_shifter(imm32, &dummy1, &dummy2, NULL); |
| 1587 } |
| 1588 |
| 1589 |
| 1590 void Assembler::BlockConstPoolFor(int instructions) { |
| 1591 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize); |
| 1592 } |
| 1593 |
| 1594 |
| 1595 // Debugging |
| 1596 void Assembler::RecordJSReturn() { |
| 1597 WriteRecordedPositions(); |
| 1598 CheckBuffer(); |
| 1599 RecordRelocInfo(RelocInfo::JS_RETURN); |
| 1600 } |
| 1601 |
| 1602 |
| 1603 void Assembler::RecordComment(const char* msg) { |
| 1604 if (FLAG_debug_code) { |
| 1605 CheckBuffer(); |
| 1606 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
| 1607 } |
| 1608 } |
| 1609 |
| 1610 |
| 1611 void Assembler::RecordPosition(int pos) { |
| 1612 if (pos == RelocInfo::kNoPosition) return; |
| 1613 ASSERT(pos >= 0); |
| 1614 current_position_ = pos; |
| 1615 } |
| 1616 |
| 1617 |
| 1618 void Assembler::RecordStatementPosition(int pos) { |
| 1619 if (pos == RelocInfo::kNoPosition) return; |
| 1620 ASSERT(pos >= 0); |
| 1621 current_statement_position_ = pos; |
| 1622 } |
| 1623 |
| 1624 |
| 1625 void Assembler::WriteRecordedPositions() { |
| 1626 // Write the statement position if it is different from what was written last |
| 1627 // time. |
| 1628 if (current_statement_position_ != written_statement_position_) { |
| 1629 CheckBuffer(); |
| 1630 RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); |
| 1631 written_statement_position_ = current_statement_position_; |
| 1632 } |
| 1633 |
| 1634 // Write the position if it is different from what was written last time and |
| 1635 // also different from the written statement position. |
| 1636 if (current_position_ != written_position_ && |
| 1637 current_position_ != written_statement_position_) { |
| 1638 CheckBuffer(); |
| 1639 RecordRelocInfo(RelocInfo::POSITION, current_position_); |
| 1640 written_position_ = current_position_; |
| 1641 } |
| 1642 } |
| 1643 |
| 1644 |
| 1645 void Assembler::GrowBuffer() { |
| 1646 if (!own_buffer_) FATAL("external code buffer is too small"); |
| 1647 |
| 1648 // compute new buffer size |
| 1649 CodeDesc desc; // the new buffer |
| 1650 if (buffer_size_ < 4*KB) { |
| 1651 desc.buffer_size = 4*KB; |
| 1652 } else if (buffer_size_ < 1*MB) { |
| 1653 desc.buffer_size = 2*buffer_size_; |
| 1654 } else { |
| 1655 desc.buffer_size = buffer_size_ + 1*MB; |
| 1656 } |
| 1657 CHECK_GT(desc.buffer_size, 0); // no overflow |
| 1658 |
| 1659 // setup new buffer |
| 1660 desc.buffer = NewArray<byte>(desc.buffer_size); |
| 1661 |
| 1662 desc.instr_size = pc_offset(); |
| 1663 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| 1664 |
| 1665 // copy the data |
| 1666 int pc_delta = desc.buffer - buffer_; |
| 1667 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); |
| 1668 memmove(desc.buffer, buffer_, desc.instr_size); |
| 1669 memmove(reloc_info_writer.pos() + rc_delta, |
| 1670 reloc_info_writer.pos(), desc.reloc_size); |
| 1671 |
| 1672 // switch buffers |
| 1673 DeleteArray(buffer_); |
| 1674 buffer_ = desc.buffer; |
| 1675 buffer_size_ = desc.buffer_size; |
| 1676 pc_ += pc_delta; |
| 1677 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| 1678 reloc_info_writer.last_pc() + pc_delta); |
| 1679 |
| 1680 // none of our relocation types are pc relative pointing outside the code |
| 1681 // buffer nor pc absolute pointing inside the code buffer, so there is no need |
| 1682 // to relocate any emitted relocation entries |
| 1683 |
| 1684 // relocate pending relocation entries |
| 1685 for (int i = 0; i < num_prinfo_; i++) { |
| 1686 RelocInfo& rinfo = prinfo_[i]; |
| 1687 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && |
| 1688 rinfo.rmode() != RelocInfo::POSITION); |
| 1689 if (rinfo.rmode() != RelocInfo::JS_RETURN) { |
| 1690 rinfo.set_pc(rinfo.pc() + pc_delta); |
| 1691 } |
| 1692 } |
| 1693 } |
| 1694 |
| 1695 |
| 1696 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
| 1697 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants |
| 1698 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { |
| 1699 // Adjust code for new modes |
| 1700 ASSERT(RelocInfo::IsJSReturn(rmode) |
| 1701 || RelocInfo::IsComment(rmode) |
| 1702 || RelocInfo::IsPosition(rmode)); |
| 1703 // these modes do not need an entry in the constant pool |
| 1704 } else { |
| 1705 ASSERT(num_prinfo_ < kMaxNumPRInfo); |
| 1706 prinfo_[num_prinfo_++] = rinfo; |
| 1707 // Make sure the constant pool is not emitted in place of the next |
| 1708 // instruction for which we just recorded relocation info |
| 1709 BlockConstPoolBefore(pc_offset() + kInstrSize); |
| 1710 } |
| 1711 if (rinfo.rmode() != RelocInfo::NONE) { |
| 1712 // Don't record external references unless the heap will be serialized. |
| 1713 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
| 1714 #ifdef DEBUG |
| 1715 if (!Serializer::enabled()) { |
| 1716 Serializer::TooLateToEnableNow(); |
| 1717 } |
| 1718 #endif |
| 1719 if (!Serializer::enabled() && !FLAG_debug_code) { |
| 1720 return; |
| 1721 } |
| 1722 } |
| 1723 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here |
| 1724 reloc_info_writer.Write(&rinfo); |
| 1725 } |
| 1726 } |
| 1727 |
| 1728 |
| 1729 void Assembler::CheckConstPool(bool force_emit, bool require_jump) { |
| 1730 // Calculate the offset of the next check. It will be overwritten |
| 1731 // when a const pool is generated or when const pools are being |
| 1732 // blocked for a specific range. |
| 1733 next_buffer_check_ = pc_offset() + kCheckConstInterval; |
| 1734 |
| 1735 // There is nothing to do if there are no pending relocation info entries |
| 1736 if (num_prinfo_ == 0) return; |
| 1737 |
| 1738 // We emit a constant pool at regular intervals of about kDistBetweenPools |
| 1739 // or when requested by parameter force_emit (e.g. after each function). |
| 1740 // We prefer not to emit a jump unless the max distance is reached or if we |
| 1741 // are running low on slots, which can happen if a lot of constants are being |
| 1742 // emitted (e.g. --debug-code and many static references). |
| 1743 int dist = pc_offset() - last_const_pool_end_; |
| 1744 if (!force_emit && dist < kMaxDistBetweenPools && |
| 1745 (require_jump || dist < kDistBetweenPools) && |
| 1746 // TODO(1236125): Cleanup the "magic" number below. We know that |
| 1747 // the code generation will test every kCheckConstIntervalInst. |
| 1748 // Thus we are safe as long as we generate less than 7 constant |
| 1749 // entries per instruction. |
| 1750 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) { |
| 1751 return; |
| 1752 } |
| 1753 |
| 1754 // If we did not return by now, we need to emit the constant pool soon. |
| 1755 |
| 1756 // However, some small sequences of instructions must not be broken up by the |
| 1757 // insertion of a constant pool; such sequences are protected by setting |
| 1758 // no_const_pool_before_, which is checked here. Also, recursive calls to |
| 1759 // CheckConstPool are blocked by no_const_pool_before_. |
| 1760 if (pc_offset() < no_const_pool_before_) { |
| 1761 // Emission is currently blocked; make sure we try again as soon as possible |
| 1762 next_buffer_check_ = no_const_pool_before_; |
| 1763 |
| 1764 // Something is wrong if emission is forced and blocked at the same time |
| 1765 ASSERT(!force_emit); |
| 1766 return; |
| 1767 } |
| 1768 |
| 1769 int jump_instr = require_jump ? kInstrSize : 0; |
| 1770 |
| 1771 // Check that the code buffer is large enough before emitting the constant |
| 1772 // pool and relocation information (include the jump over the pool and the |
| 1773 // constant pool marker). |
| 1774 int max_needed_space = |
| 1775 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize); |
| 1776 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer(); |
| 1777 |
| 1778 // Block recursive calls to CheckConstPool |
| 1779 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize + |
| 1780 num_prinfo_*kInstrSize); |
| 1781 // Don't bother to check for the emit calls below. |
| 1782 next_buffer_check_ = no_const_pool_before_; |
| 1783 |
| 1784 // Emit jump over constant pool if necessary |
| 1785 Label after_pool; |
| 1786 if (require_jump) b(&after_pool); |
| 1787 |
| 1788 RecordComment("[ Constant Pool"); |
| 1789 |
| 1790 // Put down constant pool marker |
| 1791 // "Undefined instruction" as specified by A3.1 Instruction set encoding |
| 1792 emit(0x03000000 | num_prinfo_); |
| 1793 |
| 1794 // Emit constant pool entries |
| 1795 for (int i = 0; i < num_prinfo_; i++) { |
| 1796 RelocInfo& rinfo = prinfo_[i]; |
| 1797 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && |
| 1798 rinfo.rmode() != RelocInfo::POSITION && |
| 1799 rinfo.rmode() != RelocInfo::STATEMENT_POSITION); |
| 1800 Instr instr = instr_at(rinfo.pc()); |
| 1801 |
| 1802 // Instruction to patch must be a ldr/str [pc, #offset] |
| 1803 // P and U set, B and W clear, Rn == pc, offset12 still 0 |
| 1804 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) == |
| 1805 (2*B25 | P | U | pc.code()*B16)); |
| 1806 int delta = pc_ - rinfo.pc() - 8; |
| 1807 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32 |
| 1808 if (delta < 0) { |
| 1809 instr &= ~U; |
| 1810 delta = -delta; |
| 1811 } |
| 1812 ASSERT(is_uint12(delta)); |
| 1813 instr_at_put(rinfo.pc(), instr + delta); |
| 1814 emit(rinfo.data()); |
| 1815 } |
| 1816 num_prinfo_ = 0; |
| 1817 last_const_pool_end_ = pc_offset(); |
| 1818 |
| 1819 RecordComment("]"); |
| 1820 |
| 1821 if (after_pool.is_linked()) { |
| 1822 bind(&after_pool); |
| 1823 } |
| 1824 |
| 1825 // Since a constant pool was just emitted, move the check offset forward by |
| 1826 // the standard interval. |
| 1827 next_buffer_check_ = pc_offset() + kCheckConstInterval; |
| 1828 } |
| 1829 |
| 1830 |
| 1831 } } // namespace v8::internal |
| 1832 |
OLD | NEW |